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Signatures of topological phase transitions in Josephson current-phase discontinuities
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Topological superconductors differ from topologically trivial ones due to the presence of topologically protected
zero-energy modes. To date, experimental evidence of topological superconductivity in nanostructures has been
mainly obtained by measuring the zero-bias conductance peak via tunneling spectroscopy. Here, we propose an
alternative and complementary experimental recipe to detect topological phase transitions in these systems. We
show in fact that, for a finite-sized system with broken time-reversal symmetry, discontinuities in the Josephson
current-phase relation correspond to the presence of zero-energy modes and to a change in the fermion parity of the
ground state. Such discontinuities can be experimentally revealed by a characteristic temperature dependence of
the current, and can be related to a finite anomalous current at zero phase in systems with broken phase-inversion
symmetry.
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Introduction. The recent discovery of topological materials
has deeply impacted condensed matter research [1]. These
materials exhibit a number of exceptional properties which
are related to the presence of topologically protected states
localized at their edges. In topological superconductors (TSs),
for instance, Majorana edge states [2] are characterized
by a distinctive non-Abelian statistics, which makes them
ideal candidates for fault-tolerant quantum computation [3].
Theoretically, a TS can be realized at the interface between
a conventional superconductor and a topological insulator
[4], or in semiconductor-superconductor heterostructures with
spin-orbit coupling (SOC) in a magnetic field [5].

However, revealing signatures of topological nontrivial
phases in TSs is not straightforward [6]. This is mainly be-
cause, unlike more conventional continuous phase transitions,
topological phase transitions [7] do not break any symmetry
nor exhibit any critical behavior, but are instead identified
by a change of the corresponding topological invariant [8]
and of the edge properties in continuous systems [9]. To
date, experimental evidence of nontrivial superconductivity
comprises the measure of the 4π -periodic Josephson current
in TS rings [10], or the zero-bias conductance peak via
tunneling spectroscopy [11] or spatially resolved spectroscopic
imaging [12].

In this Rapid Communication we propose a direct method
to probe variations of the topological invariant, i.e., the fermion
parity of the ground state [13], in Josephson junctions [14,15].
It is known that the Josephson current-phase relation (CPR)
may exhibit discontinuities at low temperatures corresponding
to Andreev level crossings [16], in systems as different
as quantum dots [17], nanowires [18], Josephson junction
arrays [19], and Weyl semimetals [20]. Here, we show that
in finite-sized noninteracting s-wave TSs with broken time-
reversal symmetry, such discontinuities are related to the
presence of zero-energy modes and to variations of the fermion
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parity, which define the topological phase transitions of this
system. These discontinuities can be experimentally revealed
by a characteristic temperature dependence and are moreover
related, in systems with broken phase-inversion symmetry, to
an anomalous current at zero phase.

The model. A TS can be realized by a nanostructure
embedded into a superconducting ring [21] with SOC and
a magnetic field [5] (see Fig. 1). Here, we consider the case
of finite-sized systems, e.g., a quantum dot, wire, or planar
well [see Supplemental Material (SM) Sec. A [22]], described
by a tight-binding Bogoliubov–de Gennes (BdG) Hamiltonian
[23] with linear dimensions smaller than the coherence length
ξ = �vF /�, where vF is the Fermi velocity and � the
superconducting gap. This system is the zero-dimensional
(0D) limit of a one-dimensional (1D) Majorana chain [2],
in the sense that its Hamiltonian does not depend on any
momentumlike continuous parameter. The Andreev spectrum
of this system is a discrete set of particle-hole energy levels
Ei(ϕ) which depend on the gauge-invariant phase difference
ϕ of the superconducting order parameter between the two
leads, induced by a magnetic flux �. If L � ξ , where L is the
distance between the leads, the CPR is given by [24]

I (ϕ) = e

�

∑
i

f

[
Ei(ϕ)

kBT

]
∂ϕEi(ϕ), (1)

where f (x) = 1/(ex + 1) is the Fermi-Dirac distribution.
Note that the low-energy Andreev spectrum does not depend
on the superconducting ring length, in the limit of short
junctions [25] (see SM Sec. A [22]). If the lowest-energy
(LE) levels close the gap with linear phase dispersion, the
CPR exhibits a discontinuity at zero temperature T = 0. In
fact, in this case the Fermi-Dirac distribution in Eq. (1)
converges to a step function, and thus the only contribu-
tion to the current is given by energy levels E � 0, i.e.,
I (ϕ) = (e/�)

∑
Ei�0 ∂ϕEi(ϕ). This mandates a discontinuous

drop �I (ϕ∗) = −(e/�)
∑

Ej (ϕ∗)=0 |∂ϕEj (ϕ∗)| at any gapless
point ϕ∗ where zero-energy levels Ej (ϕ∗) = 0 have a linear
phase dispersion ∂ϕEj (ϕ∗) �= 0. Since Andreev levels are
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FIG. 1. A TS (a) realized by a quantum nanostructure embedded
into a superconducting ring with Rashba SOC ∝ (σ × p)z along the
z axis. The nanostructure (b) of length L, width W , and proximity
length LP (LN = L − 2LP ), connected to two superconducting
leads, can be either a quantum dot (L = W = 1 lattice site), wire
(L > W = 1), or planar well (L,W > 1).

continuously differentiable in finite-sized systems (see SM
Sec. A [22] and Ref. [26]) these are the only points where
the CPR can be discontinuous. Hence, discontinuities at zero
temperature correspond to zero-energy modes closing the
particle-hole gap. In general, the converse is not true, i.e.,
the gap may close without any discontinuity if ∂ϕEj (ϕ∗) = 0.
Hereafter we will show that such discontinuities correspond, if
time-reversal symmetry is broken, to fermion parity transitions
and thus can be related to a topological phase transition of
the TS.

Superconductors exhibit particle-hole symmetry, i.e., their
BdG Hamiltonian H(ϕ) is invariant under the antiunitary
transformation � = τxK with �2 = 1, where K is the complex
conjugate operator and τx the Pauli matrix in particle-hole
space. For a finite magnetic field b �= 0, time-reversal and
chiral symmetries are broken, and hence the system is in the
Altland-Zirnbauer [27] symmetry class D. This class is char-
acterized both in 1D (Majorana chain, continuous spectrum)
and in 0D (finite-sized system with discrete energy spectrum)
by the Z2 topological invariant accordingly to the periodic
table of topological phases [27]. Analogously to the 1D case
(Majorana chain), the topological invariant in a 0D system
is defined following Ref. [28] as the fermion parity of the
ground state [2,13] Pϕ = sgnFϕ , where Fϕ = pf [H(ϕ)ıτx] is
the Pfaffian [29] of the matrix H(ϕ)ıτx . The fermion parity
labels the topological inequivalent phases, i.e., trivial Pϕ = 1
(Fϕ > 0) and nontrivial Pϕ = −1 (Fϕ < 0). Moreover, since
F2

ϕ = det[H(ϕ)ıτx] = det[H(ϕ)] = ∏
i Ei(ϕ), the condition

Fϕ∗ = 0 corresponds to gapless points ϕ∗ where zero-energy
modes occur. The topological invariant in 0D (finite-sized
system) and in 1D (continuous limit) are closely related:
In the limit L → ∞, in fact, the Majorana number [2]
coincides with the fermion parity of the ground state, i.e.,
M = sgn{pf[Hıτx]} [13,28].

Fermion parity phase dependence. The nontrivial phase of
a Majorana chain (1D, continuous spectrum) requires an open
particle-hole gap, which can be realized only with SOC [5]
and for specific magnetic field directions [30]. Contrarily, in
0D finite-sized systems, the topological invariant Pϕ is well
defined even in the absence of SOC and for any magnetic
field direction, as long as Fϕ �= 0, and depends explicitly on
the phase ϕ. Changes in the fermion parity Pϕ define the
topological phase transitions in this system. Independently
from the details of the tight-binding Hamiltonian, the Pfaffian
can be expanded as a Fourier series in the phase ϕ with
coefficients an ∝ �2n. If the superconducting gap is smaller
than the bandwidth of the nanostructure (e.g., in conventional

FIG. 2. Topological phase space (a) of a finite-sized TS as a
function of ϕ, θ , and λ. Topological transitions between states with
different fermion parities are possible for |λ| < 1, where Pϕ = ±1,
respectively, for |ϕ − θ | ≶ arccos (−λ). Zero-energy modes occur
at cos(ϕ − θ ) = −λ (solid line). CPR in units of I0 = (e/�)�, LE
Andreev level, and Pfaffian Fϕ/C for a quantum wire (b) and a planar
well (c) with magnetic field b = by perpendicular to the SOC and cur-
rent directions. Different magnetic field directions give qualitatively
similar results. For |λ| < 1 (continuous lines), CPR discontinuities
correspond to zero-energy modes (Fϕ∗ = 0) and to variations of the
fermion parity Pϕ = sgnFϕ at ϕ∗

± = θ ± arccos(−λ). The trivial
Fϕ > 0 and nontrivial Fϕ < 0 branches of the CPR correspond,
respectively, to λ > 1 (dashed lines) and λ < −1 (dotted lines). In
a planar well with by �= 0 and α �= 0 (c), the CPR and Pfaffian are
no longer symmetric under phase inversion ϕ → −ϕ (θ �= nπ in this
case), and an anomalous current I (0) �= 0 is present for λ = −0.9
and −1.5.

superconductors), higher harmonics become negligible and
one obtains at the first order (see SM Sec. B [22])

Fϕ ≈ C[cos(ϕ − θ ) + λ], (2)

where λ = (Fϕ′ + Fϕ′+π )/(2C) (the sum does
not depend on the choice of the angle ϕ′),

2C =
√

(F0 − Fπ )2 + (F π
2

− F− π
2
)2, and tan θ =

(F π
2

− F− π
2
)/(F0 − Fπ ). These parameters depend on

the Hamiltonian, e.g., on the hopping parameter t , magnetic
field b, chemical potential μ, SOC α, and superconducting
gap �, but not on the gauge-invariant phase ϕ. The topological
phase space is thus completely characterized by the phase ϕ

and the parameter λ = λ(t,α,μ,b,�), as shown in Fig. 2(a).
If |λ| � 1, the system is either in the trivial Fϕ > 0 for λ � 1
or nontrivial phase Fϕ < 0 for λ � −1, with the exception
of a single gapless point at ϕ∗ = θ + π or θ , respectively, for
λ = ±1. If |λ| < 1 instead, topological transitions occur at the
gapless points ϕ∗

± ≈ θ ± arccos(−λ). Hence, the closing of
the particle-hole gap Fϕ = 0 defines the boundaries between
trivial and nontrivial phases.

Furthermore, if SOC or the magnetic field vanish, the
Andreev spectrum, CPR, and fermion parity are invariant
under phase inversion, which mandates θ = nπ with n integer
in Eq. (2). This invariance is related to the magnetic mirror
symmetry [31] Mxz
 = K , where Mxz = ıσy is the spin
mirror reflection across the xz plane and 
 = −ıσyK the time-
reversal operator. If α = 0 or b = 0 in fact, the quantization
axis can be arbitrarily chosen such that the only complex terms
in the BdG Hamiltonian are those in the phase ϕ (see SM
Sec. B [22]). Therefore, H(ϕ)∗ = H(−ϕ), and consequently
I (ϕ) = −I (−ϕ), Pϕ = P−ϕ , and θ = nπ . However, if the
magnetic mirror symmetry is broken, i.e., if H(ϕ)∗ �= H(−ϕ),
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the CPR and the fermion parity may no longer be symmetric
under phase inversion, i.e., I (ϕ) �= −I (−ϕ), Pϕ �= P−ϕ , and
θ �= nπ . In this case, the magnetic mirror symmetry corre-
sponds to the inversion of the Pfaffian phase shift θ → −θ

(see SM Sec. B [22]), and the fermion parity is still invariant
under the more general transformation ϕ → 2θ − ϕ, i.e.,
Pϕ = P2θ−ϕ [cf. Eq. (2)]. A Pfaffian phase shift θ �= nπ is
thus a signature of the broken phase-inversion and magnetic
mirror symmetries, and can result in an anomalous current
[32–34] at zero phase (see below).

CPR discontinuities. In a superconductor with broken
time-reversal symmetry, any zero-energy mode is at least
doubly degenerate due to particle-hole symmetry. Hence the
Pfaffian can be expanded near any gapless point as Fϕ ∝
(ϕ − ϕ∗)d , where the order d is half the total multiplicity
2d = ∑

j mj , with mj the multiplicities of zero-energy modes
Ej (ϕ) ∝ (ϕ − ϕ∗)mj . Thus, if the Pfaffian first derivative
F ′

ϕ = ∂ϕFϕ is nonzero at the gapless point ϕ∗, there exist
only two doubly degenerate LE levels E±(ϕ∗) = 0 with linear
phase dispersion E±(ϕ) ∝ (ϕ − ϕ∗). Therefore, one obtains
∂ϕE±(ϕ∗) = ±F ′

ϕ∗/χϕ∗ , where χϕ∗ = ∏
Ei>0 Ei(ϕ∗) > 0 (see

SM Sec. C [22]). Hence, the LE level contribution changes its
sign passing through the gapless point, and the total current
exhibits a discontinuous drop given by

�I
(
ϕ∗) = −2e

�

|F ′
ϕ∗ |

χϕ∗
, (3)

where |F ′
ϕ∗ | = C| sin (ϕ∗ − θ )| = C

√
1 − λ2 [cf. Eq. (2)].

Eq. (3) relates CPR discontinuities at zero temperature
with the variations of the fermion parity Pϕ = sgnFϕ in
superconductors with broken time-reversal symmetry, and is
valid for F ′

ϕ∗ �= 0. If |λ| < 1 in fact, the Pfaffian changes its
sign at ϕ∗

± = θ ± arccos(−λ), where F ′
ϕ∗±

�= 0 according to
Eq. (2). Here, the CPR has two discontinuities �I (ϕ∗

±) �= 0
which correspond to transitions between topological phases
with even and odd fermion parity, where zero-energy modes
appear. If |λ| > 1 instead, no zero-energy mode or CPR
discontinuity occur. In the limit cases λ = ±1, the Pfaffian
vanishes at the gapless point without any sign change (F ′

ϕ∗ =
0), while the CPR may exhibit at most one discontinuity,
corresponding to a zero-energy mode with m± = 1. Hence,
the presence of two distinct discontinuities in the CPR of a TS
with broken time-reversal symmetry defines the boundaries
between inequivalent topological phases. Moreover, these
discontinuities are a direct signature of zero-energy modes,
and coincide with a sign change of the LE level contribution
to the current. These zero-energy modes signal the topological
transition at ϕ∗ between phases with different fermion parity,
and are described locally as a linear superposition of particle
and hole states or, equivalently, of two orthogonal Majorana
states (see SM Sec. E [22]). The results presented here hold
for any discrete 0D Hamiltonian in the Altland-Zirnbauer
class D (particle-hole symmetry and broken time-reversal
symmetry). Note that, if time-reversal symmetry is unbroken
(b = 0 and θ = nπ ), the total multiplicity is 2d � 4 due to
spin and particle-hole degeneracy, and therefore F ′

ϕ∗ = 0 at
any gapless point. Hence, no fermion parity transition occurs
(|λ| > 1) and the CPR may exhibit at most one discontinuity
at ϕ∗ = nπ if |λ| = 1, e.g., in point contact junctions [24].

Indeed, a time-reversal invariant s-wave superconductor is
topologically trivial. Since CPR discontinuities correspond to
an abrupt jump to the LE state, they can be measured at the
equilibrium (DC Josephson current) and are not affected by
quasiparticle poisoning [35].

Numerical results. Figures 2(b) and 2(c) show the CPR
at zero temperature, the LE Andreev level, and the Pfaffian
of a quantum wire (W = 1) and a planar well (W > 1) as a
function of the phase and magnetic field b = by perpendicular
to the SOC [∝ (σ × p)z] and current directions, calculated
directly from the BdG Hamiltonian H(ϕ) (see SM Sec. A
[22] for details). For |λ| < 1, the gap closes with linear phase
dispersion and thus the CPR has two discontinuities at ϕ∗

±.
In a planar well with by �= 0 and α �= 0 [Fig. 2(c)], the
CPR and the Pfaffian are no longer symmetric under phase
inversion ϕ → −ϕ (θ �= nπ in this case). Note that fermion
parity transitions and CPR discontinuities are present for any
magnetic field direction. In a quantum wire with L → ∞ (1D,
continuous spectrum), we verified numerically that Eqs. (2)
and (3) reproduce the well-known results of Ref. [5]. In partic-
ular, the trivial (M = 1) and nontrivial (M = −1) phases
correspond, respectively, to λ > 1 and λ = −1 in Eq. (2).
We have also verified that Majorana bound states localize at
the wire edges, corresponding to a discontinuity in the CPR
at ϕ∗ = π if b ⊥ y.

Anomalous current. When the magnetic mirror symmetry
is broken (θ �= nπ ), the current may no longer be symmetric
under phase inversion, which can result in a finite anomalous
current [32–34] at ϕ = 0, as shown in Fig. 2(c). This can be
realized, e.g., in planar quantum wells with SOC and magnetic
field, where a finite anomalous current has been related to
the presence of chiral edge states [33] or to a SOC-induced
Lorentz force [34]. In these systems, a topological phase
transition can be revealed by a discontinuity of the current
at zero phase �I (ϕ = 0,ν) with respect to the parameter ν

(magnetic field, chemical potential, or SOC) which drives the
system through the topological transition. In this case one can
always find a value ν = ν∗ such that the gap closes at ϕ∗ = 0,
i.e., λ(ν∗) = − cos θ [cf. Eq. (2) and Fig. 2(a)]. At this gapless
point the fermion parity changes and the current at ϕ = 0 has
a discontinuous drop with respect to the parameter ν given by

�I (ϕ∗ = 0,ν = ν∗) = −2e

�

C

χ0
|sin θ |. (4)

The value ν∗ corresponds to a crossover between the trivial
Fϕ > 0 (λ > 1) and nontrivial Fϕ < 0 (λ < −1) branches of
the CPR, as shown in Fig. 2(c). This discontinuity mandates a
finite anomalous current I (0,ν) �= 0 near ν = ν∗ either in the
trivial or nontrivial phases, or in both. Numerical calculations
indicate that it is nonzero only in the nontrivial phase [cf.
Fig. 2(c)]. Hence, a discontinuity of the anomalous current
at zero phase with respect to any system parameter (e.g.,
magnetic field) is also a signature of a topological phase
transition.

Experimental proposal. At finite temperatures, CPR dis-
continuities are smoothed out by the thermal spreading of the
Fermi-Dirac distribution. For T � Td = δd/kB , where δd is
the gap between the first and second Andreev levels at ϕ∗,
the current can be expanded as a sum of two contributions
Ihe(ϕ) and Ile(ϕ) coming, respectively, from higher-energy
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FIG. 3. Fermion parity Pϕ , CPR (a), and phase derivative ∂ϕI (ϕ)
of the current (b) at T = 0.02Tc of a quantum wire as a function of
the magnetic field along the y axis. Spikes in the phase derivative
correspond to topological phase transitions. Josephson current (c)
near the gapless point and phase derivative ∂ϕI (ϕ∗) (inset). Dotted
lines correspond to Eq. (5), continuous lines to numerical calculations.
The two minima (b) at ϕ = 0 (by/� ≈ 0.5 and ≈2, respectively) are
constant in temperature, i.e., do not correspond to any topological
phase transition.

levels (E > δd ) and from the LE level. The latter contribution
depends strongly on the temperature and can be obtained from
Eqs. (1) and (3) (see SM Sec. D [22]), which yield

I (ϕ) ≈ Ihe(ϕ) + �I (ϕ∗)

2
tanh

[
−�

e

�I (ϕ∗)(ϕ − ϕ∗)

4kBT

]
. (5)

The current-phase derivative diverges as ∂ϕI (ϕ∗) ≈
−�/(8e)�I (ϕ∗)2/(kBT ) for T → 0. Hence, the scaling factor
sϕ∗ = −∂ϕI (ϕ∗)kBT is a direct measure of the discontinuous
drop, since �I (ϕ∗) ≈ −√

(8e/�)sϕ∗ . Since the separation
between energy levels increases as the system size de-
creases, the temperature Td , below which CPR discontinuities
are measurable, is maximized for small linear dimensions.
For parameters considered in Figs. 2 and 3, we obtain
Td ≈ 0.2Tc.

In light of this, we propose to measure the low-
temperature CPR [24,36] through a nanostructure with broken
time-reversal symmetry. Figures 3(a) and 3(b) show the
CPR of a quantum wire (L = 200 sites) at T > 0 and its
phase derivative as a function of the magnetic field. Besides,
Eq. 3(c) shows the effect of temperature on current discon-
tinuities, which is described by Eq. (5). Spikes in the phase
derivative which exhibit the characteristic temperature scaling
of Eq. 3(c) identify the boundaries between inequivalent
topological phases. These effects should be measurable in
clean Josephson weak links of the order of 50–150 nm in InAs
or InSb nanowires (L = 100–300 lattice sites) proximized by
a conventional superconductor [21] (e.g., Nb or Al). Note that
the Josephson critical current has been recently measured in an
InAs nanowire in the relevant regime [37], at very low tempera-
tures (∼10 mK) comparable with the temperatures considered
here.

Conclusions. We have shown that discontinuities in the
Josephson CPR correspond, in TSs with broken time-reversal
symmetry, to topological phase transitions between states with
different fermion parities, where zero-energy modes occur.
These current discontinuities are not affected by quasiparticle
poisoning and can be revealed by spikes in the current-phase
derivative and by their characteristic temperature dependence.
Moreover, in systems with broken phase-inversion symmetry,
topological phase transitions correspond to discontinuities of
the anomalous current at zero phase. Such features in the CPR
provide an experimental tool to probe the fermion parity and
to resolve the topological phase space of TSs.
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