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Unconventional superconductivity has been predicted to arise in the topologically nontrivial Fermi surface of
doped inversion-symmetric Weyl semimetals (WSMs). In particular, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
and nodal BCS states are theoretically predicted to be possible superconductor pairing states in inversion-
symmetric doped WSMs. In an effort to resolve the preferred pairing state, we theoretically study two separate
four-terminal quantum transport methods that each exhibit a unique electrical signature in the presence of FFLO
and nodal BCS states in doped WSMs. We first introduce a Josephson junction that consists of a doped WSM
and an s-wave superconductor in which we show that the application of a transverse uniform current in s-wave
superconductors effectively cancels the momentum carried by FFLO states in doped WSMs. From our numerical
analysis, we find a peak in Josephson current amplitude at finite uniform current in s-wave superconductors that
serves as an indicator of FFLO states in doped WSMs. Furthermore, we show using a four-terminal measurement
configuration that the nodal points may be shifted by an application of transverse uniform current in doped
WSMs. We analyze the topological phase transitions induced by nodal pair annihilation in nonequilibrium by
constructing the phase diagram and we find a characteristic decrease in the density of states that serves as a
signature of the quantum critical point in the topological phase transition, thereby identifying nodal BCS states
in doped WSMs.
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I. INTRODUCTION

Rapid progress in the field of topological phases of matter
has extended the scope of our understanding from fully gapped
insulators to gapless semimetals [1–3], an example of which
is the Weyl semimetal (WSM), whose low-energy excitations
are described by three-dimensional Weyl fermions [1,2]. The
WSM is characterized by its nondegenerate band crossing
points referred to as Weyl nodes, where the valence and
conduction band touch. Weyl nodes are monopoles of the Berry
curvature in momentum space [1,4] and the Fermi surface
(FS) enclosing the Weyl node is topologically nontrivial as
it carries monopole charge (or Chern number). Weyl nodes
with opposite monopole charge appear in pairs in the lattice
[5,6] and the pairs of Weyl nodes are responsible for emergent
phenomena such as Fermi arcs [2,7,8] and unconventional
electromagnetic responses such as negative magnetoresistance
and chiral magnetic effect [9].

The unique physics of WSM motivates further research
on one of the most striking differences between semimetals
and insulators: the intrinsic superconducting phases in doped
semimetals. Unconventional superconductivity has been
shown to arise from the interplay between topologically
nontrivial states and superconducting phases of doped WSMs
[10–15]. Specifically, as FSs enclosing Weyl nodes must
appear in even numbers [5,6], doped WSMs facilitate two
types of possible superconducting pairings: internode and
intranode pairing. When Weyl nodes with opposite monopole
charge are mapped to each other by inversion symmetry,
the internode pairing exhibits a nodal BCS pairing state
whose electrical structure is in close analogy with the
3He-A phase [10,16,17]. On the other hand, the intranode
pairing forms finite momentum carrying superconducting
states [10] known as the Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) states [18,19]. While both types of superconducting
states are possible, different analysis methods yield different
energetically preferred pairing states [10–13]. Assuming
even-parity pairing (singlet) states in low-energy chiral
basis, mean-field calculations show that FFLO pairing is
favored [10]. On the contrary, when one considers odd-parity
pairing (triplet), a short- and long-range attractive interaction
results in FFLO and BCS pairing states as ground states,
respectively [11]. In the weak-coupling regime, BCS states are
energetically preferred; however, FFLO states may have lower
energy in the absence of both inversion and time-reversal
symmetry, due to the fact that FFLO states rely on low-energy
chiral symmetry while electrons in the BCS states are
connected either by inversion or time-reversal symmetry [12].

Although finding energetically preferred pairing is crucial
to clarify microscopic details of the superconductivity, it is
unclear how to determine a pairing scheme for a given doped
WSM. In this regard, we propose a quantum transport method
to elucidate the pairing states in doped WSMs. More precisely,
we focus our discussion on inversion-symmetric doped WSMs
and on two possible unconventional superconducting states:
FFLO and nodal BCS states. To identify two seemingly
distinct superconducting states, we propose two complemen-
tary transport methods. In Sec. II, we introduce a Josephson
junction composed of a doped WSM and a conventional s-wave
superconductor in the weak-coupling regime to resolve the
FFLO states. We find that the Josephson current is averaged
out to be vanishingly small due to the spatially oscillating order
parameter of FFLO states. By driving transverse supercurrent
in s-wave superconductors, we show that nonequilibrium
s-wave pairing states mimic FFLO states and the Josephson
current is restored at finite transverse current, which serves as
a signature for FFLO pairing in doped WSMs. In Sec. III, we
introduce a system consisting of a doped WSM attached with
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FIG. 1. A schematic of the system. HL is a WSM and HR is an
ordinary metal superconductor. A weak coupling between HL and
HR is assumed. A Josephson current flows in the x̂ direction (blue
dashed arrow) and a uniform supercurrent in the ẑ direction (red solid
arrow) gives center-of-mass momentum q to the HR system.

four-terminal contacts to identify nodal BCS states. We show
that nodal points are shifted in momentum space by tuning
transverse dc current, which may result in an annihilation of
nodal points and a subsequent topological phase transition. At
the critical point of the topological phase transition, we find
a distinct peak in the longitudinal differential conductance
(dI/dV ) curve inside the superconducting gap that serves as a
signature of the nodal BCS states in doped WSMs. In Sec. IV,
we summarize our results and conclude.

II. PROBING FFLO PAIRING STATES

A. System description

In Fig. 1, we consider a Josephson junction that consists
of a doped WSM (HL) weakly coupled with a conventional
s-wave superconductor (HR). When the system is in the
superconducting regime, a Josephson current flows in the
longitudinal (x̂) direction, as shown by the blue dashed arrow
in Fig. 1, across the junction located at x = x0. The doped
inversion-symmetric WSM system in this work has two Weyl
nodes located at ±Q in momentum space. Assuming internode
pairing, a Cooper pair that shares a FS with momenta ±Q + k
and ±Q − k forms an FFLO state [10]. Therefore, a net
momentum of ±2Q is carried by the pairing states and the
order parameter of the FFLO states has a form �L(r) =
ψL(ei2Q·r + e−i2Q·r) in real space, where ψL is an amplitude of
the order parameter [18,19]. Assuming uniform BCS pairing
for the s-wave superconductor, the superconducting order
parameter is �R(r) = ψR and the total Josephson current may
be determined as [20]

IJ ∝ Im

[
ψLψR

∫
d2rei(2Q·r+δϕ) + ei(−2Q·r+δϕ)

]
, (1)

where δϕ is relative phase difference of two superconducting
systems, and the integral covers the entire interface of the
Josephson junction. In Eq. (1), IJ vanishes as one integrates
over r due to the spatially oscillating FFLO state order
parameter. However, previous work [20] shows that one may
effectively cancel the finite momentum Q by introducing
external magnetic field and, as a result, the Josephson current
is restored. Although the nonzero Josephson current under
applied magnetic field can be utilized to identify FFLO states,
the same proposal may not be applicable in the WSM. In the
presence of a magnetic field, the low-energy Hamiltonian of

the WSM leaves only a 1D chiral mode in the lowest Landau
level [21] and, therefore, the intranode coupling cannot occur.
To overcome this situation, we show that a driven supercurrent
plays the role of the magnetic field.

The red solid arrow in Fig. 1 shows a uniform supercurrent
flowing within the s-wave superconductor. We consider a
planar geometry where a bias is applied to metal contacts
and drives a uniform current through the sample. Regardless
of the bias applied to the other contacts for measurement,
a constant transport current may be induced in the sample
by using external bias [22,23]. In the presence of a uniform
supercurrent, a Cooper pair acquires a finite center-of-mass
momentum q. Then electrons at k + q and −k + q constitute a
Cooper pair with a net momentum of 2q. As a result, the s-wave
pairing states under nonequilibrium effectively mimic finite-
momentum carrying FFLO states with the order parameter
[24,25] �R = ψRei2q·r. Especially when the momentum q is
parallel to and in a resonance with Q carried by the FFLO
states, the Josephson junction has a nonvanishing IJ , which
may serve as a signature of FFLO states in doped WSMs.
In the above scenario, a uniform transverse current, JS , is
carried by Cooper pairs with finite net momentum 2q, as
indicated by the red solid arrow in Fig. 1. JS increases linearly
as a function of q both in the conventional s-wave [26]
and unconventional nodal superconductor [27–29]. However,
when the vF q (where vF is the Fermi velocity) is comparable
to the quasiparticle excitation gap, JS reaches a critical current
and the superconducting phase becomes unstable [27,28]. In
this paper, however, we assume that JS is small compared to
the critical current; therefore, the supercurrent is proportional
to q (see Supplemental Material [30] for the calculation of JS

as a function of q). Therefore, we utilize q as a key parameter
to describe nonequilibrium states of the superconductor
system and plot our main results as a function of q instead
of JS .

We begin by considering a model lattice Hamiltonian

H = HL + HR + HT , (2)

where HL is a doped WSM system and HR is a metallic
s-wave system as depicted in Fig. 1. We assume both of the
systems are in superconducting phase and they are weakly
coupled by a tunneling Hamiltonian, HT . We discretize
the system in the longitudinal (x̂) direction in order to
consider a Josephson junction at x = x0 with the tunneling
Hamiltonian

HT =
∑
k,p

tk,p[c†k(x0)cp(x0) + H.c.], (3)

where c
†
k is the electron creation operator of system HL, cp is

the annihilation operator of system HR , tk,p is a tunneling
constant, and k, p = (ky,kz) are momentum of transverse
directions. Here, we assume that the tunneling constant is
nonzero only at the interface (x = x0).

For the doped WSM system, we choose a model Hamil-
tonian which breaks time-reversal symmetry but preserves
inversion symmetry. Near the Weyl node, we consider a
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minimal low-energy two-band model of the WSM [31]

Hw =
∑

k

[(
M − 2

∑
α=x,y,z

tα cos kα

)
σz

+ 2λ(sin kxσx + sin kyσy) − μLI

]
, (4)

where σx,y,z are the Pauli matrices for spin, I is the identity
matrix, λ is a hopping term in the kx-ky plane, and μL is
the chemical potential in the WSM. In this work, we use a
lattice constant of a = 1 and set � = 1. In Eq. (4), tα=x,y,z

is a mass term which determines the position of the Weyl
nodes in momentum space. The time-reversal breaking mass
term M = 2tx + 2ty + m separates Weyl nodes in the system
and we set m = 2tz cos Q so that two Weyl nodes are located
at ±Q = (0,0,±Q) along the z axis with opposite monopole
charge. Assuming FFLO pairing, we consider an attractive
Hubbard type interaction. The mean-field approximation for
the interaction Hamiltonian is

HFFLO =
∑

k

[	L1c
†
k,↑c

†
−k+2Q,↓ + 	L2c

†
k,↑c

†
−k−2Q,↓ + H.c.],

(5)

where the first (second) term couples electrons in the FS
enclosing the Weyl node located at kz = +Q (−Q) with a
uniform pairing potential 	L1 (	L2). To see the finite-size
effect of the junction, we discretize the Hamiltonian in the
transverse (ẑ) direction. Therefore, the Hamiltonian of Eqs. (4)
and (5) is discretized in the transverse (ẑ) and longitudinal (x̂)
directions in real space. As a result, the Bogoliubov–de Gennes
(BdG) Hamiltonian is

HL =
∑
r,ky



†
r,ky

(
H̃w(ky) H̃FFLO(r)

H̃
†
FFLO(r) −H̃ ∗

w(−ky)

)

r,ky

+
∑

r,α,ky

[



†
r,ky

(
H̃w,α 0

0 −H̃ ∗
w,α

)

r+α,ky

+ H.c.

]
, (6)

where 
r,ky
= [cr,ky ,↑,cr,ky ,↓,c

†
r,−ky ,↑,c

†
r,−ky ,↓]T , r = (x,z),

and α = δx,δz. The individual components of the discretized
Hamiltonian are

H̃w(ky) = [M − 2ty cos(kya)]σz + 2λ sin(kya)σy − μLI,

H̃w,δx = −iλσx − txσz, H̃w,δz = −tzσz, (7)

H̃FFLO(r) = 2	L cos(2Qz)iσy,

where H̃w,δx and H̃w,δz are the nearest neighbor hopping
Hamiltonian in the x̂ and ẑ directions, respectively, and
H̃FFLO(r) is the superconducting interaction Hamiltonian
Fourier transformed to real space. Note that we assume
identical pairing potential for each FS, 	L1 = 	L2 = 	L,
but the following arguments are valid regardless of this
assumption.

With the Weyl Hamiltonian defined, we consider a normal
metal Hamiltonian defined as

Hm =
∑

k

[−tm(cos kx + cos ky + cos kz) − μR]I, (8)

where tm is a hopping term and μR is the chemical potential.
In our system, the Cooper pairs in the BCS superconductor

acquire q = qẑ through the application of a uniform supercur-
rent [24,25] in the transverse (ẑ) direction, as indicated by the
red solid arrow in Fig. 1. Then the mean-field approximation
to the interaction Hamiltonian is

HBCS =
∑

k

[	Rc
†
k+q↑c

†
−k+q↓ + H.c.], (9)

where 	R is a uniform BCS pairing potential. The BdG
Hamiltonian is constructed for HR in a similar manner to
Eq. (6) and discretized in the transverse (ẑ) and longitudinal
(x̂) directions. Consequently,

HR(q) =
∑
r,ky



†
r,ky

(
H̃m(ky) H̃BCS(r,q)

H̃
†
BCS(r,q) −H̃ ∗

m(−ky)

)

r,ky

+
∑

r,α,ky

[



†
r,ky

(
H̃m,α 0

0 −H̃ ∗
m,α

)

r+α,ky

+ H.c.

]
,

(10)

where the discretized Hamiltonians are

H̃m(ky) = (−tm cos kz − μR)I,

H̃m,δx = −(tm/2)I, H̃m,δz = −(tm/2)I, (11)

H̃BCS(r,q) = 	Rei2qziσy.

Here, H̃m,δx and H̃m,δz are the nearest neighbor hopping
Hamiltonian and H̃BCS(r,q) is the interaction Hamiltonian
Fourier transformed to real space.

B. Josephson current

Having defined the lattice Hamiltonian for HL/R , we may
calculate the Josephson current between the doped WSM
and s-wave superconductor. Assuming a weak-coupling limit,
the tunneling Hamiltonian HT in Eq. (3) can be treated as
a perturbation. From the Ginzburg-Landau theory, we may
determine the Josephson current [20]

IJ = Im

[
tc

∫
dr2

‖�
†
BCS(r‖)�FFLO(r‖)

]
, (12)

where tc is a coupling constant, and �BCS and �FFLO are order
parameters of the s-wave superconductor and doped WSM
system, respectively. The integration in Eq. (12) is performed
over the interface of the Josephson junction r‖ = (x0,y,z),
whose longitudinal (x̂) direction is fixed at the junction
position x = x0. Once we put two superconductors together,
the order parameters may differ in phase by δϕ = ϕL − ϕR .
Taking into account the phase difference, the order parameters
in Eq. (12) are rewritten as �FFLO = �L(r‖)eiϕL and �BCS =
�R(r‖,q)eiϕR , where �L and �R are the order parameters of the
doped WSM and s-wave superconductor, respectively. Note
that the order parameters �L and �R are calculated in isolated
system as the tunneling Hamiltonian is treated perturbatively.
Then, Eq. (12) is rewritten as

IJ = Im

[
tc

∫
d2r‖�

†
R(r‖,q)�L(r‖)eiδϕ

]

= Im[IJ, max(q)eiϕ(q)eiδϕ]

= IJ, max(q) sin[ϕ(q) + δϕ],

(13)
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FIG. 2. Plot of Josephson current maximum IJ, max in Eq. (14) as
a function of momentum, q, in the BCS superconductor as described
by HR . There are two clear peaks when the q matches with the ±Q

in the doped WSM described by HL. The parameters tm = 1,μR = 0
are used for HR and tx = 0.5, ty = 0.5, tz = 1.0, λ = 0.5, μL/t =
0.2, and Q = 0.1π are used for HL. The pairing potentials 	L/t =
	R/t = 0.2 are used and the number of points along the longitudinal
direction (x̂), Nx = 10, is fixed for both HL and HR . In order to see
the finite-size effect of the Josephson junction, we plot Nz = 20 to
Nz = 50.

where IJ, max and ϕ(q) + δϕ are the amplitude and phase of the
Josephson current, IJ . We immediately notice that the Joseph-
son current amplitude, IJ, max, is a function of momentum q. As
is shown in Eq. (7), the interaction Hamiltonian of doped WSM
oscillates spatially which manifests as a spatial oscillation in
the order parameter �L. As a result, IJ, max is spatially averaged
out and its magnitude vanishes for a sufficiently wide interface
(�1/Q) at q = 0. The situation, however, may be different
when a Cooper pair in the s-wave superconductor acquires
center-of-mass momentum q by a driven current. The order
parameter �R effectively mimics FFLO states with nonzero
momentum q to cancel out the relative spatial variation and,
at q = ±Q, IJ, max is restored. To evaluate IJ, max, we take
a Fourier transform of both order parameters �L/R in the ŷ

direction

IJ, max(q) =
∣∣∣∣tc

∫
d2r‖�

†
R(r‖,q)�L(r‖)

∣∣∣∣
=

∣∣∣∣tc
∫

dz

∫
dky

2π
�

†
R(r0,ky,q)�L(r0,ky)

∣∣∣∣, (14)

where r0 = (x0,z). Then the Hamiltonians in Eqs. (6) and
(10) are diagonalized and the order parameters �L(r,k) =
〈c↑,r,kc↓,r,−k〉L and �R(r,k,q) = 〈c↑,r,kc↓,r,−k〉R are evaluated
(see the Appendix). In Fig. 2, we plot IJ, max calculated
from Eq. (14). We see a clear peak in IJ, max at q = ±Q

where the momentum q in the BCS superconductor cancels
the momentum Q carried by FFLO states in the WSM.
The oscillations in IJ, max are due to the finite size of the
lattice having an insufficient sampling of k space. The width
of the peak is decreased as we increase the resolution of
the momentum space by increasing the system size. The
peak is ideally a delta function at q = ±Q if the junction

size is large enough to satisfy 	k = 2π/Lz 
 Q. In the
presence of weak disorder, the peak may be shifted as disorder
renormalizes the mass term of the WSM Hamiltonian [32],
but persists as the FFLO states discussed here are robust
to impurity scattering [10]. Therefore, the Josephson current
amplitude at nonzero transverse (ẑ) current (q �= 0) may serve
as a signature of FFLO states for inversion-symmetric doped
WSMs.

III. PROBING NODAL SUPERCONDUCTIVITY

While intranode superconducting states are identified by
quantum transport signatures in the Josephson junction, apply-
ing the same method may not confirm internode superconduct-
ing states as nodal BCS states do not carry finite momentum
and the current response simply returns to conventional
Josephson junction results. Instead, we exploit nodal struc-
tures of inversion-symmetric doped WSMs [10,16,17,33] and
propose a separate quantum transport method to identify nodal
BCS superconductivity using a four-terminal measurement.

A. Nodal BCS states in doped WSMs

As the only prerequisite for nodal superconductivity in
doped WSMs is the presence of inversion symmetry [17], the
internode pairing results in nodal superconductivity even in the
presence of a uniform BCS pairing potential. Each nodal point
carries topologically nontrivial vorticity inherited from the
monopole charge of the corresponding FS in the normal phase
[17]. Therefore, each nodal point exhibits similar physics with
that of the WSM such as Fermi arcs [13,16,17]. In addition, the
nodal BCS superconductivity facilitates a zero energy flat band
dispersion at its surface that is protected by mirror symmetry
[10,16,17]. The flat band zero energy can be experimentally
confirmed by zero bias conductance peak at the surface
[16] and may serve as evidence of nodal superconductivity.
However, seeking the zero bias peak may be a difficult task
due to the gapless bulk conducting channels [34]. Instead, we
propose to utilize an induced topological phase transition by
application of current through the superconducting system.
Here, we show that the nodal points, initially assumed to be
well separated in equilibrium, are shifted in momentum space
by a uniform supercurrent. Then nodal pair annihilation may
occur and the subsequent phase transition depletes available
bulk states within the superconducting gap. As a result, the
phase transition is captured by a distinct dip in the density
of states (DOS or dI/dV ) and an observation of the dip
in nonequilibrium may serve as a signature of nodal BCS
superconductivity in doped WSMs.

B. Nodal pair annihilation and energy spectrum

To examine the induced topological transition, we assume a
four-terminal device setup outlined in Fig. 3(a). The red solid
arrow in Fig. 3(a) represents a uniform supercurrent driven by
an external current source, which induces a net momentum
shift of Cooper pairs by a momentum q in the transverse
(ẑ) direction. In the following argument, we show that the
momentum q shifts nodal points in momentum space to induce
a topological phase transition. To observe the corresponding
topological phase transition, we utilize the DOS by measuring
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FIG. 3. (a) A schematic of the system. Uniform supercurrent
JS is driven to the Weyl superconductor system Hw . Differential
conductance is read from a current measured in perpendicular
direction (I ). (b) Phase diagram of the number of nodal point pairs
from Hamiltonian Eq. (15) at kx = ky = 0. A DOS is obtained in the
particular direction indicated by the red vertical arrow and plotted in
Fig. 4. For the WSM Hamiltonian, the same parameters used in Fig. 2
are adopted. The range of q presented here is 0 � q � π/2 due to the
fact that a relevant range of total Cooper pair momentum is |2q| � π .

a differential conductance in the longitudinal (x̂) direction
shown as a blue dashed arrow in Fig. 3(a). For inversion-
symmetric doped WSMs, we use the lattice WSM Hamiltonian
Hw = ∑

k H̃w(k) in Eq. (4) with shifted center-of-mass frame
by q to account for uniform supercurrent. Assuming uniform
BCS pairing, the BdG Hamiltonian is

HBdG =
∑
k,q



†
k,q

(
H̃w(k + q) H̃BCS

H̃
†
BCS −H̃ ∗

w(−k + q)

)

k,q ,

(15)

where 
k,q = [ck+q,↑,ck+q,↓,c
†
−k+q,↑,c

†
−k+q,↓]. In this shifted

center-of-mass frame, the mean-field interaction Hamiltonian
is defined as H̃BCS = 	0iσy , where 	0 is a uniform pairing
potential. The position of the nodal points in Eq. (15)
is determined by considering the quasiparticle spectrum
along the kz axis. For illustrative purposes, we analyze the
Hamiltonian in Eq. (4) along the kz direction, which is
H̃w(kz) = [m − 2tz cos(kz)]σz − μI, by setting kx = ky = 0.
Then, Eq. (15) may be rewritten in a block diagonal form as

(H̃↑↓ 0
0 H̃↓↑

), whose bases in each block are [ck+q,↑,c
†
−k+q,↓]

and [ck+q,↓,c
†
−k+q,↑], respectively. The quasiparticle spectrum

along the kz axis is

E±
↑↓(kz,q) = (m − 2tz cos kz cos q)

±
√

	2
0 + (μ − 2tz sin kz sin q)2,

(16)
E±

↓↑(kz,q) = (2tz cos kz cos q − m)

±
√

	2
0 + (μ + 2tz sin kz sin q)2.

In Eq. (16), the nodal points are found at the crossings of the
quasiparticle spectra. To see the nodal point dependency on q,
we further simplify Eq. (16) by assuming μ = 0 and setting
the mass term to be m = 2tz cos Q to place Weyl nodes at
kz = ±Q. We then expand the quasiparticle spectrum around
±Q. Specifically, we set kz = ±Q + δkz where δkz 
 Q is
an infinitesimal deviation from a location of the Weyl node in

normal phase. Assuming a small q (q 
 Q) we obtain

E+(δkz,q) � [
t ′zδkz ±

√
	2

0 + t ′z
2q2

]
σz,

(17)
E−(δkz,q) � [−t ′zδkz ±

√
	2

0 + t ′z
2q2

]
σz,

where E± is the quasiparticle spectrum in the vicinity of
kz = ±Q. In Eq. (17), we set t ′z = 2tz sin Q and σz is the
Pauli matrix in pseudospin space whose components consist
of linear combinations of the eigenfunctions in Eq. (16).
Equation (17) shows that each FS has two nodal points at δkz =
±√

(	0/t ′z)2 + q2 and the nodal points are shifted as a function
of q toward kz = 0 and π . Due to the particle-hole symmetry,
we know that a nodal point pair exists at (kz,E) = (k0,E0)
and (−k0,−E0), and the pair consists of opposite vorticity by
inversion symmetry of the WSM. Therefore, by manipulating
q, the nodal pair with opposite vorticity may be shifted to be
annihilated at kz = 0 or ±π and the total number of nodal
point pairs given by the band topology at equilibrium can be
tuned. In Fig. (3 b), the phase diagram of the system that
contains a different number of nodal point pairs is shown
as a function of the mass term m and momentum q, which
determines the position of nodal points in equilibrium and
nonequilibrium, respectively. The wave vector q is controlled
by applied current and m is determined by the magnetic order
of material or magnetized impurities. When q = 0, the system
contains two nodal point pairs for |m| � 2tz −√

	2
0+μ2. If the

normal phase of the WSM has Weyl node separation smaller
than 2Q �√

	2
0+μ2 in momentum space, a pair of nodal points

is annihilated as one turns on the superconductivity and, as a
result, only one nodal point pair remains in the system. When
|m| � 2tz +√

	2
0+μ2, the system is fully gapped and no nodal

point pairs exist. Departing from equilibrium, nodal points are
shifted and annihilated by increasing q, for example, as shown
in the red vertical arrow in Fig. 3(b). Although this phase
transition may not be observed if the nodal point separation is
larger than the maximum accessible range of the supercurrent,
we believe that proposed experimental setup is applicable as
the position of the Weyl node may be adjusted, for example
in multilayer structure [35,36], by tuning the concentration of
magnetic impurities or the thickness of each layer. Note that
we only consider a phase diagram when (kx,ky) = (0,0). The
same arguments are also valid for other high-symmetry points
in the Brillouin zone such as (kx,ky) = (±π,±π ) which simply
replaces the mass term m → m + 4tx for (±π,0), m + 4ty for
(0,±π ), and m + 4tx + 4ty for (±π,±π ). Nonetheless, the
resulting physics is identical.

C. Signatures of the phase transition

When the phase transition occurs under nonequilibrium
conditions, the annihilated nodal pairs no longer provide
available states within the superconducting gap. As a result,
the induced topological transition is observed in the DOS
(or dI/dV ). To examine this, we compute DOS(E,q) as a
function of energy and momentum q using the system Green’s
function [37]. Note that the system boundary in the y direction
is open in real space so that we may observe finite-size effects
and the surface states contribution. To examine the induced
topological phase transition and the corresponding DOS, we
sweep q at an arbitrary cut of the phase diagram at m/tz =
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FIG. 4. A DOS plot along the vertical red arrow in Fig. 3(b).
(a) DOS is plotted as a function of q within a superconducting gap.
Pairing potential is set to be 	0/tz = 0.2 with (a) Ny = 50 and (c)
Ny = 5. A chemical potential is μ/tz = 0.2. (b) DOS plot at E = 0
as a function of q for Ny = 50 [white dotted line in (a)]. (d) DOS plot
at E = 0 as a function of q for Ny = 5 [white dotted line in (c)].

2 cos(Q = 0.2π ) � 1.6. As the red arrow in Fig. 3(b) shows,
the phase transition occurs around q/π � 0.1. Figure 4(a)
shows the corresponding DOS where we set the thickness to
Ny = 50 to avoid finite-size effects. Along the horizontal axis
at q = 0 in Fig. 4(a), equilibrium DOS increases quadratically
in energy (∝E2) within the superconducting gap due to the
presence of bulk nodal points, whereas surface states result
in nonzero DOS near E = 0. When the system is not in
equilibrium (q �= 0), the eigenstates initially separated by a
superconducting gap are shifted by q and added to the available
low-energy states [28]. As a result, DOS increases as a function
of q. However, there are distinct drops in magnitude of DOS at
certain q as is seen by following vertical axis in Fig. 4(a). With
this particular choice of mass (m) in the phase diagram, a pair
of nodal points with opposite vorticity moves toward kz = 0
and is annihilated at q/π � 0.1. Further increase in q from
this point gaps out the spectrum at kz = 0 and a topological
phase transition occurs leaving only one pair of nodal point
pairs in the system. Thus, the available states within the
superconducting gap are decreased and the consequent change
in nodal structure manifests itself as a dip in the DOS. The dip
is clearly observed in the zero-energy cut indicated with red
arrows in Fig. 4(b). Therefore, the distinct dip of the DOS
in nonequilibrium is a signature of the quantum critical point
which can only occur due to the topological phase transition of
the nodal superconductor. Note that above arguments are valid
for a system where the bulk nodal points are well defined so that
their annihilation can be clearly identified. If the bulk nodal
points are gapped out by the finite-size effect, the signature
may not be obvious in the DOS. Figure 4(c) shows a DOS
for a thickness of Ny = 5 where the bulk states are gapped
out by the finite-size effect. The DOS within the finite-size
induced gap is suppressed but finite due to an infinitesimal

broadening we introduced in the Green’s function calculation
[37] and surface states with hybridization gap E/	 � 0.5.
Consequently, in Fig. 4(d), we observe a monotonic increase
of DOS as a function of q and no clear signature of nodal point
annihilation is observed.

IV. SUMMARY AND CONCLUSION

In summary, we study two complementary quantum trans-
port methods to probe FFLO and nodal BCS states in the
superconducting phase of the inversion-symmetric doped
WSM. To identify FFLO states, we consider a Josephson
junction consisting of a doped WSM and conventional s-wave
superconductor. When the junction is in the weak-coupling
limit, the Josephson current is calculated from the order
parameters in the lattice Hamiltonian using Ginzburg-Landau
theory. The order parameter of the doped WSM oscillates
spatially due to the finite momentum, Q, carried by FFLO
states that results in a vanishing Josephson current. By driving
a uniform current in a conventional s-wave superconductor,
the order parameter of the s-wave superconductor effectively
mimics FFLO states carrying a net momentum q. When the
modulated order parameter effectively cancels Q at q = ±Q,
a finite Josephson current is restored. Therefore, the peak
in Josephson current in nonequilibrium serves as a direct
signature of the presence of FFLO states in doped WSMs.

Additionally, we show that protected nodal points in
equilibrium may be shifted by using four-contact quantum
transport geometry on doped WSMs. The system may undergo
an induced topological transition by annihilating the nodal
point pairs, which is signalled by an abrupt changes in the
DOS (or differential conductance). Using a lattice model
and Green’s function, we observe a distinct dip in DOS as
one across a boundary of the phase diagram where a nodal
point pair annihilation occurs. Thus, the induced topological
phase transition and corresponding signatures in the DOS
at nonequilibrium may serve as an indication of the nodal
superconductivity in doped WSMs.
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APPENDIX: ORDER PARAMETER CALCULATION

In this Appendix, we summarize the method utilized
to obtain the order parameter in Eq. (14) from the BdG
Hamiltonian. The Hamiltonians in Eq. (6) and (10) are
discretized in the r = (x,z) direction with a momentum k in
the ŷ direction. Then the Hamiltonian can be diagonalized
from the following Bogoliubov transform [24]:(

cr,k,σ

c
†
r,−k,σ̄

)
=

∑
n

(
un,r,k −v∗

n,r,k

vn,r,k u∗
n,r,k

)(
γα,n,r,k

γ
†
β,n,r,k

)

=
∑

n

Rn,k,z

(
γα,n,k,z

γ
†
β,n,k,z

)
, (A1)
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where σ =↑ ,↓ is the spin index and σ̄ stands for an opposite
spin with σ and a quasiparticle operator index (α,β) = (1,2)
for σ =↑ and (3,4) for σ =↓ for each eigenstate index
n. Here, we define a basis rotation matrix Rn,r,k which
diagonalizes the Hamiltonian

H (r,k)Rn,r,k = Rn,r,k

(
En,r,k 0

0 −En,r,k

)
. (A2)

Therefore, we obtain the rotation matrix Rn,k,z and corre-
sponding eigenvalue En,r,k by diagonalizing the Hamiltonian
in Eqs. (6) and (10). Then, an order parameter with uniform
s-wave pairing potential is defined as

�(r,k) = 〈cr,k,↑cr,−k,↓〉. (A3)

The quasiparticle operator γ satisfies the commutation relation
γ
†
α,nγα′,m + γα′,mγ

†
α,n = δn,mδα,α′ and γα,nγα′,m + γα′,mγα,n =

0 for α,α′ = 1,2,3,4. Then we can plug Eq. (A1) into Eq. (A3)

and obtain

〈cr,k,σ cr,−k,σ̄ 〉 =
∑

n

unv
∗
n〈1 − γ †

α,nγα,n − γ
†
β,nγβ,n〉, (A4)

where we used the commutation relation of γ and we have
suppressed the r,k, ↑↓ index on the right-hand side of Eq. (A4)
for brevity. For finite temperature, 〈γ †

α,nγβ,m〉 = δn,mδα,βf (En)
and 〈γα,nγβ,m〉 = 0, where f (E) is the Fermi-Dirac distribu-
tion. Therefore, we obtain the s-wave pairing order parameter
in Eq. (A3),

�(r,k) = 〈cr,k,↑cr,−k,↓〉
=

∑
n

un,r,kv
∗
n,r,k[1 − 2f (En,r,k)]

=
∑

n

un,r,kv
∗
n,r,k tanh

En,r,k

2kBT
, (A5)

and the resultant mean-field pairing Hamiltonian is then

Hint =
∑
r,k

	(r,k)c†r,k,↑c
†
r,−k,↓ + H.c., (A6)

where 	(r,k) = g�(r,k) and g > 0 is an attractive interaction
strength for the order parameter definition of Eq. (A3).
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