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Critical temperature enhancement of topological superconductors: A dynamical mean-field study
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We show that a critical temperature Tc for spin-singlet two-dimensional superconductivity is enhanced by a
cooperation between the Zeeman magnetic field and the Rashba spin-orbit coupling, where a superconductivity
becomes topologically nontrivial below Tc. The dynamical mean-field theory with the segment-based
hybridization-expansion continuous-time quantum Monte Carlo impurity solver is used for accurately evaluating
a critical temperature, without any fermion sign problem. A strong-coupling approach shows that spin-flip-driven
local pair hopping leads to part of this enhancement, especially effects of the magnetic field. We propose physical
settings suitable for verifying the present calculations, a one-atom-layer system on Si(111) and ionic-liquid-based
electric double-layer transistors.
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Interesting materials properties are produced by the
interplay between different internal degrees of freedom, such
as spin and orbital, leading to the design of devices with
useful characteristics [1,2]. Manipulating spins in position
or momentum space allows us to address exotic order in
low-temperature physics. The application of Zeeman magnetic
fields induces a spin imbalance in a system. Spin-orbit
couplings (SOCs) create a spin rotation depending on the
electron’s motion. These effects lead to notable many-body
ground states, such as the Fulde-Ferrel-Larkin-Ovchinnikov
states [3–5], pair-density wave [6], and topological
superfluidity/superconductivity [7–9].

The quest for high-Tc topological superconductors is a
compelling issue in materials science. To reveal a way of
enhancing Tc with keeping topological characteristics enables
us to not only study topological order in a wide range of
temperatures, but also increase the feasibility of implement-
ing topological quantum computing. The superconducting
topological insulator CuxBi2Se3 shows superconductivity at
Tc ∼ 3.8 K [10], and is a candidate for bulk topological
superconductors [10,11]. Interestingly, its critical temperature
is two orders of magnitude larger than a theoretical estimation
with electron-phonon couplings [12]. Therefore, using a
concrete theoretical method beyond the weak-coupling mean-
field theory, clarifying the relevance of the key features of this
compounds to Tc would lead to a clue of designing useful
topological materials.

The presence of strong SOC is one of the crucial character-
istics in CuxBi2Se3, since the quasiparticle wave function has a
strong momentum dependence due to the SOC so that the bulk
state has a nontrivial topology [11]. This feature is common
with other topological superconducting systems, such as ultra-
cold atomic gases and artificial semiconductor-superconductor
heterostructures [13]. Thus, it is interesting how spin degrees
of freedom contribute to the critical temperature of topological
superconductors.

*Present address: Research Organization for Information Science
and Technology (RIST), 1-5-2 Minatojima-minamimachi, Kobe 650-
0047, Japan.

An attractive idea of producing topological superconduc-
tors is to use two-dimensional (2D) s-wave superconductors
with spin manipulations [14]. Mean-field calculations predict
that spin-singlet Cooper pairs have unconventional and topo-
logical characteristics in the presence of Rashba SOC and
Zeeman magnetic fields [14–16]. This setting is suitable for
assessing the connection between SOC and Tc, from two points
of view. First, an intrinsic pair breaking (Pauli depairing)
effect is involved, owing to the presence of Zeeman magnetic
fields. Thus, one may understand how the contributions
from SOC overcome the Pauli depairing effects. Second,
a topologically nontrivial s-wave superconducting state is
produced by an on-site attractive density-density interaction
[14]. It indicates that an arbitrary range of interaction strength
can be systematically studied by a reliable theoretical method,
the dynamical mean-field theory (DMFT) [17] combined with
a numerically exact continuous-time quantum Monte Carlo
method [18,19]. Utilizing this theoretical approach, one can
take all kinds of local Feynman diagrams.

In this Rapid Communication, we show that a 2D attractive
Hubbard model with Rashba SOC possesses Tc enhancement
even though the Zeeman magnetic field is applied. To treat an
arbitrary strength of on-site U , we adopt the DMFT combined
with a numerically exact continuous-time quantum Monte
Carlo method. We point out that this approach accurately
estimates Tc even in the present spin-active many-body system
since a symmetric property of the many-body Hamiltonian
in spin and k space ensures the absence of the fermion
negative sign problem [19]. Our main results are shown in
Figs. 1 and 2. The critical temperature on a certain filling
changes with a nonmonotonic manner, varying the magnitude
of the Zeeman field and the Rashba SOC. A cooperation
between the Zeeman field and SOC is a key of the Tc

enhancement. A strong-coupling approach shows that the part
of the enhancement (i.e., the magnetic field dependence) is
explained by local pair hopping [20], due to a spin-flip process
The rest of the enhancement (i.e., the SOC dependence) is
still elusive. We speculate that the enhancement is related to a
change of a winding number on the normal-electron Fermi
surfaces. Moreover, we propose physical settings suitable
for verifying the present calculations, one-atom-layer TI-Pb
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FIG. 1. Zeeman-magnetic-field dependence of a critical temper-
ature, with attractive on-site coupling U = −3t , spin-orbit coupling
α = 1t , and filling ν = 1/8. The dashed-dotted line shows that in a
noninteracting case (U = 0) a winding number on the Fermi surfaces
changes.

on Si(111) [21] and ionic-liquid-based electric double-layer
transistors (EDLTs) [22].
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FIG. 2. Spin-orbit coupling dependence of a critical temperature,
with (a) Zeeman magnetic field h = t and filling ν = 1/8 and (b)
h = 0.5t and ν = 1/16. The attractive on-site coupling, U = −3t , is
common. Each vertical dashed-dotted line has the same meaning as
that in Fig. 1.

The single-orbital attractive Hubbard Hamiltonian with the
Rashba SOC and the Zeeman magnetic field on 2D square
lattice is [13,14]

H =
∑
kσσ ′

ĥσσ ′
0 (k)c†kσ ckσ ′ + U

∑
i

ni↑ni↓, (1)

where ĥ0(k) = −μ − 2t(cos kx + cos ky) + αL(k) − hσ̂3 and
niσ = c

†
iσ ciσ (σ = ↑,↓). The hopping parameter t is positive,

whereas the coupling constant of the on-site interaction U

is negative. Throughout this Rapid Communication, we use
the unit system with � = kB = 1. The unit of energy is t . The
electron annihilation (creation) operator with spin σ is ciσ (c†iσ )
on spatial site i. In the momentum representation they are ckσ

and c
†
kσ . The symbol σ̂j is the j th component of the 2 × 2 Pauli

matrices (j = 1,2,3). The Rashba SOC term is described by
αL(k) = α(σ̂1 sin ky − σ̂2 sin kx), with positive α. The strength
of the Zeeman magnetic field is h. In our calculations, the
chemical potential, μ is tuned, with fixed filling ν.

Let us summarize the topological properties of a supercon-
ducting state in this model within the weak-coupling Bardeen-
Cooper-Schrieffer (BCS) theory [14]. The topological number
is the Thouless-Kohmoto-Nightingale-Nijs invariant [23,24]
on a 2D torus in momentum space. According to this invariant,
the criteria of topological superconductivity are derived by
Sato et al. (Table I in Ref. [14]). We focus on the case
just below Tc; the amplitude of the superconducting order
parameter vanishes (i.e., |�| → 0+). Then, we find that the
criteria in Ref. [14] are regarded as the changes of a winding
number on the Fermi surfaces, where the winding number is
defined as an xy-plane spin rotation on the Fermi surfaces.
Note that this characterization requires only the knowledge
on the normal-state Fermi surfaces. The occurrence of a
topological superconducting state just below Tc is associated
with a nonzero winding number on the Fermi surfaces. Hence,
although here we only consider the normal states just above
Tc, we can obtain a connection of normal-state instability with
topological superconductivity.

We show our calculation method. To calculate one- and
two-particle Green’s functions, we utilize the DMFT with
the segment-based hybridization-expansion continuous-time
quantum Monte Carlo impurity solver (ct-HYB) [18,25,26].
The segment-based algorithm is the fastest update method
of ct-HYB solvers, and is applicable to our system if (i)
the interaction terms of the Hamiltonian conserve spin and
(ii) in the effective Anderson impurity model the one-body
local Hamiltonian does so. The first condition is satisfied
since the system has only a density-density interaction. Let
us consider the second one. The one-body local Hamiltonian
matrix Ĥf is related to ĥ0(k) via [27]

Ĥf =
∑

k

ĥ0(k) = −μ − hσ̂3. (2)

Since Ĥf is diagonal in the spin space, the second condition
is fulfilled. Moreover, we point out that there is no fermion
sign problem when self-energy is diagonal in the spin space
[19]. Since H is invariant under the transformation ckσ →∑

σ ′(σ̂3)σσ ′c−kσ ′ , we find that the off-diagonal elements of
self-energy in the spin space are zero in the present system [28].
Accordingly, the evaluation of Tc is accurately performed by
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the DMFT with ct-HYB. Here, the effective impurity problem
is solved by an open-source program package, IQIST [29].

The main target in our calculations is the pair susceptibility
with respect to a spin-singlet s-wave state at temperature
T [30],

χ = 1

N

∫ 1/T

0
〈O(τ )O†〉dτ = T

∑
nn′

χ↑↓↓↑(iωn,iωn′ ; 0), (3)

with O = ∑
i c

†
i↑c

†
i↓. The total number of lattice sites is N .

The fermionic Matsubara frequency is ωn = πT (2n + 1),
with n ∈ Z. Here, χabcd (iωn,iωn′ ; 0) is a two-particle lattice
Green’s function with a zero Bosonic Matsubara frequency.
A divergence in χ (or equivalently a sign change in 1/χ )
indicates a possible transition into a superconducting phase.
In the effective impurity model, one- and two- particle
local Green’s functions, Gloc

ab (iωn) and χ loc
abcd (iωn,iωn′ ; 0),

respectively, are calculated by the Gardenia component of the
IQIST package. One-particle Green’s function in the original

lattice model is Ĝ(k,iωn) ≡ [iωn − ĥ0(k) − 
̂(iωn)]
−1

, with
self-energy 
̂(iωn). Two-particle lattice Green’s functions
are obtained by simultaneously solving two Bethe-Salpeter
equations with a common vertex function � [30,31],

χ loc = χ̃ loc,0 + χ loc,0 � χ loc, (4a)

χ = χ̃0 + χ0 � χ. (4b)

The double underline indicates that an object is a
matrix on a vector space including two spin indices and
the Matsubara frequency; χabcd (iωn,iωn′ ) is embedded
into (χ)

ll′
with l = (a,b,n) and l′ = (d,c,n′), for example.

We take all the processes of the DMFT framework,
regardless of spin conservation or not. In the Bethe-Salpeter
equations the matrix objects with superscript 0 contain bare
two-particle Green’s functions produced by one-particle
Green’s functions. In the effective impurity model, we have
χ

loc,0
abcd (iωn,iωn′ ) = χ

loc,gg

dacb (iωn)δn,n′ and χ̃
loc,0
abcd (iωn,iωn′ ) =

χ
loc,0
abcd (iωn,iωn′ ) − χ

loc,gg

cadb (iωn)δn,−n′−1, with χ
loc,gg

abcd (iωn) =
Gloc

ab (iωn)Gloc
cd (−iωn). In a similar manner we define bare two-

particle Green’s functions in the lattice model; all local one-
particle Green’s functions are replaced with lattice one-particle
Green’s functions, and χ

gg

abcd (iωn) is defined as χ
gg

abcd (iωn) =∑
k Gab(k,iωn)Gcd (−k, − iωn). In the calculation of the two-

particle Green’s functions, the k-mesh size and the n-mesh size
are 192 × 192 and 64, respectively. The numerical calculations
on χ are performed by an equation not explicitly including �:

χ = χ loc(1 − A)−1B with A ≡ ([χ loc,0]
−1 − [χ0]

−1
)χ loc +

1 − B loc, B ≡ [χ0]
−1

χ̃0, and B loc ≡ [χ loc,0]
−1

χ̃ loc,0 (for

details, see Ref. [32]).
Figure 1 shows Tc with respect to the change of the

Zeeman magnetic field when α = t , U = −3t , and ν = 1/8.
The critical temperature increases with increasing h, and takes
a peak around h = 1.5t . Then, the decrease of Tc occurs in a
stronger magnetic field; this reduction corresponds to the Pauli
depairing effect. We mention that the weak-coupling mean-
field calculations indicate the complete suppression of Tc even
in the weak magnetic field h = 1t [see, e.g., Fig. 2(a) at α =

1t]. We note that a weak-coupling approach in the presence of
spatial phase fluctuations [33,34] predicts the decrease of Tc

with increasing Zeeman magnetic fields. We infer from Fig. 1
a relation between the Tc enhancement and the change of the
winding number on the Fermi surfaces from 0 (conventional,
nontopological, s wave) to 1 (topological s wave). To study this
point more closely, we consider a different way of changing
the winding number. We focus on a region of parameter sets
in which the winding number transits from 1 to 2, increasing
α with fixed ν and h. Figure 2 shows the behaviors of Tc in the
DMFT calculations (red circle), as well as the results obtained
by the weak-coupling mean-field calculations (blue cross).
We find in the DMFT calculations that the behavior of Tc is
nonmonotonic as α. In contrast, the weak-coupling mean-field
critical temperature monotonically grows up as α since the
in-plane Rashba SOC may suppress the Pauli depairing effect
induced by the Zeeman magnetic field along the z axis [35].
In the DMFT calculations, an optimal value of α in the
enhancement of Tc locates at the region of the winding number
to be 1. Thus, our calculations suggest that the parameter region
in which the winding number is 1 is suitable for realizing a
topological superconducting state at a high temperature. We
stress that these results occur at different parameter sets, as
shown in Figs. 2(a) and 2(b). It is important to note that
calculating a topological invariant in interacting systems is
desirable for finding the genuine topological transition point.
The renormalized Zeeman magnetic field and the chemical
potential due to the self-energy at the zero energy [36] would
shift the lines of winding-number changes in Figs. 1 and 2.

Now, we derive a strong-coupling-limit formula of Tc, to
get the picture on the enhancement of Tc with respect to the
changes of α and h. In a strong-coupling limit |U | → ∞, the
model can be rewritten as a pseudospin (S = 1/2) quantum
Heisenberg model, whose Hamiltonian is given by Heff =∑

〈ij〉 [−J (Sx
i Sx

j + S
y

i S
y

j ) + JSz
i S

z
j ] − H

∑
i S

z
i , where

∑
〈ij〉

considers nearest neighbors only and the pseudospin up and
down states are doubly occupied and unoccupied local states,
respectively. The effective coupling constant and the pseu-
dospin field are J (t,α,h,U ) ≡ 4t2/|U | + |U |α2/(|U |2 − 4h2)
and H = −2μ + U , respectively. The mean-field analysis in
this effective Hamiltonian gives the critical temperature. Thus,
we obtain the expression of Tc,

Tc(α,h) = (1 − 2ν)J (t,α,h,U )

tanh−1 (1 − 2ν)
. (5)

We show that part of the enhancement (h dependence of
Tc) is explained by local pair hopping [20] in terms of the
strong-coupling approach. We find that, even in the half-filling
case (ν = 1/2), the critical temperature enhances with
increasing h, as shown in Fig. 3(a). A key of the enhancement
of Tc is depicted in Fig. 3(b); a pair on the ith site can hop into
the (i + 1)th site via a virtual spin-flip process coming from
nonvanishing α of second-order perturbation (lower diagram
on the middle panel). A strong Zeeman magnetic field splits
the energy levels between the spin-flip (lower diagram) and
spin-conserved (upper diagram) processes; the presence of
the Zeeman field tends to increase the rate of the spin-flip
process. Therefore, this spin-flip-driven local pair hopping is
responsible for the Tc enhancement under nonzero h, although
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FIG. 3. (a) Zeeman-magnetic-field dependence of a critical tem-
perature at half filling (ν = 1/2). Other settings are equal to those in
Fig. 1. (b) Schematic diagram of pair hopping from the ith to (i + 1)th
sites via either spin-flip (lower panel) or spin-conserved (upper panel)
processes.

most of our DMFT calculations are outside the strong-coupling
regime since the energy of the singly occupied state is smaller
than the energies of the doubly occupied and empty states.
In Ref. [32], we also show that the spin-flip processes are
important for the Tc enhancement in the DMFT calculations.

The local-pair-hopping scenario, however, does not fully
explain the behavior of Tc. Under the fixed Zeeman magnetic
field, the dependence of Tc on α in the strong-coupling formula
is quite different from the DMFT calculations, as shown in
Fig. 2; the critical temperature in the DMFT calculations
is not a monotonic increase function of α, even though the
Pauli depairing effect could be suppressed for large α. We can
find that the DMFT calculations with U = −7 t are consistent
with the strong-coupling formula; Tc monotonically increases
within our calculations in 0 � α � 4 t . Thus, explaining the
α dependence of Tc in an intermediate range of on-site U

would require a different scenario. It is an interesting future
issue of unveiling the remaining origin of Tc enhancement. We
speculate that focusing on the change of the winding number
might give us an insight on this elusive issue.

Now, we propose two physical systems available for
testing our theoretical calculations. The first setup is to apply
Zeeman magnetic fields to one-atom-layer Tl-Pb compounds
on Si(111). Matetskiy et al. [21] observed the occurrence of
giant Rashba effects in this setting without the Zeeman field.

Ferromagnetic insulator
s-wave superconductor

Ion gel

FIG. 4. Schematic figure of ionic-liquid-based electric double-
layer transistors (EDLTs).

The second setup is to use EDLT with a layered structure built
up by an s-wave superconductor and a ferromagnetic insulator,
as shown in Fig. 4. The idea of fabricating related systems is
shown in Fig. 2(a) of Ref. [22]. Tuning electric fields allows
us to control the electron’s filling and the strength of SOC.
This EDLT setup would be a plausible system to design 2D
topological superconductors.

Finally, we discuss a link of our calculations with
CuxBi2Se3, from the viewpoint of Tc enhancement. Although
the present system is quite different from CuxBi2Se3, we have
an interesting correspondence between the two systems. One
of the authors (Y.N.) found in the calculations of impurity
effects [37] that the presence of orbital imbalance leads to
similar effects to those induced by a spin imbalance, even
though an external magnetic field is absent. In the present
system a strong Zeeman magnetic field induces the coherent
hopping of a localized pair via a spin-flip process, leading
to the increase of Tc. Hence, in CuxBi2Se3, a large orbital
imbalance might cause an orbital-flip process contributing to
the enhancement of Tc. The DMFT study in the model of
CuxBi2Se3 is our important future issue.

In summary, we showed that a 2D attractive Hubbard model
with Rashba SOC and a Zeeman magnetic field possesses
Tc enhancement, by using the DMFT combined with the
numerically exact ct-HYB solver without any fermion sign
problem. With the use of a strong-coupling approximation,
part of the enhancement (i.e., the magnetic field dependence)
was explained by the scenario of a local pair hopping induced
by a spin-flip process. The rest of the enhancement (i.e., the
SOC dependence) is still in an open issue. We speculated that
the enhancement is related to a change of a winding number of
the normal-electron Fermi surfaces. Moreover, we proposed
that EDLTs are good stages for designing topological super-
conductivity. Finally, we discussed a high Tc in CuxBi2Se3

with the use of the result in our two-dimensional system.

Y.N. thanks Y. Saito for helpful comments on the EDLTs.
The calculations were performed by the supercomputing
system SGI ICE X at the Japan Atomic Energy Agency. This
study was partially supported by JSPS KAKENHI Grants No.
26800197 and No. 15K00178.
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Ĝloc(iωn) = Ĝf (iωn), leads to Eq. (2).

[28] The local Green’s function is Ĝloc(iωn) = a1̂ + bσ̂3 when the
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