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Magnetic behavior of dirty multiband superconductors near the upper critical field
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Magnetic properties of dirty multiband superconductors near the upper critical field are studied. The parameter
κ2 characterizing magnetization slope is shown to have a significant temperature variation which is quite sensitive
to the pairing interactions and relative strengths of intraband impurity scattering. In contrast to single-band
superconductors the increase of κ2 at low temperatures can be arbitrarily large determined by the ratio of
maximal and minimal diffusion coefficients in different bands. Temperature dependencies of κ2(T ) in two-band
MgB2 and iron-based superconductors are shown to be much more sensitive to the multiband effects than the
upper critical field Hc2(T ).
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I. INTRODUCTION

Recently a number of multiband superconductors have
been discovered where the pairing of electrons is supposed
to take place simultaneously in several bands overlapping at
the Fermi level [1–7]. One of the first such superconductors
found was MgB2 [1] which has two distinct superconduct-
ing gaps residing on different sheets of the Fermi surface
[8–11]. Up to date MgB2 has the highest critical temperature
Tc = 40 K among simple binary compounds [12]. Later on
multiband superconductivity has been established in iron-
pnictides [4–6] with the highest Tc above 100 K detected in
atomically thin films of FeSe [13]. There strong interband
interactions mediated by antiferromagnetic excitations have
been suggested to play the dominant role in pairing resulting
in the peculiar s± symmetry of the order parameter.

Besides their high Tc both the two-gap MgB2 and iron-based
superconductors have remarkable magnetic properties. The
interplay of several pairing channels in multiband supercon-
ductors was predicted to produce convex-shaped temperature
dependencies of the upper critical field [14–17]. Due to
their anomalous shapes the Hc2(T ) curves can reach much
larger values at T → 0 than was expected from a one-gap
theory [18,19]. This explains an enormous enhancement of
the upper critical field in MgB2 by nonmagnetic impurities
[20–23]. Experiments measuring upper critical fields in disor-
dered MgB2 [20] and certain iron-based superconductors [24]
are consistent with theoretical calculations using a two-gap
model [14,15,17]. Therefore a convex shape of Hc2(T ) depen-
dencies is considered as one of the hallmarks of multiband
pairing [24–28]. However it is not a universal feature of
multiband superconductors since concave Hc2(T ) curves were
observed in MgB2 with lower impurity concentration [12] as
well as in many iron-pnictide compounds [29–32].

In order to find a robust test for mutiband pairing it is natural
to look for an unusual behavior of magnetization at H < Hc2.
In the vicinity of Hc2 magnetization Mz can be characterized
by the parameter κ2(T ) introduced by Maki [33]

Mz = H − Hc2

4πβL

(
2κ2

2 − 1
) , (1)

where the z axis is directed along the magnetic field, and
βL is an Abrikosov parameter equal to 1.16 for a triangular

lattice [34]. In single-band superconductors the parameter
κ2 has been studied extensively in the clean [35] and dirty
limits [36,37], for the arbitrary strength of impurity scatter-
ing [38,39], and taking into account strong electron-phonon
coupling effects [40]. Dirty single-band superconductors were
shown to have a universal behavior characterized by a slow
monotonic increase of κ2 [33,36,37] with cooling from κ2(T =
Tc) = κGL to κ2(T = 0) ≈ 1.2κGL, where κGL is the Ginzburg-
Landau parameter at T = Tc. The theoretical calculations
were found to be in good agreement with experimentally
measured κ2(T ) dependencies in several superconducting
alloys [41–43].

The parameter κ2 is a basic quantity of type-II supercon-
ductors determining their thermodynamic [44] and transport
properties [45,46] near Hc2. In the present paper we use the
Usadel theory [14] to calculate κ2 in dirty multiband super-
conductors with high concentration of nonmagnetic impurities.
Such a description is not universal but appropriate for a certain
class of multiband materials including MgB2 [14,16] and
iron-pnictides [24]. This theory does not fit for heavy-fermion
superconductors like CePt3Si [7] whose crystal lattice lacks
a center of inversion. In noncentrosymmetric compounds
multiple bands originate from strong spin-orbital coupling
which lifts spin degeneracy of electron states. In order to
describe gap structure, magnetic properties, and the influence
of impurity scattering in such superconductors one needs to
use a different formalism [47].

The structure of this paper is as follows. In Sec. II
basic equations of the multiband Usadel theory are intro-
duced. General formulas describing the high-field magnetic
response of dirty multiband superconductors are derived in
Sec. III including equations for the Hc2 in Sec. III A and
the magnetization in Sec. III B. Several examples of two-
band superconductors are considered in Sec. IV. Results are
discussed in Sec. V and conclusions are given in Sec. VI.

II. MULTIBAND USADEL THEORY

We consider multiband superconductors in a dirty limit
using the Usadel theory [14]. Each kth band is described
in terms of the quasiclassical Green’s function matrix ĝk =
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ĝk(ε,r) which is defined as follows:

ĝk =
(

gk fk

−f +
k −gk

)
(2)

and subject to the normalization constraint ĝ2
k = 1. The matrix

Usadel equation reads [48]

Dk∂̂r (ĝk∂̂r ĝk) − [ωτ3 + 	̂k,ĝk] = 0, (3)

where Dk is the diffusion constant and the covariant differ-
ential superoperator is defined by ∂̂rĝ = ∇ĝ − ieA[τ3,ĝ]. We
assume that the pairing takes place only in the spin-singlet
channel so that the gap operator in the kth band has a
spin-independent form 	̂k(r) = |	k|τ2e

−iθkτ3 .
The model described by Eq. (3) is based on several

simplifying assumptions. First, we neglected paramagnetic
depairing. This approximation is not sufficient for certain iron-
pnictide compounds with a large critical field [28,31,49–51]
that can reach a paramagnetic limit leading to the possibility
of a Fulde-Ferrel-Larkin-Ovchinnikov transition [17]. At the
same time these materials have short coherence lengths ξ ∼
1–3 nm [17] which are not consistent with the dirty limit
approximation considered in the present paper. Furthermore,
we have neglected interband impurity scattering which couples
the Green function in various bands [14]. By neglecting these
effects we assume that the interband scattering rate is much
smaller compared to the orbital depairing energy eDkHc2. This
condition is satisfied not too close to Tc in MgB2 where the
interband scattering was predicted to be small [52]. Due to the
same reason we neglect the influence of spin-flip scattering
at paramagnetic impurities and inelastic electron-phonon
scattering [53,54]. These depairing mechanisms are known to
be important near Tc but can be neglected at lower temperatures
where the κ2(T ) anomalies are expected to appear.

The 12 component of the matrix Eq. (3) is

Dk

2i
(gk�̂

2fk − fk∇2gk) = 	kgk − iωfk, (4)

where �̂ = ∇ − 2ieA. A similar equation given by the 21
component of (3) yields f +(r,ω) = −f ∗(r,ω). The gap in
each band is determined by self-consistency equations

	k(r) = 2iπT

N∑
j=1

ND∑
n=0

λkjfj (ωn), (5)

where λ̂ is the N × N coupling matrix satisfying general
symmetry relations νkλkj = νjλjk and the sum by Matsubara
frequencies ωn = (2n + 1)πT is taken in the limits ND(T ) =
�D/(2πT ) set by the Debye frequency �D . The electric
current density is given by

j = iπT

N∑
k=1

∞∑
n=0

σk

e
Tr[τ3ĝk(ωn)∂̂r ĝk(ωn)], (6)

where the partial conductivities are σk = 2e2νkDk and νk

are the densities of states per one spin projection. The sum
over frequencies in Eq. (6) converges therefore no cutoff is
needed. The magnetization of a superconducting sample M is
determined by the current (6) according to the usual relation
∇ × M = j .

III. MULTIBAND SUPERCONDUCTORS IN LARGE
MAGNETIC FIELDS

A. The upper critical field Hc2

At large magnetic fields Hc2 − H � Hc2 we can apply
approximations related to the smallness of the order parameter
|	k| ∝ √

1 − H/Hc2. To calculate the structure of a vortex
lattice in a two-band superconductor let us consider the
linear integral-differential system consisting of Usadel Eqs. (4)
linearized with respect to the normal state solution

L̂ωfk = i	k, L̂ω = Dk

2
�̂

2
0 − |ω|, (7)

supplemented by the self-consistency relation (5). In a lin-
earized theory the magnetic field is not perturbed by the
vortex currents, therefore we put B0 = Hc2 z and choose a
Landau gauge in Eq. (7), A0 = Hc2x y. Then the gradient term
in Eq. (7) is �̂0 = ∇ − 2ieA0. A periodic vortex lattice is
described by the Abrikosov solution of Eqs. (5) and (7) which
in general has the following form:

	k(r) = 	bk�(r), (8)

�(r) =
∑

n

Cne
inpy�0(x − nx0), (9)

where |Cn| = 1, x0 = p/(2eHc2), and parameter p is deter-
mined by the lattice geometry. The lowest Landau level wave
function �0(x) = 2LH

√
π exp(−x2/2L2

H ) satisfies (L2
H∂2

x −
x2/L2

H + 1)�0 = 0, where the magnetic length is LH =
1/

√
2eHc2. The gaps 	k are determined by the common

amplitude 	 and a normalized set of components
∑

k b2
k = 1.

The solution of Eq. (7) yields

fk(r,ωn) = 	k(r)

i(qk + |ωn|) , (10)

where qk = eHc2Dk . Substituting the ansatzes (8), (9),
and (10) to the self-consistency equation (5) we get the
homogeneous linear system Â(b1, . . . ,bN )T = 0 for the order
parameter amplitudes where

Â = �̂−1 − Î [G0 + ln(Tc/T ) + ψ(1/2) − ψ(1/2 + ρ̂)].
(11)

Here ψ(x) is a di-gamma function and the diagonal matrix
ρ̂ is given by (ρ̂)ij = δij qi/(2πT ). The solvability condition
detÂ = 0 determines the upper critical field Hc2 of a dirty
multiband superconductor.

It is instructive to consider in more detail Eq. (11) in two-
band superconductors. In this case G0 = (Tr � − λ0)/2w,

where w = λ11λ22 − λ12λ21, λ0 =
√

λ2− + 4λ12λ21, and λ− =
λ11 − λ22. The equation detÂ = 0 can be resolved in terms of
the ln(T/Tc) yielding in general two different solutions:

ln(T/Tc) = − (U1 + U2 + λ0/w)/2

+ [(U1 − U2 − λ−/w)2/4 + λ12λ21/w
2]1/2,

(12)

ln(T/Tc) = − (U1 + U2 + λ0/w)/2

− [(U1 − U2 − λ−/w)2/4 + λ12λ21/w
2]1/2,

(13)
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where Uk = ψ(1/2 + ρk) − ψ(1/2). Taking the limit T → Tc

one can see that the physical solutions are (i) (12) in case
when w ≡ det�̂ > 0 and (ii) (13) in case when w ≡ det�̂ <

0. While case (i) corresponds to the coupling parameters of
MgB2 [14,15], case (ii) describes multiband superconductors
with interband-dominated pairing when λ12λ21 > λ11λ22 such
as iron-pnictide compounds [4,6,24].

B. The magnetization slope d Mz/d H

Magnetic field created by vortex currents (6) can be found
using the solution (8). Taking into account that Green’s
functions fk(r) given by (10) satisfy the relation

i∂xfk = (∂y − 2ieAy)fk, (14)

we obtain the multiband expression for magnetization

4πMz(r) = −
∑

k

σk

eT
ψ ′

k|	k|2. (15)

The order parameter amplitudes 	k can be found according
to the following straightforward algorithm. First, nonlinear
corrections f̃k are obtained from Eq. (4) taking into account
higher-order terms in 	k:

L̂ωf̃k = − i	k|	k|2
2(qk + |ω|)2

+eDk{�̂0,A1}	k

(qk + |ω|)

+ i(2qk	k|	k|2 + Dk	k∇2|	k|2)

4(qk + |ω|)3
. (16)

Here A1 = A − A0. Then the self-consistency equation (5)
yields a nonhomogeneous linear system for the corrections:

Ĉkj 	̃j = 2πiT

∞∑
n=0

νkf̃k(ωn), (17)

Ĉ = ν̂�̂−1 + 2πT

ND∑
n=0

ν̂L̂−1
ωn

, (18)

where ν̂kj = νkδkj . Since the matrix ν̂�−1 is symmetric,
the operator Ĉ is Hermitian. Moreover, the solution (8) of
linearized gap equation belongs to the kernel Ĉkj	j = 0.
Hence multiplying the left-hand side of a nonhomogeneous
Eq. (17) by 	∗

k we get
∑

k,j 〈	∗
kĈkj 	̃j 〉 = 0. Thus Eq. (17)

is solvable if its right-hand side is orthogonal to the linear
solution ∑

k

∑
n�0

νk〈	∗
k f̃k(ωn)〉 = 0. (19)

To calculate each term in the sum (19) we multiply Eq. (16)
by 	∗

j and average over space coordinates taking into account
the relations

〈	∗
kL̂ωf̃k〉 = −(|ω| + qk)〈	∗

k f̃k〉, (20)

〈	∗
k{�̂0,A1}	k〉 = −i〈B1|	k|2〉, (21)

2qk〈|	k|4〉 + Dk〈|	k|2∇2|	k|2〉 = 0, (22)

where B1 = −δH + 4πMz and δH = Hc2 − H . The rela-
tions (20) and (21) can be obtained by a straightforward
calculation, while (22) is less trivial although it has been used
in the theory of single-band superconductors [54]. The detailed
derivation of Eq. (22) is shown in the Appendix.

To simplify the further derivation let us consider from the
beginning a high-κ limit when σkDk � 1. In this case we can
neglect the magnetization in Eq. (21) to get finally

4iπ2T 3
∑
n�0

〈	∗
k f̃k(ωn)〉 = eT Dkψ

′
kδH 〈|	k|2〉

−2σkDkψ
′2
k κ̃2

k 〈|	k|4〉, (23)

where κ̃k are single-band parameters given by [33,36]

κ̃k =
[ −ψ ′′

k

16πσkDkψ
′2
k

]1/2

. (24)

Combining Eqs. (19) and (23) we obtain the order parameter
amplitude in Eq. (8) given by

	 =
[
eT δH

2βL

∑
k νkb

2
kDkψ

′
k∑

k νkb
4
kσkDkψ

′2
k κ̃2

k

]1/2

, (25)

where the Abrikosov parameter is βL = 〈|�|4〉/〈|�|2〉2.
The derived amplitude 	 is a basic parameter for cal-

culations of thermodynamic and transport properties of su-
perconductors near Hc2. In particular, using Eq. (15) we
obtain an expression for the space-averaged magnetization
Mz = −δH (dMz/dH ) where the slope is given by

dMz

dH
= 1

8πβL

( ∑
k νkDkψ

′
kb

2
k

)2

∑
k ν2

kD
2
kψ

′2
k b4

k κ̃
2
k

. (26)

Comparing Eq. (26) with the conventional parametrization (1)
in the limit κ2 � 1 we find an effective parameter

κ2 =
√∑

k ν2
kD

2
kψ

′2
k b4

k κ̃
2
k∑

k νkDkψ
′
kb

2
k

. (27)

Close to the critical temperature κ2 reduces to the Ginzburg-
Landau parameter κ2(Tc) = κGL ≡ λL/ξ , where λL is the Lon-
don penetration length and ξ = 1/

√
2eHc2 is the coherence

length in dense vortex lattices near Hc2.

IV. EXAMPLES OF TWO-BAND SUPERCONDUCTORS

The general formalism developed in previous sections
can be applied to study magnetic properties of particular
multiband compounds. To begin with we consider a two-band
model of MgB2 characterized by the coupling parameters [10]
λ11 = 0.81, λ22 = 0.285, λ12 = 0.119, λ21 = 0.09. Tempera-
ture dependencies of Hc2(T ) and κ2(T ) are shown in Fig. 1
for different values of (a) and (b) D1/D2 = 1; 0.5; 0.25,
(c) and (d) D1/D2 = 0.05, and (e) and (f) D1/D2 = 20.
For equal diffusion coefficients D1/D2 = 1 the single-band
behaviors [18,19,36] of Hc2 and κ2 are recovered, see Figs. 1(a)
and 1(b). As will be shown below this result is valid for any
number of bands and arbitrary pairing matrix.

The disparity of diffusion coefficients D1/D2 �= 1 results
in significant variations of κ2. Comparing Figs. 1(a) and 1(b)
one can see that κ2(T ) is much more sensitive to the ratio
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FIG. 1. Magnetic properties of the two-band superconductor
MgB2 with coupling parameters mentioned in the text. The panels
show (a), (c), and (e) Hc2(T ) and (b), (d), and (f) κ2(T ) as given
by Eqs. (12) and (27) for different values of the ratio D1/D2.
In (a) and (b) solid, dashed, and dash-dotted lines correspond
to D1/D2 = 1; 0.5; 0.25, respectively. In (a) these curves are
almost undistinguishable. (c) and (d) D1/D2 = 0.05 and (e) and
(f) D1/D2 = 20.

of diffusivities than the second critical field. The curvature
variations of Hc2(T ) are noticeable only in the limit D1 � D2

as shown Fig. 1(e). As demonstrated in Fig. 1(c) the opposite
limit D1 � D2 yields ordinary concave curves Hc2(T ) almost
within the entire temperature domain except for the small
vicinity of Tc. On the contrary, temperature dependencies
of κ2(T ) shown for the same parameters in Figs. 1(b)
and 1(d) are drastically different from the single-band case.
Of particular interest is a sharp increase of κ2(T → 0) which
is most pronounced under the condition D1 � D2 relevant
to MgB2 [14] [see Fig. 1(f)]. Physically this means that the
slope of the magnetization curve becomes much less steep as
shown in Fig. 3. The low-temperature increase of κ2 provides
a feasible probe to study magnetic signatures of multiband
pairing.
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FIG. 2. Magnetic properties of a two-band superconductor with
interband-dominated pairing λ11 = λ22 = 0, λ12 = λ21 = −0.5 cor-
responding to iron-pnictide superconductors. (a) Hc2(T ) curves from
top to bottom correspond to D1/D2 = 1; 0.25; 0.1; 0.05. (b) The
magnetization parameter κ2(T ) as given by Eq. (27). The curves from
bottom to top correspond to the same sequence of D1/D2 as in (a).

Next we consider two-band superconductors with pair-
ing from interband repulsion λii = 0 and λ12 = λ21 = −0.5
resulting in the s± superconducting state [4,6]. Such a
model has been used to describe an unconventional convex
behavior of Hc2(T ) observed experimentally in iron-based
compounds [24].

Here we suggest that an independent and more sensitive test
for the multiband physics in iron-pnictides can be implemented
by measuring temperature dependencies of κ2(T ). As can be
seen in Fig. 2(b) κ2 demonstrates a sharp increase at low
temperatures even for not too small values of the ratio D1/D2

and deviates strongly from the single-band behavior shown by
the green down-most curve. For the same parameters Hc2(T )
dependencies have only tiny deviations from the single-band
one shown by the green up-most line in Fig. 2(a).

Summarizing the above examples one can see that even a
moderate disparity of diffusion constants when D1/D2 ∼ 1
in two-band superconductors results in a significant increase
of κ2(T ) at low temperatures as compared to its value at the
critical temperature κ2(Tc) = κGL. As a result the magnetiza-
tion slope dMz/dH becomes much less steep as compared
to single-band superconductors. This behavior is illustrated in
Fig. 3 which shows the slopes dMz/dH normalized to their

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T/T
c

dM
z/d

H

(a)

η = 1

η = 20

η = 0.05

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T/T
c

dM
z/d

H

(b)

η = 1

η = 0.05

FIG. 3. Slopes of the magnetization curves dMz/dH in two-
band superconductors with coupling parameters corresponding to
(a) MgB2, λ11 = 0.81, λ22 = 0.285, λ12 = 0.119, λ21 = 0.09 and
(b) iron-pnictides, λ11 = λ22 = 0, λ12 = λ21 = −0.5. The value of
η = D1/D2 is marked near each curve. The slopes are normalized to
their values at Tc.
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values at Tc as functions of temperature for different values of
D1/D2. In both Figs. 3(a) and 3(b) the up-most green curves
show a single-band behavior which is reproduced universally
for D1 = D2 irrespective of the coupling parameters. The
changes in magnetization slopes can be directly measured
and yield important information about multiband pairing and
diffusion constants in different bands.

V. DISCUSSION

The convex shape of Hc2(T ) curves is often considered
as a signature of multiband pairing [24,25,27]. However, as
demonstrated by the above two-band examples, the conditions
for having pronounced convexity, such as shown in Fig. 1(c),
are quite restrictive. If the disparity of diffusivities is not
extreme D1/D2 ∼ 1 then deviations of Hc2(T ) from the
conventional single-band theory are not significant. However,
even in this case it is possible to detect signatures of
multiband pairing in the magnetic response measuring the
magnetization slopes at high fields. Shown in the right columns
of Figs. 1 and 2 κ2(T ) dependencies are quite sensitive to
variations of diffusivities even in the range of parameters
when Hc2(T ) curves look almost the same as the single-band
one.

To understand qualitative features of κ2(T ) dependencies
it is instructive to consider several characteristic cases. First
let us recover single-band results for Hc2 and κ2 assum-
ing all diffusivities to be equal Dk = D for k = 1, . . . ,N .
In this case ρk = ρ so that Eq. (11) reduces to Â =
�̂−1 − Î [G0 − U (ρ) − ln(T/Tc)]. The solvability condition
detÂ = 0 yields a single-band equation for the upper crit-
ical field [18,19] U (ρ) + ln(T/Tc) = 0. The corresponding
eigenvector is temperature independent and determined by
the equation (�̂−1 − ÎG0)b = 0. Then taking into account
that κ2(Tc) = κGL from Eq. (27) we obtain the analytical
expression κ2

2 /κ2
GL = −π4ψ ′′/[56ζ (3)ψ ′2] coinciding with

the single-band result [36].
To explain significant variations of κ2 in case of different

diffusivities let us compare a low- and high-temperature
asymptotic of Eq. (27):

κ2(Tc) =
√

7ζ (3)

4π5e2

√∑
k νkb

4
k∑

k νkDkb
2
k

, (28)

κ2(0) = 1√
32πe

√∑
k νkb

4
kD

−2
k∑

k νkb
2
k

, (29)

where we have used that ψ ′
k ≈ ρ−1

k , ψ ′′
k ≈ −ρ−2

k at T → 0
and ψ ′

k = π2/2, ψ ′′
k = −14ζ (3) at T = Tc.

Equations (28) and (29) demonstrate that in the limit of
a strong disparity between diffusivities the value of κ2(Tc)
is determined by the maximal diffusivity while κ2(0) is
determined by the minimal one. Therefore κGL = κ2(Tc) ∼
1/D1 and κ2(0) ∼ 1/D2 so that the low temperature increase
of κ2(0)/κGL ∼ D1/D2 � 1 is determined by the ratio of
maximal and minimal diffusivities D1 = max(Dk) and D2 =
min(Dk), respectively.

Such a behavior can be qualitatively understood as follows.
Near the critical temperature Eq. (11) reduces to Â = �̂−1 −

ÎG0 so that gap amplitudes bk are determined only by
the coupling matrix. The magnetic field is small so that
ρk � 1 and its influence on the ratio of gap amplitudes is
negligible. However, the contributions to superconducting
current and magnetization (6) and (15) from each band are
proportional to the corresponding diffusion coefficients. Hence
in the limit of strong disparity D1/D2 � (�)1 the band
with the largest diffusivity provides a dominant contribution
to the magnetization near Tc. On the other hand, at low
temperatures the magnetic field is large so that ρk � 1 and
from Eq. (10) one can see that the anomalous function
amplitude is smaller in bands with larger diffusivities. Hence
at T → 0 the most significant contribution to the magnetic
response and κ2 is determined by the band with the smallest
diffusivity.

Finally, iron-pnictide compounds with large critical
field [28,31,49–51] have short coherence lengths ξ ∼ 1–3
nm [17] which are not consistent with the dirty limit
approximation considered here. It is possible however to
develop a theory for κ2 in superconductors with arbitrary
impurity concentration [38,39]. In single-band supercon-
ductors κ2(T → 0) diverges in the clean limit but for ex-
perimentally relevant impurity concentrations the changes
are not dramatic as compared to the dirty limit [41]. On
the other hand, in the multiband case an interplay be-
tween different Fermi velocities and impurity scattering rates
should result in nontrivial modifications of κ2(T ) temperature
dependencies.

VI. CONCLUSION

To conclude we have calculated the parameter κ2

characterizing magnetization slopes dMz/dH in dirty
multiband superconductors at high fields Hc2 − H � Hc2.
The developed theory describes any number of
superconducting bands and arbitrary set of pairing constants.
We have shown quite generally that in contrast to the dirty
single-band superconductors the temperature dependencies of
κ2(T ) have remarkable features which are highly sensitive to
the multiband effects. The low-temperature increase of κ2 as
compared to its value at Tc is found to be strongly pronounced
even for the moderate disparity of diffusion coefficients in
different bands. This effect should be particularity appealing
for experimental identification since it could unambiguously
confirm unconventional magnetic behavior of multiband
superconductors. We have considered several examples of two-
band materials like MgB2 and iron-pnictides and demonstrated
that κ2 is much more sensitive than Hc2 to the ratio of diffusion
coefficients in different bands. The derived expressions for κ2

provide a basis to study thermodynamic and transport prop-
erties of multiband superconductors in high magnetic fields.
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APPENDIX: PROOF OF THE RELATION EQ. (22)

We use the relations ∇ = (∂+ + ∂−)/2 introducing the
operators ∂± = x∂x + y(∂y ± 2ieAy) so that ∂2

± = ∂2
x + (∂y ±

2ieAy)2. The gap functions satisfy

∂2
+	∗ = −2eHc2	

∗, (A1)

∂2
−	 = −2eHc2	. (A2)

Due to the relations

∂x	 = i(∂y − 2ieAy)	, (A3)

∂x	
∗ = −i(∂y + 2ieAy)	∗, (A4)

we get

(∂−	)2 = 0, (∂+	∗)2 = 0. (A5)

Then the average is given by

4〈|	|2∇2|	|2〉 = 〈|	|2(∂2
+ + ∂2

− + 2∂+∂−)|	|2〉.
Let us consider the three terms separately:

(i) 〈|	|2∂2
+|	|2〉

= 〈|	|2(	∗∂2
+	 + 	∂2

+	∗ + 2∂+	∂+	∗)〉
= −2eHc2〈|	|4〉 + 〈|	|2	∗∂2

+	〉 + 2〈|	|2∂+	∂+	∗〉,
(A6)

(ii) 〈|	|2∂2
−|	|2〉

=〈|	|2(	∗∂2
−	 + 	∂2

−	∗ + 2∂−	∂−	∗)〉

= − 2eHc2〈|	|4〉 + 〈|	|2	∂2
−	∗〉 + 2〈|	|2∂−	∂−	∗〉,

(A7)

(iii) − 2〈|	|2∂+∂−|	|2〉
=〈(∂+|	|2)2〉〉 + 〈(∂−|	|2)2〉
=〈(∂+	)2	∗2〉+〈(∂+	∗)2	2〉+2〈|	|2(∂+	)(∂+	∗)〉
+ 〈(∂−	)2	∗2〉+〈(∂−	∗)2	2〉+2〈|	|2(∂−	)(∂−	∗)〉
=〈(∂+	)2	∗2〉 + 2〈|	|2(∂+	)(∂+	∗)〉
+ 〈(∂−	∗)2	2〉 + 2〈|	|2(∂−	)(∂−	∗)〉, (A8)

where we took into account Eqs. (A5). Collecting all terms we
get

4〈|	|2∇2|	|2〉 = − 4eHc2〈|	|4〉 + 〈	∗2[	∂2
+	 − (∂+	)2]〉

+ 〈	2[	∗∂2
−	∗ − (∂−	∗)2]〉. (A9)

The last two terms here can be transformed in a similar way
as follows:

	∂2
+	 − (∂+	)2 = 	∂2

−	 − (∂−	)2 = −4eHc2	
2, (A10)

	∗∂2
−	∗ − (∂−	∗)2 = 	∗∂2

+	∗ − (∂+	∗)2 = −4eHc2	
∗2,

(A11)

so that finally we get

〈|	|2∇2|	|2〉 = −2eHc2〈|	|4〉,
which proves Eq. (22).
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