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Paramagnetic excited vortex states in superconductors
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We consider excited vortex states, which are vortex states left inside a superconductor once the external applied
magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is
paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The
solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel
mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.
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I. INTRODUCTION

Individual vortices in type II superconductors were first
seen by Essmann and Trauble through the Bitter decoration
technique [1,2]. Since then several other techniques have been
developed for this purpose [3], such as scanning SQUID
microscopy [4], high-resolution magneto-optical imaging
[5,6], muon spin rotation («SR) [7,8], scanning tunneling
microscopy [9,10], and magnetic force microscopy [9]. These
advancements in the visualization of individual vortices opens
the gate to investigate new properties, such as those of the
excited vortex state (EVS).

A type II superconductor in presence of an external applied
magnetic field contains vortices in its interior whose density
is fixed by the external applied magnetic field. Once the
applied field is switched off this state becomes unstable and
vortices must leave the superconductor. However, their exit
can be hindered by microscopic inhomogeneities, which pin
them inside the superconductor. Here we make an important
distinction concerning this remaining vortex state according
to how its energy compares with that of the normal state.
Although the remaining vortex state is always unstable, only
in case its energy is lower than that of the normal state do we
call it EVS. Consider the remaining vortex state immediately
after the applied field is switched off. Vortices have topological
stability but only inside the superconducting state. Thus, as
long as the superconducting state exists they cannot be created
or destroyed and therefore can only enter or exit through the
boundary. However, if the superconducting state ceases to exist
vortices vanish altogether inside the material. Therefore, the
obtainment of the Gibbs free-energy difference between the
superconducting state, which contains the remaining vortex
state inside, and the normal state must be done to determine
whether the superconducting state still exists. In case this
energy difference is positive one expects the collapse of
the superconducting state and the onset of the normal state,
possibly because of nonlinear thermal effects that will develop
and pinning will not be able to uphold this transition. In
case this energy difference is negative the EVS exists and
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can remain inside the superconductor provided that pinning
impedes the motion of vortices towards the superconductor
boundary.

In the London limit the energy of the vortex state is
clearly positive since it is the sum of all two-vortex repulsive
interactions. This is equivalent to saying that the energy is the
sum of the vortex lines self-energies plus the sum over the
repulsive interaction between different vortices. Once again it
becomes clear that vortices inside the superconductor can only
be sustained by the external pressure exerted by the applied
field and once this pressure ceases to exist they go away leaving
behind the state of no vortices. However, the study of the EVS
cannot be done in this context of the London theory since
this theory does not describe the condensate energy. Within
the London theory it is not possible to compare the energy
of the vortex state with the normal state. Therefore the EVS
must be studied in the context of the Ginzburg-Landau (GL)
theory.

The EVS is intrinsically paramagnetic [11-13], which
means that its magnetization points in the same direction of
the switched off applied field. A simple way to understand
this property is to analyze the two types of currents in a
superconductor. In the Meissner phase there are only shielding
currents at the boundary, which are diamagnetic, namely, they
create an equal and opposite field to the applied one in its
interior resulting into a net null field. However, the current
around the vortex core is opposite to the shielding current,
a property that explains why the increase in the number of
vortices weakens the diamagnetic response set by the shielding
currents. This increase reaches the critical point where the
magnetization vanishes and then the upper critical field is
reached. Consider, for the sake of the argument, that after the
sudden switch off of the applied field the shielding currents
immediately disappear. This must be so otherwise a field of
opposite direction to the applied one will remain inside. The
vortices caught in this sudden transformation either remain
pinned or start their move towards the boundary. In case the
Gibbs energy difference is positive the whole superconducting
state will move towards its collapse, but if negative there will be
a EVS left inside, which corresponds to a vortex state without
the shielding currents and therefore with a purely paramagnetic
response. There is no Lorentz force to push vortices at the
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boundary since the shielding currents are absent. Vortices have
no impediments at the boundary, there is no Bean-Livingstone
barrier in zero applied field [14,15].

In this paper we propose a general method to calculate the
Gibbs free-energy difference between the remaining vortex
and the normal states valid near the superconducting to normal
transition, where the order parameter is small. This method
is general since it applies to any vortex configuration in
any geometry of the cross section area. The method applies
to very long superconducting cylinders such that the vortex
lines are parallel to each other and oriented along its major
axis. As shown here, the order parameter that describes the
remaining vortex state can be obtained from the well-known
mathematical problem of conformal mapping. Remarkably,
the order parameter is just an analytical function with constant
modulus at the boundary of a given cross section geometry.
In power of the order parameter we obtain the Gibbs energy
difference, the local magnetic field and currents inside the
superconductor. Besides we also obtain other interesting
features, such as the magnetic field at the center of the vortex
core, and also the paramagnetic magnetization. Itis well known
that at low vortex density the magnetic field inside the vortex
core is twice the value of the lowest critical field [16]. For
higher densities a vortex lattice sets in and the magnetic field
inside the vortex core varies according to the coupling constant
« (the ratio between the penetration and the coherence lengths)
and the vortex density [17]. Here we report the surprising result
that as vortices move towards the boundary the magnetic field
at their cores, and also the paramagnetic magnetization, change
according to their positions. The magnetization vanishes when
vortices reach the boundary.

The present approach stems directly from Abrikosov’s
seminal work [18] that led to the discovery of vortices. There
he found two identities that we refer here as the first-order
equations. They were later rediscovered by Bogomolny [19]
in the context of string theory and found to solve exactly the
second order variational equations, that stem from the free
energy, for a particular value of the coupling (k = 1/+/2).
These first-order equations are able to determine the order
parameter and the local magnetic field. Abrikosov used
them just in case of bulk superconductor, which means a
superconductor with no boundary to a nonsuperconducting
region. Therefore, he took the assumption of a lattice such
that periodic boundary conditions apply. Obviously the bulk
is an idealized system that simplifies the theory but hinders
important boundary effects. Here we essentially extend this
very same treatment to the case of a superconductor with
a boundary. Interestingly in case of the bulk, and of no
applied external field, the first-order equations predict no
vortex solution. The only possible solution is that of a constant
order parameter. However, as shown here, the existence of
a boundary changes dramatically the scenario and vortex
solutions become possible even without the presence of an
applied field. Thus, the profound connection between the
mathematical theory of conformal mapping and the vortex
solutions relies on the existence of boundaries. The theory of
conformal mapping was developed in the 19th century. The
Riemann mapping theorem of 1851 states that any simply
connected region in the complex plane can be conformally
mapped onto any other, provided that neither is the entire
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plane. The mapping useful to us is the one that takes any finite
geometry into the disk [20], which is essentially a variant of
the Schwarz-Christoffel conformal transformation [21] of the
upper half plane onto the interior of a simple polygon. The
Schwarz-Christoffel mapping [22] is used in potential theory
and among its applications are minimal surfaces and fluid
dynamics.

Although we are mainly interested here in the EVS problem,
it must be stressed that the present method also applies in
presence of an applied external field. The only condition
imposed is to be near to the superconducting to normal
transition, i.e., near to the upper critical field line. The zero
field case just corresponds to particular case near to the the
critical temperature, 7,. However, in the general case the
connection between the order parameter solution and the
conformal mapping only holds in case of a circular cross
section. Recently, a new method to solve the linearized GL
problem for mesoscopic superconductors was proposed by
means of conformal mapping [23]. Thus, our approach is
distinct from this one since we are also able to obtain the local
magnetic field from the order parameter whereas the above
method is not.

We find it useful to summarize this paper as follows. We
start describing the GL theory in Sec. II and in Sec. III
introduce the key element to our approach, which is the
decomposition of the kinetic energy into a sum of three
terms, namely, the ground-state condition plus the magnetic
interaction plus the boundary term. This decomposition is
directly related to the first-order equations. In Sec. III A we
discuss the role played by the boundary conditions in the
context of the first-order equations and obtain expressions for
the magnetization and the Gibbs free energy. Dimensionless
units are introduced in Sec. IV, which are useful in the
treatment of two examples of conformal mapping considered
here. There the limit of weak order parameter and small field
is shown to help in solving the first-order equations. Until
this point the proposed method is very general and applies in
case of an applied field as well. Only in Sec. V the external
field is switched off and the connection between the first-order
equations and the conformal mapping is established. In order to
show the power of the present method we study two examples
in Sec. VI, whose solutions are obtained analytically. Both
have the cross-section geometry of a disk, the first one with
a vorticity L at the center, Sec. VI A, and the other with
vorticity one in any position is discussed in Sec. VI B. We
reach conclusions in Sec. VII, and in Appendixes A and B
details of our analytical calculations are given.

II. GIBBS FREE ENERGY OF A LONG
SUPERCONDUCTOR AND THE VARIATIONAL
SECOND-ORDER EQUATIONS

Effects of the top and the bottom of a very long supercon-
ductor are neglected such that symmetry along the major axis
is assumed. Any cross-sectional cut at a given x3 plane reveals
the same area ¥ and the same physical properties. The external
constant magnetic field is oriented along the major axis,
H = H,%;. Hence, the order parameter is only expressed by
coordinates in this plane, ¥ (x;,x;), and the only one nonzero
component of the local magnetic field is perpendicular to this
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plane, h3()€1,)€2) = 81 Az(xl ,)Cz) — 82A1(X1 ,X2). The difference
between the superconducting and normal Gibbs free-energy
densities, defined as AG, is given by

2

B

_ _ _ d_x 2 = 4
AG =, g,,_/z ~ {a(r)w + v

Nalr 12 _ 2
L IDYP | (s — Hy) } o

2m 8

The normal state, G, = G,, is reached for ¥ = O and h; = H,.
The well-known GL parameters have the properties that 8 > 0
and that

T . |<Ofor T <T,
a(T)—ag(?c—1>:>a(T)1s{>0f0r T>T, "~

where oy is a positive constant. The vector notation is
two dimensional, such as D = D% + DX, with D; =
(h/1)d; — q Aj(x1,x2)/c, j = 1,2. The well-known second-
order equations are obtained by doing variations with respect
to the fields, namely, SA and Sv¢*, and lead to the nonlinear
GL equation,

D>y

2m

+ay + By Py =0, )

and to Ampere’s law,

T
Vxh="T7 3)
C

where the current density is given by,
J= LDy +cc). &)
2m

Boundary conditions must be added to find the physical
solutions. They correspond to no current flowing out of the
superconductor, as vacuum is assumed outside, and the local
field inside must be equal to the applied field outside. Let T
be the perimeter of area X, thus at the boundary it must hold
that,

A-Jlzur =0, and, (5)

h3|}atT = H,, (6)

where 71 is perpendicular to the boundary. Since the current is
given by Eq. (4) the following condition on the derivative of
the order parameter,

A-Dyliur =0, )

is enough to guarantee the condition of Eq. (5).

III. DUAL VIEW OF THE KINETIC ENERGY
AND THE FIRST-ORDER EQUATIONS

The kinetic energy density admits a dual formulation due
to the mathematical identity proven in the Appendix, given by
Eq. (A13),

Dy®> D .y> h h
[DYI” _ ID+¥] +—qh3|W|2+Z(81J2—32J1), ®)

2m 2m 2mc

where the operator D, is defined as D, = D; +i D, and the
current is given by Eq. (4). This decomposition of the kinetic

PHYSICAL REVIEW B 93, 214518 (2016)

energy as a sum of three terms is exact, and its derivation [24]
is given in Appendix A. Therefore the kinetic energy density,

d*x |Dy?
F, = —_— , 9
k /2 > om )

is also given by

2 2
Fk:/ d_x(|D+1//| +ﬂh3|w|2>+£l
b

di-J.
)y 2m 2mc 2g ¥ Jy

(10)

In this dual view there is a superficial (perimetric) contribution
due to the current. For a bulk superconductor, where ¥ — o0,
the superficial current vanishes either because the currents
are localized within some region in the bulk away from the
boundary or because of periodic boundary conditions, the latter
case being the one considered by Abrikosov [18]. However, in
case of a finite area, such as for a mesoscopic superconductor,
the current at the boundary must be considered and does not
vanish.

The most interesting property of this dual view of the kinetic
energy is that the current also acquires a new formulation. The
current can be simply obtained by the variation of the kinetic
energy with respect to the vector potential,

| [ dx - -
asz——/ X754, (11)
C Jy E

and use of the dual formulation leads to

h
5= zi[umm*w F YD) — Loy (12)
m 2m

_ s q * * hq 2
S = L [(Dyy)" Y =¥ (DY)l + —oi |y |”.  (13)
m 2m

The superficial current term does not contribute since at the
edge the variation of the vector potential vanishes, namely,
SA =0,for¥atY.

In this paper we seek the minimum of the free energy
through solutions of the first-order equations, given below,

D Yy =0, and, (14)
A
hy=H — 21 —L|yP, (15)
mc

instead of solutions of the second-order equations, given by
Eqgs. (2) and (3). On Eq. (15), H' is a constant to be determined
but whose interpretation is very clear. It is the local field at
the vortex core since there ¥ = 0, and so, h3 = H'. In the
absence of vortices the order parameter is constant and H' =
21 (hg/me)|r|? since it must hold that 3 = 0 everywhere.
We show that the above equations provide an exact solution
to Ampere’s law and an approximate solution to the nonlinear
GL equation, and so, provide an easy and efficient method to
search for the minimum of the free energy.

Ampere’s law is exactly solved and to see it, just take the
condition of Eq. (14) into the current, as given by Eqs. (12) and
(13). The Ampere’s law, given by d,h3 = 4w J;/c and 0,h3 =
—4m J,/c, becomes drhz = —(4mhqg/2mc)d| ¥ |* and 9, h3 =
—(4mhq /2mc)d; | ¥ |?, respectively, since Eq. (15) holds. Then
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one obtains that,
%5 x oy 2. (16)

The surface term, contained in the dual formulation of the
kinetic energy given by Eq. (8), is,

h o,
—(01J2 = 02 J1) = +—37|Y[". a7
q 2m

The mathematical identity of Eq. (8), becomes,

Dy |? =(

2m

Il/fl ) 4 [P + 8 WP (8)

once it is assumed that the first-order equations are satisfied.
The nonlinear GL equation is approximately solved in the
sense that its integrated version is exactly solved. This
integrated version is obtained by multiplying the nonlinear
GL equation with ¥*, and next integrating over the entire area
¥ of the superconductor:

d2 2
/—;:w 2w+a(T)|w|2+ﬂ|¢|4}—0 (19
z

Next we transform this equation into an algebraic one whose
usefulness is to fix the scale of the order parameter, which has
remained undefined when solving the scale-invariant Eq. (14).
The first term of the integrated equation summed with its
complex conjugate and divided by 2, can be expanded as
follows:

[ Dy (DY & |w|2
E[‘/’ 2m+<2m)w:| 4m Al

Inserting Eq. (20) into the integrated equation, upon summing
with its complex conjugate and dividing by 2, one obtains that

d*x h? |D lﬂ|2
[ S+ 2 ey + g
z

(20)

2y

The use of Eq. (18) turns the integrated equation into the
following one:

d? H' h hag \?
L]t o))
) m mc
(22)

In summary Eq. (14), together with Eq. (22), fully determines
the order parameter, 1, and from Eq. (15) one obtains the local
magnetic field, /3.

A. Boundary conditions, magnetization, and Gibbs free energy

There should be no current flowing out of the superconduc-
tor and the magnetic field must be continuous at the boundary.
Here we address the question of how to satisfy these boundary
conditions in the context of the first-order equations. The
boundary conditions themselves are first-order equations, as
seen in Eqgs. (5) and (6), and so their fulfillment is easily
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understood in the context of the second-order equations. For
instance the derivative of the order parameter normal to the
surface must vanish, according to Eq. (7), but this condition
cannot be imposed on v, obtained through Eq. (14) because
this is a first-order equation itself and there are not enough free
parameters in this solution. However, it is possible to satisfy
Eq. (5) simply by the requirement that the density |y|> be
constant at the boundary, which introduces a new parameter,
co, fixed by the nonlinear integrated GL equation, Eq. (22).

|¥|* =ci for¥at Y, and, (23)

hq
H' = H, +271—c0 24)

Therefore, the constant H’ is automatically fixed by cp
according to Eq. (15). The important point is that Eq. (23) is
enough to guarantee that there is no current flowing outside the
superconductor. This is just a direct consequence of Eq. (16).
As |¥|? is constant along the border there is no graldient
tangential to it and only perpendicular to it, namely, 3|y|?
is normal to the surface, rendering J always tangent to the
surface.

The magnetization M3 is also directly obtained from the
present formalism and easily shown to be paramagnetic in the
absence of an applied external field. According to Eq. (15),

[ e R Cur e
=y 3—H—7TMB/Z?W|, (25)
given in units of the Bohr’s magneton, up = hgq/2mc. Just take
the thermodynamical relation B; = H, + 4w M3 and Eq. (24)

to obtain that

d2
M3=u3/ G- wP), 26)
)

which means that the integral has the dimension of inverse
volume. In case of no applied external field, the order
parameter is maximum at the boundary, namely (|y|* < c?),
and so the magnetization is paramagnetic, M3 > 0.

Under the condition that the first-order equations are
satisfied the Gibbs free energy of Eq. (1) becomes

. d*x H, hq 5
Ag—/E?K“(T”Tm_c)"”'

2 / 2
+%[ﬁ_n(h_q> }W%u
mc 8
h? dl 5 7
ti - Aoyl 27
Two direct contributions of the boundary to the free energy,
which are not present in Abrikosov’s treatment of the GL
theory [18], are the field energy due to H' # H,, according
to Eq. (24), and the perimetrical contribution of the normal
gradient of |y|2.

Near to the transition to the normal state the order parameter
is weak, a fact that allows for the expansion of the free energy
in powers of ¥. From the present point of view this weakness
also leads to the proposal of an iterative method to solve
the first-order equations. First, one seeks a solution for ¥
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in Eq. (14) under a known external field Hy sufficiently near
to the upper critical field line, which sets the order parameter
in the vicinity of the normal-state transition. Any solution of
Eq. (14) multiplied by a constant is also a solution and this
constant is fixed by the integrated equation Eq. (22). Equation
(14) can be rewritten as

[(—ii+i> —2—n(A1+iA2):|1//=(). (28)
Dy

8)61 8)62

Let us introduce the complex notation, z = x; + ixp,Z = x| —
ix, into Eq. (28), and consider a constant external field, H,,
such that A = —H,x,/2 and A, = H,x;/2. In this case the
above equation becomes

Y (z,2) _ (7wH, .
2z <2q)0 Z)I//(Z,Z), (29)

where 9/0z = 1/2(d/dx; —i9/dx;) and its complex conju-
gateis /07 = 1/2(d/dx; + id/9dx,). The solution of Eq. (29)
is promptly found to be

W(e.5) = fe ()= 30)

where f(z) is any function of z. The local field is equal to H,
plus a correction proportional to |1/|* according to Eq. (15).
Very near to the normal state one expect that this correction is
small such that it suffices to solve Eq. (14) and feed the solution
in Eq. (15) without any further recurrence, namely, a returns to
Eq. (14) with a corrected A associated to the local field / 3. Thus
the quest for a solution ¥(z,7) in a given geometry with cross-
sectional area ¥ and boundary Y is reduced to the search of
an analytical function f(z) that will render |v(z,Z)|> constant
at the boundary Y. Assuming that in the boundary |y/|> = ¢}
this means that the analytical function f(z) must satisfy the
condition | f(z)| = coexp (’;gg |z|?), where z belongs to the
boundary. For a circular disk, |z| is automatically constant
at the boundary, but in case of an arbitrary geometry this
characteristic is no longer satisfied. In this paper we will only
consider the case that there is no external applied field, H, = 0.

IV. DIMENSIONLESS UNITS

At this point we find it useful to switch to dimensionless
units and rewrite all previous expressions in this fashion.
As is well known, the GL theory has only one coupling
constant, k = A /&, the ratio between the London penetration
length, A = (mc? /471512103)1/ 2_and the coherence length, £ =
(h2/2m|a)'’?, respectively, where ¥ = (|ee|/8)"/2. This ren-
ders this ratio temperature independent, k = (8/27)"*mc/hq
and only dependent on material parameters. Let us refer just
in this paragraph to the dimensionless units by the prime
notation. For instance, distance is measured in terms of the
coherence length such that X = £x’. The magnetic field is
expressed in units of the upper critical field, h = chﬁ 'V Hyp =
V2kH, = ®¢/27E2, ®g = he/q, where H, = ®o/2mw/20E
is the thermodynamical field. Then the dimensionless vec-
tor potential is given by A = H,&A’, and the covariant
derivative becomes D; = D’ /¢, D', = 1181’ — A’; since 9; =
8;/5. Lastly, the dimensionless order parameter is obtained
from ¥ = Yoy'. The order parameter value at the boundary
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is also defined dimensionless, ¢y = woc{), and finally the
dimensionless magnetization comes from M3 = M} H,,/ 8
since 1//3;“; = H.,/8mK>.

Hereafter we drop the prime notation in all quantities, which
means that they are all expressed in dimensionless units. The
first-order equations become,

D,y =0, and, (3D
Iy = H — [y |? (32)
3T 22 ’

Once the order parameter and the local magnetic field satisfy
the first-order equations, the kinetic energy of Eq. (8) becomes,

. | 1-
Dy * = (H - ;|w|2)|w|2+ XA AR €O
The integrated equation, Eq. (22), in reduced units becomes,

Cxlom e+ (1— “l=0. (34
/E?[( —)|¢|+<—ﬁ>|lﬁ|]—- (34)

The Gibbs free-energy difference of Eq. (1) is in units of
H?/4m = |a|?/B, given by,

g—-ag, /dzx{ , Loy S
AG = TR —WI S+ DY

+ «k2(h; — Ha)z}. (35)

Similarly, Eq. (27), becomes

_ d*x , 1 1 4
AQ—/Z?{—(l—Ha)WI +5(1—ﬁ)|w|

+ %52|1//|2+K2(H/—Ha)2}. (36)

V. VORTEX EXCITED STATE AND CONFORMAL
MAPPING

In the absence of an applied field outside the supercon-
ductor, H, =0, and with the help of Eq. (34), the Gibbs
free-energy density of Eq. (36) becomes,

d’x 1 ’ 2 1 2 2 2 g2
Ag—/_{__(1+H)|1/f| + —0°|Y|"+«k"H }
(37

Then H' follows directly from Eq. (24). Near to the normal
state the order parameter is small enough that iteration of the
first-order equations is not necessary. This means that the local
magnetic field is small enough that it can be dropped in Eq. (31)
and directly obtained from Eq. (32). In this case Eqgs. (31) and
(32) are reduced to,

9,y =0, and, (38)

g — Iyl

h: =
3 2ic2

(39)
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The connection between vortex states and conformal mapping
stems from Eq. (29), which simply becomes,

0y (z,2)
0z
Expressing the order parameter as ¥ =Yg + iy, in
Eq. (38), one obtains that 9;¢g + 02y =0 and drg —
01¥; = 0, which are the well-known Cauchy-Riemann condi-
tions for analyticity. We recall the so-called maximum modulus
theorem in mathematics, which says that for an analytical
function ¥ (z) in a given region X, the maximum of |}/ (z)|
necessarily falls in its boundary Y. This theorem is useful
because from it we know that the order parameter, constant
at the boundary T, indeed reaches its maximum value there,
and therefore the magnetization is necessarily paramagnetic.
The presence of vortices inside will only lead to the vanishing
of the order parameter at points in its interior, ¢ = 0, and
still the maximum of |y|? is at the boundary. This feature
helps to establish fundamental differences between the finite
boundary and the bulk superconductor, the latter understood
as the case that only periodic solutions are sought. According
to Liouville’s theorem [25] any periodic analytical function
Y with zeros must also diverge, from which one draws the
conclusion that the only possible physical solution is the
constant one. In other words it is not possible to find vortex
solutions without the presence of an applied field in a unit cell
with periodic boundary conditions. However, they do exist for
the long superconductor with a finite cross section. Thus we
conclude from the above discussion that the present method
is general and applies for any number of vortices in any cross
sectional geometry. As examples of our general method, we
detail in this paper two particular cases of a disk, namely, a
vortex with vorticity L in its center and a vortex with vorticity
one in any position inside the disk.
Let us define the integrals,

= —/ e, (41)

= f_|‘“4 and, (42)

—0. (40)

1 d%x -
Iv = = | —32%v|% 43
. cS/z 3%y 43)

From the integrated equation, Eq. (34) and the condition that
the local magnetic field vanishes at the boundary, one obtains
that,

, 1-H I

= d, 44

T 1T pen “@4)
2
/ CO

= —. 45

72 45)

Solving these equations for ¢y and H’, we obtain that,
262 I,/ 1
2= "—2/4 and, (46)
2k — 1+ L/14

L/1

H = 2/ s (47

2K2—1+12/I4.

PHYSICAL REVIEW B 93, 214518 (2016)

Notice that I, > I, isindeed satisfied since the order parameter
divided by c( is always smaller than one inside the disk, and
s0, at each point the second power, Eq. (41), is larger than the
fourth power, Eq. (42). The fact that I, > I and k > 1/+/2,
always render a solution for ¢y. The difference of the free-
energy density given at Eq. (37) can be expressed in terms
of Co,

1 4
T3 (= ey, (48)

IY)C% B 4k

1
AG = —=(I, —
g 2( 2
or in terms of H’,

AG = —k* (I, — Iv)H' — «k*(I, — 1)H". (49)

The magnetization given by Eq. (26) becomes M3 = 2x>H’ —
e}, and so, equal to
2
My = 261 — 12)12/14. (50)
2K 2 1+1 2 / 14
This interesting expression shows that the magnetization de-
pends on the position of the vortices inside the superconductor,
since I, and I, vary accordingly, as shown in the next example.
Incase of no vortices, I, = I, = 1, the magnetization vanishes.
We also include the general expression for the magnetic field
at the center of the vortex, as h3(v) = H

L/l
2/(2 —1 +12/I4.

We consider two particular examples of a thin long cylinder
with radius R, namely, a vortex L at the center and a vortex
L =1 at arbitrary position. Through them we see the general
aspects of the present theory such as the importance of the
boundary term, which makes the Gibbs energy explicitly
dependent on R. Remarkably, the Cooper pair density at the
boundary determines the local magnetic field at the vortex core.
There ¥ (v) = 0 and so h3(v) = c8/2/c2 according to Eq. (32)
where v refers to the center of the vortex.

h3(v) = (51)

VI. LONG CYLINDER WITH A CIRCULAR
CROSS SECTION

We find useful to apply our theory to niobium [26-28], one
of the favored materials to study the characteristics of vortex
matter in superconductors and also used to construct nano-
engineered superconductors [29]. All figures are expressed
in reduced units and to retrieve the predicted values for
niobium we take the parameter values reported in Ref. [28],
namely, k = 2.1, A(0) = 42nm, £(0) = 20nm. In particular
we choose the temperature of 7 = 7.7 K, which is near to the
critical temperature, 7, = 9.3 K, such that an order parameter
approach is valid. Thus, for this temperature the local magnetic
field, expressed in units of the upper critical field, must
be multiplied by H.o(T = 7.7 K) = 7800e. Similarly the
magnetization must be multiplied by Ho(T = 7.7 K)/8mk? =
7.0 Oe.

A. Vorticity L at the center

In this simple example we show that the EVS exists only
in a special range of the radius and the vorticity. The search
for the order parameter in a disk cross section of radius R that
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satisfies Eq. (38) is reduced to find an analytical function that
is constant at the perimeter of the disk. This is simply given by

L L
v=c(z) =a(z) ¢ (52)
where ¢ is the value of the order parameter at the boundary
and L is an integer since the order parameter is assumed to
be single valued, ¥ (6 + 2m) = ¥(0). In polar coordinates the
order parameter is expressed in terms of 7 = /zZ and tan§ =
x2/x1. The fulfillment of || = ¢ at the circle guarantees the
confinement of the current to the superconductors boundaries
and ¥ = 0 at the center means that the solution has nonzero
vorticity for L # 0. For L = 0 there is no zero and so, describes
the homogeneous ground state. Then one can determine the
integrals of Eqgs. (41), (42), and (43), respectively.

1
Lh=—), 53
T L1 (53)
1
I =— d 4
iy and, (54)
4L
Ir=ﬁ- (55)

From Egs. (46) and (47), one obtains that

) 2k22L + 1)
=",
T %L+ D+ L
,__@L+D

uUXL+1)+L°

and, (56)
(57)
Inserting these expressions into the Gibbs free-energy density,
either Eq. (48) or (49), it gives that

If 1 4L L
Agz_z[

L+1 R?

2%2Q2L + 1)

X —/—m//™™.
2%X(L+ 1)+ L

2L+ 1)
L+12k2(L+1)+L

(58)

The condition for the existence of the EVS, AG < 0, can only
be achieved for a limited range of parameters R and «. It means
that the EVS exists for a given x superconductor in case the
radius is larger than a critical value, given by

2k2(L+ 1)+ L
AL+ 1) —2L2°

R = 2\/L(L +1) (39)

In the limit ¥ — oo, the critical radius becomes R, =
24/L(L + 1), and the Gibbs free energy for R > R_. becomes
negative, AG — [4L(L + 1) — R*](2L + 1)/[2R*(L + 1)?].

The order parameter and the local magnetic field are given

by
[ akeL+ (r\"
¥(r.0) = m(;)e , and, (60)

. @L+1D r\**
hs(r) = m[l - <E> ] 61)

The paramagnetic magnetization and the field at the center of
the vortex, are given by
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~
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=
0.5}
0.0
0.0

r/R

FIG. 1. The superconducting density as a function of the relative
distance to the cylinder’s center for vorticity ranging from L = 0 to
L = 4 in case of a vortex fixed at the center (k = 2.1).

L 22QL+1)
TL+12A L+ D+ L
QL+ 1)
XL+ 1)+ L

3 and, (62)

h3(v) = (63)
respectively.

Figure 1 shows the superconducting density according to
the distance to the center for vorticity L = 0 (the homogeneous
state) to L = 4. The density || is obtained from Eq. (52)
and ¢} is given by Eq. (56). The superconducting density is
maximum at the boundary, which implies in a paramagnetic
effect, as previously shown. The superconducting density
reaches cé at the boundary and is a slow growing function
of L for k > 1/+/2. Figure 2 depicts the local magnetic field
versus the distance to the center, for vorticity ranging from
L = 0to L = 4. This plot shows h3(r) obtained from Eq. (39),
with c(z) and |v/|* as described in Fig. 1. Notice that the field

L

0.25 44 0
== 1

a2

—_— 3

0.20 oo 4

10.0000608000000008800000060a0000.0,.,

100,

EESRREE NG eS ey e,
il TV

0.05

0.00

0.0 0.2 0.4 0.6 0.8 1.0
r/R

FIG. 2. The local magnetic field as a function of the relative
distance to the cylinder’s center for vorticity ranging from L = 0 to
L = 4 in case of a vortex fixed at the center (x = 2.1). To recover
the Niobium values at the temperature of 7 = 7.7 K the vertical axis
must be multiplied by H,(T = 7.7 K) = 780 Oe.
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0.8 .
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0.4 \ LS e,

.
0.2 % ‘n

AG
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.

..
...

—02t  TEeeal L

—0.4]

—0.6

FIG. 3. The Gibbs free-energy difference between the supercon-
ducting and the normal states as a function of the cylinder’s radius for
vorticity ranging from L = 0 to L = 4 in case of a vortex fixed at the
center (k = 2.1). The excited vortex state only exists in the negative
range of this difference.

at the core h3(v), where v corresponds to r = 0, follows from
Eq. (51). Thus, it depends on L through the integrals /; and Iy,
defined by Eqgs. (53) and (54). Interestingly the magnetic field
at the center of the vortex and the superconducting density at
the boundary are directly related to each other, as previously
pointed out. With the exception of the homogeneous state,
which has no internal magnetic field, for all other states L > 1
the local magnetic field reaches its maximum at the center
and vanishes at the boundary, as expected. For L > 2 the
local field varies slowly from the center to the middle of the
cylinder to then abruptly show a strong decay. The Gibbs
free-energy density as a function of the cylinder’s radius is
shown for different vorticities (from L =0 to L =4), in
Fig. 3. This plot shows that the homogenous state L = 0 is the
absolute ground state with the minimum energy, AG = —0.5.
Recall that our search is for the EVS, namely for AG < 0
otherwise AG > 0 and the superconducting state can somehow
decay into the normal state. For instance, the extreme value
of this plot, R = 10, shows that the L =0, 1,2 states are
EVS whereas the L = 3,4 ones are not. The Gibbs free
energy has the following values, AG = —0.27, — 0.11, 0.003,
and 0.09 for L =1, 2, 3, 4, respectively. The EVS exists for
R > R., R. =3.1,6.0,10.2,17.3 for L equal to 1,2,3,4,
respectively.

B. Vorticity L = 1 at any position

The analytical function of z that describes the order
parameter of a single vortex at any position 0 < a < R inside
a disk is given by

KR 64
s (64)

e

¥ =co

) |

where ¢ is the order parameter value at the boundary. The
coordinate z and the position a can be expresses in polar form,
z =rée% anda = ag e'®, where we can consider o = 0 without
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any loss of generality.

6

rei — Ay
=cqR———. 65
¥ =co R —agref (65)
The density of superconducting electrons is given by
24+ a2 —2agr cos(d
W = feof - B2 — LT dn = 2a0r €8O g

R*+a2r? —2agr R? cos(6)’

The integrals of Egs. (41), (42), and (43) can be exactly
obtained and are given by

R* (R* \° a?
h=2-=—(5—-1)m(1-=2 67
’ ag (aé ) n( Rz)’ ©n

RV/R T ag
_4<%) [%) _1} ln<1—ﬁ>, and, (68)
(69)

Next we take two special limits of these expressions. In
the first one the vortex is just slightly displaced from the
center, and the expressions of the previous section must be
retrieved. This is the limit ay — 0, but to obtain it, the
following approximate expansion for the logarithm func-
tion must be introduced, In(1 — x?) &~ —x? — x*/2 — x%/3 —
x8/4 — x'9/5 — x2/6. Then one obtains the needed approxi-
mated expressions for the integrals I, and I, respectively

I, & 1 L+ 1<a0)2+ 1 (a0>4+ 1 <a0)6
272 R 12\R 30\ R
a

3 >
+ %(E‘))g - %(%)10 + %(a—lg)u, and,  (70)
2 4 6
w32 (@) ) ()
- %(%0)8 * %(%)10 (71)

From these approximated expressions we can easily verify
that I, = 1/2, I, = 1/3, and Iy = 4/R2, which are exactly
the Egs. (53), (54), and (55) for L = 1.

The other interesting limit is the vortex very near to the
boundary of the cylinder. To treat it we change to the coordinate
that express the distance of the vortex to the boundary, defined
by y = R — ayp. Inserting this new parameter into the order
parameter we obtain the superconducting density given by

(2)+ (1= %)° ~2(1 = ) f cos®)

Wi =c -
L (5)° (1= 5)7 = 2(1 = §)f cos(®)

(72)

The local magnetic field [Eq. (32)] takes into account the
density given by Eq. (72). The expressions for ¢y and H’,
given by Eqs. (46) and (47), respectively, are functions of I,
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and /4, which in terms of the coordinate y are given by

-2
12=2—(1—1)

—_ [(1 - %)_2 - 1}2111 [1 - (1 - %)2}, and,
1= —4(1- %)74 +6(1- %)72 ~1
_4<1 _ %)_2[(1 _ X>_2 _ 1} In [1 - (1 - %)2]

Similarly the Gibbs free-energy density [Eq. (48) or (49)] is
a function of Egs. (73) and (74), but also of Eq. (69), which
renders it explicitly R dependent.

Very near to the boundary of the cylinder R >> y, which
means that the limit y &~ 0 must be taken. Consider only the
first-order term in the expansion in y to obtain that I, ~ 1 —
2y/R and I4 =1 —4y/R, and so, /I, =~ 1+ 2y/R. Then
we obtain that

o~y Lo L) d (75)
N —+—|1-=—=]=, and,
2k2 k2 2«2 ) R
L \y
2
~142(1-— )2 76
TR PR

The paramagnetic magnetization becomes
y
My ~ 2=, 77
N2 (77

The Gibbs free-energy density is given by

AG ~ 1 ] 4 1 4 { 1 Y 18

~ 2( R2> +[K2 + R2< 2K2>:|R' (78)
For R — oo,c(z) =1,H =1/2k?, M3 =0,and AG = —1/2,
which means that the homogenous state is recovered.

Figure 4 shows the Gibbs free-energy density with respect
to the ratio ag/ R. The plotted curves are obtained from Eq. (48)
with ¢2 given by Eq. (46) and the values of the integrals I,
14, and Iy given by Eqs. (67), (68), and (69), respectively.
The two cases shown, R = 3 and R = 10, demonstrate that
the existence of EVS depends on the position of the vortex.
In both cases the Gibbs free-energy decreases monotonically
from the center to the boundary of the cylinder. For R = 10 the
vortex in any position is in a EVS, since the Gibbs free energy
is always negative, but this is not so for the R = 3 cylinder.
There the Gibbs free energy is positive for ay < 0.24R such
that only for ap > 0.24R there is an EVS. The Gibbs free
energy is null for ap = 0.24 R and decreases to reach the value
AG = —0.27 at the boundary.

Figure 5 illustrates how the local magnetic field at the
vortex’s core varies according to the vortex position. This
figure shows that this field 43(v) depends on the ratio ag/R
according to Eq. (51). Thus, it only depends on the ratio I,/ 14,
defined by Eqgs. (67) and (68), respectively. The local field is
maximum at the vortex’s center. From its side 43(v) reaches a
maximum when the vortex is at the center and slowly decreases
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FIG. 4. The Gibbs free-energy difference between the supercon-
ducting and the normal states as as a function of the vortex’s position
inside the cylinder in case of vorticity one. Two radius of cylinders
are considered (x = 2.1). The excited vortex state only exists in the
negative range of this difference.

when the vortex is positioned at the boundary. Figure 5 is in
agreement with Fig. 2 since h3(0) for agp = 0 corresponds
to h3(r =0) for L = 1. Figure 6 shows the paramagnetic
magnetization as a function of the ratio ap/R as obtained
from Eq. (50). Interestingly the magnetization depends on the
position of the vortex, according to the integrals I, and Iy,
given by Eqs. (67) and (68), respectively. The magnetization
is stronger for the vortex near to the cylinder’s center and
weaker near to the cylinder’s border. For a vortex at the
boundary, ay = R, the magnetization vanishes because I, = 1.
This is consistent with the description of the exit of the vortex,
although /3(v) is not zero as can be seen in Fig. 5. The vortex
next to the boundary means that the superconducting density
is almost homogenous on the entire region of the cylinder
and the integral I, is almost equal to the unity, which makes
the magnetization goes to zero as can be seen from Eq. (50).

0.16

0.15

0.14

hs(v)

0.13

0.12

0.11
0.0 0.2 0.4 0.6 0.8 1.0

ag/R

FIG. 5. The magnetic field at the center of the vortex as a function
of the position of the vortex inside the cylinder (x = 2.1). To recover
the value for niobium at the temperature of 7 = 7.7 K the vertical
axis must be multiplied by H,(T = 7.7 K) = 780 Oe.
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0.8

0.0 02 0.4 06 08 1.0

ag/R

FIG. 6. The magnetization as a function of the position of the
vortex inside the cylinder (¢ = 2.1). To recover the value for niobium
for the temperature of 7' = 7.7 K the vertical axis must be multiplied
by Ho(T = 7.7K)/87k* = 7.0 Oe.

Finally, the three rows of Fig. 7 depict the vortex at three
different positions, ap/R = 0.1, 0.5 and 0.9, respectively. The
columns correspond to the density, local magnetic field, current
and phase, respectively. The density is obtained from Eqgs. (66)

(d)

FIG. 7. The superconducting density, the local magnetic field, the
electric current density and the order parameter phase are depicted
at three different positions of the vortex inside the cylinder, [(a)—(d)]
ap/R = 0.1, [(e)-(h)] 0.5, and [(i)—(1)] 0.9. (a), (e), and (i) display the
density in (color on line) scheme ranging from low density (cyan) to
high density (magenta). The (color online) scheme is distinct for each
of these three figures, as the density varies from zero at the center of
the vortex to ¢J at the boundary, whose value varies according to the
position of the vortex inside the cylinder [see Egs. (66), (46), (73),
and (74)]. The local magnetic field is shown in (b), (f), and (j), and
the color scheme is distinct for each of these three figures. It ranges
from the maximum at the center of the vortex (magenta), according
to Eqgs. (32) and (51), to zero at the boundary (cyan). (c), (g), and (k)
show the vortex current around the vortex obtained from Eq. (16). (d),
(h), and (1) show the phase of the order parameter. The discontinuity
line splitting the white to the black region shows the existence of a
single vortex inside the cylinder.
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and (46), with the integrals of Egs. (73) and (74). Therefore
the density ranges from zero at the center of the vortex to the
maximum value c(% at the boundary. The density is shown in
Figs. 7(a), 7(e), and 7(i) in a color scheme ranging from low
density (cyan) to high density (magenta). The local magnetic
field is obtained from Eq. (32) and ranges from the value given
by Eq. (51) at the center of the vortex to zero at the boundary.
Thus the color scheme of Figs. 7(b), 7(f), and 7(j) ranges from
the maximum at the center of the vortex (magenta) to zero at the
boundary (cyan). The vortex current is obtained from Eq. (16)
and depicted in Figs. 7(c), 7(g), and 7(k). Notice that there is no
current flowing out of the cylinder as the vortex moves towards
the boundary, which is a general property guaranteed by the
present formalism. Finally, Figs. 7(d), 7(h), and 7(1) show
the phase of the order parameter, defined as tan™! (y; /¥z).
The discontinuity, represented as a straight line that abruptly
separates white to black, confirms the presence of a vortex in
the cylinder.

VII. CONCLUSION

In this paper we define the excited vortex state, which is
a vortex state remaining inside the superconductor after the
external applied field is switched off. The excited vortex state
must have a free energy lower than the normal state otherwise
the superconducting state collapses into the normal state. The
excited vortex state is unstable in the sense that vortices must
leave the superconductor since their presence is thermodynam-
ically forbidden. However, vortices are topological stable as
long as the superconducting state exists. All our results stem
directly from the first-order equations used by Abrikosov to
predict the vortex lattice. We find a direct connection between
the present problem and the theory of conformal mapping. We
predict values for the paramagnetic magnetization in thin long
wires of niobium
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APPENDIX A: KINETIC ENERGY DECOMPOSITION

Consider the term | D,y|?, which can be casted as
|Dyy > = [(D1y)* — i(Dy) 1[(D1Y) + i(Dy)]
= (D1y) (D1y) + (D2y)"(Da2y)
+i[(D1y) (Dayy) — (Day) (D).
Expanding only the derivative Dy,

(AD)

h
(D) (Do) = (— ;aw*%mw*)wm
h
- al[— 7w*(Dzw)]

h
- (7w*>alDzw - %Alw*Dzw. (A2)
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Rearranging the terms, one obtains that

h
(DY) (Dayp) = —?Bl(w*Dzlﬂ) + Y DDy (A3)
In the same way, we obtain that
h
(DY) (D) = —?Bz(w*Dﬂﬂ) + Y DDy (A4)
The complex conjugate of these relations give us that
h
(DY) (DY) = 731[(D2w)*¢] + (D1D2Y)* Y, (AS)
h
(DY) (Day) = l—.az[(Dn/f)*l/f + (D2 D1y)* Y. (A6)

At this point, we have two formulations for the same identity,
where one relation is the complex conjugate of the second one.
The expression

> h
|Dy|* = |Dy|? +i[ — =YDy + w*DlDzw}

h
- [ - 732(1//*D11/f) + w*DzDﬂﬁ},

becomes,
|Dy > = DY |? + iy [ Dy, Dalys

— hd (Y Do) + hd (Y D). (AT)
The commutator,
h h
[D,D;] = |:731 - zAhTaz - zAz:l
i c i c
hq
= —?;(311‘\2 — 0hAy), (A8B)
becomes,
hq
[Dy,Ds] = —;h& (A9)
Then one obtains that
D,y ? = |Dy|* — i([D1. DY)y
— WO (D) ] + hoy (D) ],  (A10)
which gives expressions for |5w|2,
- h
DY = 1Dy P+ =L hs
+h[0\ (Y Dayy) — (Y Diy)],  (All)

and
> R
IDYI? = Dy + 7"h3|w|2
+ (D) y] — LD ) YT} (A12)

We sum the two expressions and divide by 2 to obtain that

Y* Doty + (Do)
2

DY = Dy P+ sy P+ h{al

_ BZW*DHP + (D) } (A13)

2

Introducing the definition of the current we obtain the desired
dual formulation of the kinetic energy given by Eq. (8).
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APPENDIX B: CALCULATION OF THE INTEGRALS

In this Appendix we calculate the following integrals:
R2 R
L= —/ drr fo(r), B1)
X Jo
2 2, .2
r+a; —2agr cos(d)
fur) = [ o T
0 R*+ajr? —2agr R* cos(9)

R4 R
I, = —/ drr fa(r), (B3)
% Jo

(B2)

(r*+aj—2aor cos(9))2
R*+alr?—2agr R? cos(@))2

2
far) = / a6 . (B4)
o

1 > 1 -
Iy = —/dzx 3% fr(r,0) = —f dl i -9 fr(r,0),
X X Jos
(BS)

r?+a2 —2apr cos(9)

r.0) = R* .
fr(r.6) R*+adr? —2agr R? cos(9)

(B6)

The integral I, is associated with the density of Cooper pairs.
As shown in Egs. (B1) and (B2) the integral of |1/ |? is obtained
in two parts: first we integrate the angular part, which results
in a function of the radius f>(r) and after we integrate the
function f>(r) in the radial coordinate. The angular integral
has a form with a well-known result [30].

/d A+ Bcos(x) B +Ab—aB/d 1
X—————=—X X L]
a+bcos(x) b b a + bcos(x)

(B7)
/d 1 2 — ~/a?—b?tan(x /2)
x = ],
a+bcos(x) Ja? — b2 a+b
fora® > b2 (B8)

To calculate this integral we consider separately the integration
in the four quadrants, as shown below.

/2” A + Bcos(x)
0

a + bcos(x)
/”/2 A + Bcos(x)
= dx———=
0 a + bcos(x)
N /" i A + Bcos(x) N /3"/2 i A + Bcos(x)
xj2 @+ bcos(x) . a + bcos(x)
2 A B
+ / At Beost) (B9)
37/2 a—+ bcos(x)
We make the following change of variables.
First quadrant: y = x
/2 A B /2 A B
f dx+—cos(x) N / dy+—cos(y). (B10)
0 a + bcos(x) 0 a + bcos(y)
Second quadrant: y = x — 7
T A+B 0 A—B
/ dx—i——cos(x)_)/‘ dyﬂ. (B11)
x/2 @+ bcos(x) —xj2  a—bcos(y)
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Third quadrant: y =x — 7
3n/2 7/2
/ dx — f dy
b4 0
Fourth quadrant: y = x — 27
2 0
A+ B
/ dx—i——cos(x) N / dy
3g/2 4+ beos(x) —)2

Inserting the variable changes in the original integral, we
obtain a new interval of integration

/2” A + Bcos(x)
PPl i 44
0 a + bcos(x)

A + Bcos(x)
a + bcos(x)

A — Bcos(y)
a — bcos(y)
(B12)

A + Bcos(y)
a + beos(y)
(B13)

/”/2 4 A + Bcos(y) /”/2 A — Bcos(y)
—xj2 @+ bcos(y) —xj2  a—bcos(y)
(B14)

We calculate the integrals in the interval —m/2 < x < +7/2

/WZ A+ Bcos(x) B 4(Ab—aB)
X—————— = —7T ——tan
—x)2 a + bcos(x) b b a2 — b2

a? —b? b4
X <W tan <Z)> s (B15)

/”/2 A—Bcos(x) B  4Ab—-aB)
d = — ——F— tan

72 xa—bcos(x) b baz — b2
/a2 — b2
(Y wn (X)), BI16)
a—>b 4

We obtain the expressions for the integral in the interval
0<x<2m

/2” A + Bcos(x) 5 B 4Ab—-aB)
X—————— = LTl — —_—
0 a + bcos(x) b braa? — b2

2 — b2 | 2 — b2
_— tan~ | ——— | |, (B17
a+b +an a—>b B17)
and verify that,

Varl—b _ Jla+b)a—b) _ (a —b>1/2

a+b (a+ by a+b
VO J@EBa=h _ (a+b\?
P (a—b)? " \a-b '

Using the identity tan~'(x) + tan~'(1/x) = /2 if x > 0, we
simplify the expression to obtain that,

2 A+B B Ab—aB
/ x+—cos(x):2n—+2nw. (B19)
0 a + bcos(x) b bva? — b?

At this point we have a general result for the integral (B7).
The next step is to apply this result for integrand of f>(r).
We consider the following identifications A = a% +r2, B=
—agr, a = R* + aérz, and b = —2ayr R Inserting these
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expressions in the Eq. (B19) we obtain

27 2w (R? — a2)(R? —r?)
fi =2 2 40) o
R —ayr

= (B20)

With the result obtained in Eq. (B20), the integral I, becomes

R2 R
L, = E/o rfo(r)dr

2 k 2 k d
il rdr — —T[(R2 —aé)RZ/ rar
= ) % o R*

— a2
R 3
rdr
+—R2—a2/ _rdr
E( 0) 0 R4—a3r2

Next we calculate each one of the three integrals in Eq. (B21),

/R R? /R rdr
rdr = —, _
0 2 o R*—alr?
1 | R* /R r3dr
= —IM{\—— 1, —_—
2a} R* — a3 R? o R*—alr?

4 R4 R2
=—1In 2 55 |~ 5
2a; R* —aiR R? —ag
Inserting these results in Eq. (B21) and considering that
¥ = 7 R? we have

h-2 B (B _, 21 % (B22)
=2—-— — - n(l-——).
? a? a; R?

Next we calculate the surface integral defined in Eq. (BY).
Thg normal vector is the radial one, 71 = 7, such that, f~(,0):
7 -9 fy = 0, fy. To calculate the integral with the derivative,

afT(rae)
ar

(B21)

=2R*(R* — aj)

R% 4+ a?)r — ag(R? 4+ r%) cos(@
y ( ag)r — ao r) (2)’ (B23)
[R* + ajr? — 2agr R? cos(6)]

we use the formula [30]

/ A+ Bceos(x) 1 |:(a B — A b)sin(x)
* [a + bcos(x)]? a + bcos(x)

a2 — b2

Aa—-bB

To obtain the integral Iy, we divide the interval 0 < x < 27
into four quadrants and use the following changes of variable

for each of them.
First quadrant: y = x
/2 /2
/ dx — / dy
0 0
Second quadrant: y = x —
T A + B cos(x) 0 A — Bcos(y)
dx—————> — dy ——————.
x2 la+becos(x)] —xp2  la —bcos(y)]

(B26)

A + B cos(x)
[a + b cos(x)]?

A+ Bcos(y)
[a + bcos(y)]*
(B25)
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Third quadrant: y =x — 7
3/2 /2
f dx — f dy
T 0
Fourth quadrant: y = x — 27
2w 0
A + Bcos
/ dx+—()C)2 N / dy
3z2 [a+bcos(x)] )2

We collect these results together and we obtain a new
integrationinterval —7 /2 < x < m/2,and the original integral
is rewritten in two parts, with positive and negative signs in
the integrand, respectively,

A + B cos(x)
[a + b cos(x)]?

A — Bcos(y)
[a — bcos(y)]*
(B27)

A + Bcos(y)
[a + bcos(y)]?
(B28)

A+ Bcos(x) ™/2 A+ Bcos(y)
/ dx At Beosto) / dy AT Beosy)
0 [a + bcos(x)]? —xpp  la+bcos(y)]?
/2 A — Bcos(y)
dy———.
- /_m Yla = beos(y)?
(B29)

For the integral with the positive sign we find that

/"/2 J A+ Bcos(y) 2(aB—Ab)
o Dlat+beosE | ald® — b2

4(Aa—b B va? — b?

+ dda—bB) an~! [ Y777 (B30)
(a® — b2)32 a+b

and for the negative sign,
/”/2 J A—Bcos(y)  2aB—Ab)
oV la—beosP T ala? — b

4Aa—bB Vaz = p?
MAa—bB) -r[va=b) (B31)
(a? — b2)3/2 a—>b

Summing the two integrals and using the same trigonometric
property for tan~!(x) shown before, we obtain that

/2” A + B cos(x) Aa—bB
X = 4T .
0 [a + b cos(x)]? (a? — b2)3/2

The surface integral can be written as

1 9 1 [ 9
Iy = —7{ a1 _ —/ rao( 2T . B33
E ) al" Z 0 8}" F=R

Next we insert the derivative of the function f in the previous
integral, and define the following parameters A = (R* + a})R,
B = —2ayR* a = R* + a3 R* andb = —2ayR*. We consider
the area ¥ = 7 R? to obtain that

4
F.
The last integral to be calculated, /4, defined in Eq. (B3),
is the square of the superconductor density over the entire
area of the cross section of the cylinder. Similarly to I, first
we calculate the angular integral and define the results as a
function of the radius, as shown in Eq. (B4). To calculate the
latter integral we expand the numerator of the argument and

(B32)

Iy = (B34)
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divide the original integral in two parts, defined as follows:
fa(ry = flr)+ fI1(r), where the first part is given by
o) = / 7 T ad)” —daur(? +a) cos0)
0 [R4 +airt—2agr R? COS(G)]2
(B35)

and the second part is given by
m 4 a2 r? cos?(0)
) = / do g .
0 [R4 +airt—2agr R? cos(G)]
(B36)

The integral (B35) is of the same type of the calculated integral
(B32). We just need to do A = (> +a3)?, B = —daor(r* +

aé), a=R*+ a(z)rz, and b = —2ayr R%. The second integral
we write as a derivative of an integral with a known result:
2 B cos?(x) 9 [T — B cos(x)
dx———F—— = — dx —————.
0 [a+bcos(x)> b a + bcos(x)
(B37)

This integral is found in the right-hand side of the previous
equation and the result is given by
2w
—-B B B
/ d cos(x) _5 a
0

e A R | — B38
xa—i—bcos(x) D + nb(az—bz) (B38)

where A = 0. Calculating the derivative, one finds the expres-
sion,

I _ o E_ a B(a? —2 b3

4 b2 bz(az — b2’
where the constants shown in the final result are related to the
original expression for £/ by B = 4a3r?,a = R* + alr?, and
b = —2apr R?. The final result for Eq. (B4) is a function of
the radius and is given by

27r 1
R4 (R4+a r )3

R4 RS R?®
x[-(l——4>a3r6+<71e4—8—+ )44
ay ao ao

+ (7R8 8ajR® + a§R4)a0r Rg(R4 — ag)].

(B39)

Jfar) =

(B40)

To obtain I, we insert the function f4(r) and we consider the
following change of variable x = a(z)r2 /R*. With this change
of variable and some simplifications one obtains that I, =
(R?/a})(ad/R* + Y_3_yd;K ), where the d; coefficients are
defined as follows:

do=—1+ R (B41)
a;  a
d, E7_8F+ﬁ’ (B42)
R* R?
d, = T —8—~+7, (B43)
0 )
R4
dy=— —1, (B44)
dy
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and the integrals in the new variable x are defined as

/R xidx
K; E/ —_—. (B45)
0 (1 —x)
The calculated K ; integrals give the results

Koo L(1_@) ] (B46)

72 R? 2’

1 a; - a; -

Ki==(1-=2) —(1-=2 —, (B47
1=3 ( R? > ( R ) +3 (B47)
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-2 -1
K> ll—ﬁ —21—ﬁ 42
2 R? R? 2

ag
K= L1 % B 31 % 71+5
T R? R? 2
2 2
dy dy

Then the products c; K ; are obtained and summed over in j.
After some simplifications Eq. (68) is finally obtained.
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