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Extracting paramagnon excitations from resonant inelastic x-ray scattering experiments
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Resonant x-ray scattering experiments on high-temperature superconductors and related cuprates have revealed
the presence of intense paramagnon scattering at high excitation energies, of the order of several hundred meV.
The excitation energies appear to show very similar behavior across all compounds, ranging from magnetically
ordered, via superconductors, to heavy fermion systems. However, we argue that this apparent behavior has been
inferred from the data through model fitting which implicitly imposes such similarities. Using model fitting that
is free from such restrictions, we show that the paramagnons are not nearly as well defined as has been asserted
previously, and that some paramagnons might not represent propagating excitations at all. Our work indicates
that the data published previously in the literature will need to be reanalyzed with proper models.
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I. INTRODUCTION

Recent advances in resonant x-ray scattering instrumen-
tation [1] have allowed for the measurement of high-energy
magnetic excitations in strongly correlated electron systems,
such as high-temperature superconductors. We refer to the
literature [1] for details on the technique. In these experiments
the magnetic excitations (paramagnons) show up as easily
identifiable excess intensity in the scattering patterns. Typi-
cally, high-energy paramagnons show up as broad excitations
peaking at finite energy transfers of a few hundred meV,
(reasonably) well separated from elastic scattering and located
on top of a sloping background. In order to extract the details
of the paramagnons, such as their propagation frequencies,
damping rates, and intensities, the spectra are modeled by
a damped harmonic oscillator function in addition to an
elastic contribution and a background contribution. These
fits tend to give a good description of the experimental
data.

However, the model that is being used to analyze resonant
inelastic x-ray scattering (RIXS) data is fundamentally flawed
in the sense that it imposes restrictions beforehand that are not
necessarily met in the systems under study. In particular, when
modeling data to a harmonic oscillator model, one should allow
for the possibility that oscillations cannot be only damped,
but also critically damped and even overdamped [2,3]. The
models used in the literature [4–10] do not allow for the latter
possibilities. In this paper we detail the exact problem with the
models in use, how the usage of such restricted models leads
to fitting parameters that appear to be more accurate than they
actually are, and how its usage has, in some instances, led
to the identification of overdamped oscillations with being
propagating paramagnons.

II. THEORY

In x-ray scattering experiments one obtains information [1]
about the dynamic structure factor of the system S(�q,ω), with
��q the amount of momentum transferred to the system, and
E = �ω the amount of energy transferred. The measured
signal not only contains the information on paramagnons
contained in S(�q,ω), but also unwanted scattering by the
system, such as the excitation of multiple paramagnons in a

single scattering event, or in separate scattering events. While
it is possible to correct the data for these effects and for the
scattering by sample holders and background scattering in
general, it does make the analysis more intricate than a cursory
inspection of the scattered data would appear to imply.

The dynamic structure factor is related to the imaginary
part of the dynamic susceptibility χ ′′(�q,ω) by

χ ′′(�q,ω) = (1 − e−β�ω)S(�q,ω), (1)

where β = 1/kBT , with kB as Boltzmann’s constant and T

as the temperature of the system. The poles of the dynamic
structure factor χ (�q,ω) determine the excitations of the system.
As such, in scattering experiments these poles can be masked
by a temperature-dependent frequency factor, and therefore the
peak positions in S(�q,ω) do not necessarily correspond to the
excitation energies of the paramagnons. We clarify that in the
following by using the harmonic oscillator model employed in
model fitting to RIXS data.

When modeling the paramagnon part of the scattering in
RIXS experiments, one employs [5–10] the following model
for χ ′′(�q,ω):

χ ′′(�q,ω) ∼ ��q
�2

�q + (ω − ω�q)2
− ��q

�2
�q + (ω + ω�q)2

. (2)

In here ω�q and ��q are the propagation frequencies and
damping rates of the paramagnons, respectively. The reader
will recognize this as the Fourier transform of the solutions of
the damped harmonic oscillator equation, where one obtains
two solutions in the time domain, representing damped waves
traveling in opposite directions. As a concrete example,
picture a pendulum clock swinging in air. The air provides
a damping z = 2�, and the two possible solutions to the
harmonic oscillator equation show up as the swinging of the
pendulum, back and forth. When the damping is increased, we
find that the oscillation frequency ωosc diminishes according
to ωosc =

√
f 2 − z2/4. Here f stands for the undamped

frequency. Once the damping reaches and exceeds the critical
value z = 2f , then the oscillations stop and instead we are
left with a purely damped motion, with the two solutions
now described by simple exponentials with decay constants
�± = z/2 ±

√
z2/4 − f 2. We would have this situation if we

were to place our pendulum under water.
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While the above is introductory undergraduate physics,
it is often not realized that by employing Eq. (2) one
explicitly excludes the possibility that excitations can become
overdamped. There are multiple ways to verify this. First, while
the solutions of an overdamped harmonic oscillator (in time)
are characterized by two decay rates, Eq. (2) with ω�q = 0 is
characterized by only one damping rate. Second, substituting
ω�q = 0 directly into Eq. (2) yields a dynamic structure factor
identical to zero.

When attempting to fit Eq. (2) to scattering data, one
will still obtain a reasonable fit. Since the fit is prohibited
from reaching ω�q = 0 because this would correspond to a
model yielding zero scattered intensity, the fit algorithm will
find a compromise characterized by a large damping rate �.
Moreover, since the fit cannot probe close to the forbidden
boundary of ω�q = 0, the algorithm will return an uncertainty
in the fit parameters that severely underestimates the real
uncertainties. As such, when dealing with broad signals,
one should never employ Eq. (2) since this equation is,
strictly speaking, only valid for z�q < 2f�q , and in practice
underestimates the error bars of the fit parameters when
��q ≈ ω�q . Bluntly speaking, when one models overdamped
excitations using Eq. (2), then one puts a pendulum under
water and equates the time it takes the pendulum to fall back to
its equilibrium position with the oscillation time, even though
oscillatory motion is no longer supported.

It is easy to see why the scattering data can fool one
into believing that Eq. (2) would be an appropriate model
to use: the paramagnon scattering peaks well away from
ω = 0, apparently ensuring the validity of Eq. (2). We show
an example of RIXS data in Fig. 1. However, the peak position
at finite energies can be entirely due to the temperature-
dependent frequency factor in Eq. (1), which pushes the
scattered intensity out to higher energies. We illustrate this by
combining Eqs. (1) and (2), and summing the two contributions
at ±ω�q to give (using χ�q to indicate the strength of the
resonance in the susceptibility)

S(�q,ω) = ωχ�q
1 − e−β�ω

4��qω�q(
ω2 − ω2

�q − �2
�q
)2 + (2ω��q)2

. (3)

For low temperatures (β�ω � 1), the exponential function in
the denominator approaches zero for positive frequencies, and
the frequency factor ω in the numerator pushes the resonance
at ω = ω�q out to higher energies. In the case of overdamped
modes, we can no longer use this equation [2], but instead we
have to use the more general equation

S(�q,ω) = ωχ�q
1 − e−β�ω

2z�qf�q(
ω2 − f 2

�q
)2 + (ωz�q)2

. (4)

This equation, which has a slightly different definition for
χ�q , is valid for all cases: damped, critically damped, and
overdamped. Depending on whether f�q > z�q/2 or vice versa,
we find damped or overdamped modes, respectively. The
poles of the dynamic susceptibility are located at iω =
±i

√
f 2

�q − z2
�q/4 − z�q/2. Similar to Eq. (3), the scattered inten-

sity gets pushed out to higher frequencies. Even for the case of
overdamped excitations where we have two nonpropagating

modes with damping rates �1,2 = ±
√

z2
�q/4 − f 2

�q + z�q/2, this

FIG. 1. RIXS spectra read in from Ref. [5] (points plus error bars)
for YBa2Cu3O6.6 and YBa2Cu3O7 measured at �q = (0.13,0,0). The
error bars have been taken to be identical for all points. The solid
line through the data points in both panels is the result of the fitting
procedure described in the text that fits a harmonic oscillator as well as
a background contribution (dashed-dotted curve in the bottom panel)
to the data. For both panels, the best fit (lighter curve) corresponds to
an overdamped harmonic oscillator [top panel: f�q = (252 ± 3) meV
and z�q/2 = (252 ± 8) meV; bottom panel: f�q = (237 ± 3) meV
and z�q/2 = (249 ± 10) meV]. This harmonic contribution has been
shown separately in the top panel as a solid curve. We also show this
same contribution, but now with the system-independent frequency
factor ω/(1 − e−β�ω) taken out (dashed-dotted curve centered around
E = 0). The dashed-dotted curve through the data points in the
bottom panel is the result of a fit according to Eq. (2) with ω�q =
(85 ± 19) meV and ��q = (220 ± 8) meV. The two fits shown in the
bottom panel, representing an overdamped and a strongly damped
harmonic oscillator, are virtually indistinguishable from each other;
the quality of the strongly damped fit is only slightly worse (30%)
than the best fit representing an overdamped harmonic oscillator (χ2

values are 0.7 and 0.5, respectively, when the error bars are taken
to be 0.03 times the maximum value of the scattered intensity).
Only very close scrutiny reveals that the fit to Eq. (2) slightly
underestimates the data in some regions, and overestimates them in
others. However, the comparison between the two fits indicates that
even if the paramagnons are propagating, then the error bars on the
propagation frequencies must be much larger than reported in Ref. [5]
since a complete softening of the magnon mode represents (at least)
an equally good description of the data shown in both panels.

results in a peak in S(�q,ω) at finite energies, and one might
be inclined to assume that the system is actually supporting
well-defined propagating excitations and resort to Eq. (2)
for model fitting. Next we reanalyze some spectra from the
literature [5,6] and show how the usage of Eq. (2) has led to
erroneous results.
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RESULTS AND DISCUSSION

In a recent paper [5] RIXS was performed on an extended
family of high-temperature superconductors. The conclusion
inferred from this study was that the entire family of systems
supported damped spin wave excitations (paramagnons), with
dispersions very similar to magnons in undoped, magnetically
ordered cuprates. The authors used this finding for quantitative
tests of magnetic Cooper pairing mechanisms. We reproduce
two of their spectra in Fig. 1. Based on a fit using the model
described by Eq. (2), the authors concluded that both these
systems at this particular wave vector supported propagating
paramagnons with excitation energy of roughly 125 meV
and damping rate [half width at half maximum (HWHM)]
of roughly 225 meV. Given the small ratio of the excitation
energy compared to the damping rate, this is suggestive of
having used Eq. (2) outside of its range of validity.

We have reanalyzed the data in Fig. 1 using Eq. (4) and find
that the paramagnons are overdamped, or on the verge of being
so. To show this, we fit the data to a model that has six free
parameters [11]. Three of the parameters are for χ�q , f�q , and z�q ,
describing the paramagnon, and three parameters describe the
elastic and background scattering. The elastic scattering was
modeled by a Gaussian located at E = �ω = 0 with HWHM of
65 meV (as reported in Ref. [5]), leaving only its amplitude as
a free parameter; the sloping background was modeled by a +
b/(1700 − �ω)2, capturing the time independent background
and the tails of a peak in the scattered intensity located at
ω = 1700 meV [5]. We report the results of the fit in Fig. 1
and notice that the agreement between model and data is (at
least) as good as the agreement reported in Ref. [5]. The
main difference between the fit published in the literature
and the one shown in Fig. 1 is that the paramagnons are
overdamped.

Note that the normally straightforward way of removing the
frequency prefactor [3] that pushes the poles of χ (�q,ω) out to
higher frequencies does not work in the case of RIXS where
the background contribution has to be modeled and subtracted
first. In liquids, one normally [2] analyzes and plots the
function (1 − e−β�ω)S(�q,ω)/ω (which is the Fourier transform
of the relaxation function) since this function gets rid of the
obfuscating frequency factor, rendering a function that has
resonances located at the poles of the dynamic susceptibility.
We show this function for the harmonic oscillator contribution
obtained from the model fit in Fig. 1. Inspection of this function
immediately reveals that the excitations are nonpropagating.

We stress that it may not really be that important for a
system whether excitations are overdamped, or whether they
propagate for about one wavelength before they dampen out.
However, the changes in the propagation as a function of
sample composition probably are important, and these changes
can only be teased out of the data in a reliable manner when the
data are fitted to a proper model that allows for these changes
to happen in the first place.

We also reanalyze some recent experiments [6] on
La2−xSrxCuO4, where RIXS was performed in order to
assess the magnetic excitations as a function of doping x.
Similar to the aforementioned study, the main conclusion
of this study was that propagating paramagnons can be
found for all concentrations x, with excitation energies more

or less independent of the doping concentration. The main
difference between the various doping levels was found [6]
to be the damping rate of the paramagnons. The authors
concluded that these findings indicated that the mechanism
behind high-temperature superconductivity could not be re-
lated to high-energy magnetic excitations. Upon reanalyzing
their results, we find that this conclusion might well be
premature.

The results of our reanalysis [11] of the published spec-
tra [6] indicate that paramagnons might well be propagating
for all q values and concentrations, but that the error bars on the
propagation frequencies are much larger than those published,
and that it actually is possible that some paramagnons are
overdamped (see Fig. 2). This RIXS study had a worse
energy resolution than the one discussed previously (HWHM
of 140 meV versus 65 meV), and the background appeared
to be more difficult to model. As such, we find that the fit
parameters depend strongly on the exact model used for the
background. In the published analysis [6], the background
played only a minor role in identifying ω�q since the fit
was prohibited from straying too close to ω�q = 0. Using
Eq. (4) instead, we find that the difference between propagating
excitations and overdamped ones is determined by the flanks
of the resonance. As a consequence, the exact modeling of the
background now plays a major role. We show the results in
Fig. 2.

FIG. 2. RIXS spectra read in from Ref. [6] (points plus error bars)
for La1.6Sr0.4CuO4 measured at �q = (0.33,0,0). The dashed-dotted
curve through the points is the result of a fit to a damped harmonic
oscillator with ω�q = 250 meV held fixed at the value reported in
Ref. [6] and ��q = (271 ± 7) meV, while the background is given
by the solid line below the data points. The solid line through the
data points corresponds to an overdamped harmonic oscillator with
f�q = (410 ± 12) meV and z�q/2 = (421 ± 25) meV. χ 2 values for the
latter are actually better than for the fit with the finite propagation
frequency (1.12 versus 1.28, with the size of the error bars fixed at the
same value for all data points). Scrutiny of the two fit results shows
that the overdamped oscillator (solid curve) captures the behavior of
most points slightly better, but the damped oscillator (dashed-dotted
curve) does a slightly better job around the peak position. What is clear
is that while either scenario describes the data well, the background
and accuracy of the points dictates which scenario is favored by the
fitting routine.

214513-3



JAGAT LAMSAL AND WOUTER MONTFROOIJ PHYSICAL REVIEW B 93, 214513 (2016)

The moral for the case study described above is that in
order to extract detailed information about the paramagnons,
one needs to do a better job in modeling the background. For
instance, allowing for different backgrounds in all 25 spectra
published in Ref. [6], while probing the system with an energy
resolution comparable to the widths of the excitations one is
interested in, does not allow for firm conclusions to be drawn
when it comes to details of doping dependence (Fig. 2). While
the usage of Eq. (2) might yield well-defined fit parameters, in
reality the degree of uncertainty is much larger (see Fig. 2). As
pointed out, the true degree of uncertainty can only be assessed
when the fit is allowed to probe the region forbidden by Eq. (2).
In our opinion, the resulting error bars on the paramagnon
excitation energies do not allow for the firm conclusions drawn
in Ref. [6]; the data, more than likely, show a significant change
from well-defined propagating modes in the antiferromagnetic
compound, to strongly damped or overdamped modes for
different concentrations x. We find that, at best, the data are
consistent with the conclusions drawn by the authors [6], but
do not lead to them. The study probably needs to be reanalyzed
using the proper model, and preferably, by employing a higher
energy resolution.

As a final word of caution, fitting the spectra to a sum of
Gaussian line shapes, as is sometimes done in the analysis of
RIXS data (see, e.g., Ref. [12]), or assigning a fundamental
significance to the maximum of the dynamic structure factor

(as done in Ref. [9]), suffers from the same drawback as
fitting the data to Eq. (2): it is assumed a priori that the peak
position in the spectra corresponds to an actual pole of the
dynamic susceptibility rather than to a feature pushed out to
higher energy transfers because of the action of a temperature-
dependent prefactor linking the dynamic susceptibility to the
scattered intensity.

In conclusion, we have shown that the usage of a model
outside its range of validity has led to conclusions that
are not (fully) justified by the data. Given the amount of
effort [1] that has gone into establishing RIXS as a new and
complementary technique for investigating paramagnons, we
strongly suggest to no longer use a model that assumes a
particular outcome beforehand, but rather to use the general
model for the harmonic oscillator that allows for excitations
to be overdamped. Such a model was recently employed [13]
to study the magnetic excitations as measured by RIXS in
the overdoped superconductor La1.77Sr0.23CuO4 [14]; in this
study it was found [14] that the magnetic excitations are either
overdamped, or on the verge of being overdamped, and that
the most noteworthy momentum dependence of the magnetic
excitations was in their damping rate rather than in their
(lack of) propagation frequencies. Our reanalysis of the data
previously published [5,6] indicates that this conclusion [14]
also captures the general behavior of the paramagnons in other
systems.
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