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Effects of order parameter self-consistency in a s±-s junction

Rosa Rodrı́guez-Mota,1 Erez Berg,2 and T. Pereg-Barnea1

1Department of Physics and the Centre for Physics of Materials, McGill University, Montreal, Quebec, Canada H3A 2T8
2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel 76100

(Received 27 November 2015; revised manuscript received 12 May 2016; published 13 June 2016)

The properties of Josephson tunneling between a single-band s-wave superconductor and a two-band s±
superconductor are studied, in relation to recent experiments involving iron-based superconductors. We study
both a single junction and a loop consisting of two junctions. In both cases, the relative phase between the order
parameters of the two superconductors is tuned and the energy of the system is calculated. In a single junction, we
find four types of behaviors characterized by the location of minima in the energy/phase relations. These phases
include a newly found double minimum junction, which appears only when the order parameters are treated
self-consistently. We analyze the loop geometry setup in light of our results for a single junction, where the phase
difference in the junctions is controlled by a threaded flux. We find four types of energy/flux relations. These
include states for which the energy is minimized when the threaded flux is an integer or half-integer number of
flux quanta, a time reversal broken state and a metastable state.
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I. INTRODUCTION

The experimental determination of the pairing symmetry
of an unconventional superconductor is an important tool for
narrowing down the microscopic theories that suggest different
origins for superconductivity in the system. Shortly after the
discovery of the iron-based superconductors (FeSCs) [1,2],
spin fluctuations were proposed as the pairing mechanism
in this family. This mechanism results in a novel pairing
symmetry, called s± [3,4]. The s± order parameter is finite
on both the hole and electron Fermi pockets but changes sign
between the Brillouin zone � point, where the hole pockets are,
and the M point, where the electron pockets reside. Although
most evidence point towards spin fluctuations as the pairing
mechanism, superconductivity on FeSCs could also arise from
orbital fluctuations, in which case, the order parameter on
electron and hole pockets would have the same phase [3,4].
It is therefore crucial to pin down the possible sign difference
between the two types of pockets. The sign difference has
proven challenging to detect [5–12], and despite experimental
evidence in favor of s± [13–16], the pairing symmetry of
FeSCs has not been unequivocally determined.

One important tool for detecting the order parameter
structure is the Josephson effect, due to its sensitivity to the
order parameter (OP) phase difference across the junction.
The Josephson effect played a key role in determining
the d-wave nature of the order parameter of the high-Tc

cuprate superconductors [17,18]. There, the phase of the
order parameter is tied to the crystallographic direction and
one can engineer a π corner junction by piecing together
samples in different orientations. In contrast, identifying a
sign change in the case of the iron-based superconductors is
more challenging. This is because the sign change is expected
between Fermi pockets at low momenta (at the � point) and
Fermi pockets at high momenta (at the M point). Therefore a
rotation of the physical lattice does not result in a sign change.

In iron-based superconductors (FeSCs), some evidence in
favor of s± OP was provided by a loop-flux experiment by Chen
et al. [16]. The setup consisted of a niobium fork making two
contacts with a sample of NdFeAsO0.88F0.12. This amounts to a

loop made of a conventional s-wave superconductor, which is
connected in two points to an FeSC sample. This loop was sub-
jected to a pulse of magnetic flux after which the flux in the loop
was measured over time. Flux jumps of integer and half-integer
units of the superconducting flux quantum were observed. As
explained in Ref. [19], this can be interpreted as a metastable
1/2-flux loop, possible in the case of s±-s-wave loop.

The problem of a junction between an s-wave super-
conductor and an s±-superconductor was considered by
several authors previously [12,19–34]. Those include different
approaches such as the Ginzburg-Landau (GL) formalism
[19,25,34], calculating Josephson current from Andreev levels
[24], or through the Usadel quasiclassical equation [28–30],
among others.

The literature points at two possible types of contacts: (i)
the s-wave superconductor couples predominantly to either
the electron or hole pockets or (ii) the couplings between the
s-wave and the electron and hole pockets are comparable
leading to Josephson frustration. One type of proposals
to experimentally determine the s± symmetry rely on the
ability to produce different types of contacts in which the
s-wave predominantly couples to one type of pocket or
another [24,28,35–38]. Other experimental proposals assume
comparable coupling to both pockets and conclude that the
Josephson frustration can lead to a time reversal symmetry
breaking phase (TRB) in a loop setup [19,22,25–27].

It has been argued [12,22,24] and will be argued in this
work, that higher order harmonics in the Josephson current,
which are often neglected, for instance within the Ginzburg-
Landau [19,25,34] and the Usadel quasiclassical equation [28–
30,39] approaches, become very important in this scenario.
At low temperatures, this is especially crucial in the case of
comparable coupling between the s-wave superconductor and
the hole/electron pockets.

In the current paper, we work with a microscopic model on
a lattice in an s±-s-wave junction setup. While our model is
similar to that investigated by previous authors [12,20,21], our
treatment is different as we solve the Bogoliubov-deGennes
equations self-consistently. The self-consistency causes the
order parameters of the superconductors on both sides of the
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RODRÍGUEZ-MOTA, BERG, AND PEREG-BARNEA PHYSICAL REVIEW B 93, 214507 (2016)

FIG. 1. Illustration of the planar junction studied in this work
showing the different hopping parameters. The s± superconductor
(left) has two orbitals per site and the s superconductor (right) one.

junction to be a function of the distance from the junction, both
their amplitude and phase. This helps the system relieve some
of its Josephson frustration and leads to important differences
from the non-self-consistent treatment. Namely, we find that
a double minimum structure in the energy/phase difference
relation is obtained only when the Bogoliubov-deGennes
equations are solved self-consistently.

In the next section, we present our model and method for a
single s±-s-wave junction (Sec. II A). The results are presented
in Sec. II B and discussed in Sec. II C. Sec. III discusses the
combination of two s±-s junctions into a loop and its possible
states.

II. s±-s JUNCTION

A. The model

We study the Josephson junction depicted in Fig. 1 within
a tight-binding formalism. In this arrangement, we consider
both superconductors to be two-dimensional, and the tunneling
between them is planar and directed along the (1 0) direction.
For simplicity, the lattice constant of both superconductors is
taken to be equal and will be set to 1 for the remainder of
this paper. In order to provide a better understanding of our
model, we first write the Hamiltonian for each superconductor
separately without tunneling between them.

1. s± superconductor

For the s± superconductor, we use a minimal two orbital
model [40] in which the two orbitals correspond to the 3dxz

and 3dyz iron orbitals illustrated by red/blue lobes in Fig. 1.
In this model, there are four different types of hopping: t1
is the amplitude of nearest-neighbor intra-orbital hopping
in the direction in which the orbitals maximally overlap,
t2 is the nearest-neighbor intraorbital hopping amplitude in
the direction in which the orbitals minimally overlap, t3
is the next-nearest-neighbor intraorbital hopping amplitude,
and t4 is the next-nearest-neighbor interorbital hopping. We
add Cooper pairing with s± symmetry in the form of an
intraorbital pairing [21,41] with the momentum structure
cos kx cos ky . We define the operators d

†
x,k,σ and d

†
y,k,σ , which

create an electron in the dxz,dyz orbital with momentum k
and spin σ . Using these operators, we write the Hamiltonian

Hs± in the form Hs± = ∑
k �†(k)A(k)�(k), where �†(k) =

(d†
x,k,↑,dx,−k,↓,d

†
y,k,↑,dy,−k,↓) and

A(k) =

⎛
⎜⎜⎝

εx(k) �x(k) εxy(k) 0
�∗

x(k) −εx(k) 0 −εxy(k)
εxy(k) 0 εy(k) �y(k)

0 −εxy(k) �∗
y(k) −εy(k)

⎞
⎟⎟⎠, (1)

εx(k) = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky − μ,

εy(k) = −2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky − μ,

εxy(k) = −4t4 sin kx sin ky,

�x,y(k) = �x,y cos kx cos ky, (2)

where μ is the chemical potential, �x,y is the pairing
amplitude, and εi are the Fourier transforms of the hoping
amplitudes.

Close to the junction, we expect the order parameter of
both superconductors to become dependent on position. A
mean-field Hamiltonian cannot account for the effects of this
order parameter modification, therefore it is necessary to write
down interaction terms which lead to superconductivity in our
system. The position dependence of the order parameter is
then determined self-consistently.

We consider the s± order parameter to arise from a J1-J2

nearest neighbors and next nearest neighbors antiferrromag-
netic Heisenberg interaction. The mean-field decoupling of
this interaction leads to four possible pairing symmetries. The
dominant pairing symmetry for this model is s± in the relevant
region of parameters [41]. For simplicity, we only consider the
terms of the interaction that lead to an intra-orbital s± pairing.
Hence we write the interaction term as∑

k,k′,q,α

V (k,k′,q)d†
α,k,↑d

†
α,−k+q,↓dα,−k′+q,↓dα,k′,↑, (3)

where

V (k,k′,q) = −8J2

N
cos

(
kx − qx

2

)
cos

(
ky − qy

2

)

× cos

(
k′
x − qx

2

)
cos

(
k′
y − qy

2

)
, (4)

and α = x,y here and throughout the paper. This interaction
is decoupled as∑

k,q,α

�α(q)f (k,q)d†
α,k,↑d

†
α,−k+q,↓ + H.c. (5)

with the structure factor

f (k,q) = cos

(
kx − qx

2

)
cos

(
ky − qy

2

)
(6)

and

�α(q) = −8J2

N

∑
k′

f (k′,q)〈dα,−k′+q,↓dα,k′,↑〉. (7)

In a system with translation invariance, the ground state
corresponds to zero momentum pairing, i.e., �α(q) = �αδq,0

resulting in the mean-field Hamiltonian, Eq. (1). Furthermore,
the self-consistent solution in the translational invariant system
gives �x = �y , which corresponds to electron-electron and
hole-hole pairing with opposite signs.
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2. s-wave superconductor

The s-wave superconductor is modeled using one orbital
per site, nearest-neighbors hopping t0, and momentum in-
dependent pairing �0. The operator c

†
σk creates an electron

with momentum k and spin σ on the s-wave superconductor
side. The system is described by Hs = ∑

k 

†
kBk
k, where



†
k = (c†k,↑ c−k,↓),

Bk =
(

ε0(k) − μ0 �0

�∗
0 −ε0(k) + μ0

)
, (8)

ε0(k) = −2t0(cos (kx) + cos (ky)), μ0 is the chemical poten-
tial, and �0 the pairing amplitude.

To account for superconductivity in the s-wave side of the
system, we use an attractive Hubbard-U term

−U

N

∑
k,k′,α

c
†
k,↑c

†
−k+q,↓c−k′+q,↓ck′,↑, (9)

with U > 0. In a translation-invariant system, the mean-field
decoupling of this interaction leads to the Hamiltonian Hs

mentioned above and the self-consistency equation:

�0 = −U

N

∑
k

〈c−k,↓ck,↑〉. (10)

3. Junction

The model of the s±-s junction considered in this work
consists of the two superconductors previously described
connected through a tunneling contact along the (1 0) direction.
We consider N1 lattice sites in the x direction in the s±
superconductor and N2 in the s-wave superconductor. The
contact breaks the translation symmetry along the x direction,
but since the y direction is still periodic, the momentum ky

is well defined. The natural description of the system is in
terms of the operator d

†
α,ky ,σ

(n), which create an electron whose
momentum component in the y direction is ky , on a site with
x-coordinate index n, with spin σ in the α orbital, and c

†
ky ,σ

(n)
which creates an electron whose momentum component in the
y direction is ky , on a site with x-coordinate n, with spin σ in
the s-wave superconductor. In order to write the Hamiltonian,
we define the vectors

d†
α,σ (ky) = (d†

α,ky ,σ
(1) . . . d

†
α,ky ,σ

(N1)) and

c†σ (ky) = (c†ky ,σ
(N1 + 1) . . . c

†
ky ,σ

(N1 + N2)), (11)

which contain all the possible creation operators for a given
ky , spin and orbital. Combining them into Nambu vectors

�†
s± (ky) = (d†

x,↑(ky) d
†
y,↑(ky) dT

x,↓(−ky) dT
y,↓(−ky)),

�†
s (ky) = (c†↑(ky) cT

↓ (−ky)), (12)

allows us to write the Hamiltonian in the following compact
form:

H =
∑
ky

�†(ky)

(
Hs± (ky) T

T † Hs(ky)

)
�(ky) + C, (13)

where C is defined below and

�†(ky) = (�†
s±(ky) �

†
s (ky)).

The matrices Hs± (ky) and Hs(ky) are given by the following
BCS form:

Hs±(s)(ky) =
(

Ks±(s)(ky) �s±(s)(ky)
�s±(s)(ky)† −Ks±(s)(−ky)∗

)
. (14)

For the s-wave part of the Hamiltonian Hs(ky), Ks(ky) and
�s(ky) are N2 × N2 matrices given by

(�s(ky))m,n =�s(N1 + n)δm,n,

(Ks(ky))m,n = − (2t0 cos(ky) + μ0)δm,n

− t0(δm,n+1 + δm,n−1). (15)

For the s± part of the Hamiltonian, the matrices Ks± (ky)
and �s±(s)(ky) can be further decomposed as

Ks± (ky) =
(

Kx(ky) Kxy(ky)
Kxy(ky) Ky(ky)

)
(16)

and

�s±(ky) =
(

�x(ky) 0
0 �y(ky)

)
, (17)

where the above subblocks are the following N1 × N1 matri-
ces:

(Kx(ky))m,n = − (2t2 cos(ky) + μ)δm,n

− (t1 + 2t3 cos(ky))(δm,n+1 + δm,n−1),

(Ky(ky))m,n = − (2t1 cos(ky) + μ)δm,n

− (t2 + 2t3 cos(ky))(δm,n+1 + δm,n−1),

(Kxy(ky))m,n = − 2it4 sin(ky)(δm,n+1 − δm,n−1),

(�α(ky))m,n =�α(n + 1,n) cos(ky)δm,n+1

+ �α(n − 1,n) cos(ky)δm,n−1. (18)

The matrix T describes the tunneling contact between the
two superconductors. As shown in Fig. 1, we consider hopping
an electron in the 3dxz (3dyz) orbital of the last site of the s±
superconductor to the first site of the s-wave superconductor
with an amplitude wx (wy). Hence, T is given by

T =

⎛
⎜⎝

Tx 0
Ty 0
0 −Tx

0 −Ty

⎞
⎟⎠, (19)

with

(Tα)m,n = −wαδm,N1δn,1. (20)

Here, Tx and Ty are N1 × N2 matrices.
Finally, C in Eq. (13) is equal to

C = Ny

2J2

N1−1∑
α,n=1

|�α(n,n + 1)|2 − Ny

U

N1+N2∑
n=N1+1

|�0(n)|2. (21)

Since superconductivity arises from the spin interaction terms
given in Eqs. (3), (4), and (9), the following self-consistency
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equations should be satisfied:

�α(n,n + 1) = −2J2

Ny

∑
ky

cos ky(gα,ky
(n + 1,n)

+ gα,ky
(n,n + 1)),

�s(n) = − U

Ny

∑
ky

〈c−ky ,↓(n)cky,↑(n)〉, (22)

with gα,ky
(m,n) = 〈dα,−ky ,↓(m)dα,ky ,↑(n)〉.

We study how the energy of the system and the current
depend on the phase difference between the two supercon-
ductors. In an infinite system, this can be modeled by fixing
the order parameter at ±∞ and imposing a phase difference
between the two ends. The self-consistency equations of our
lattice model are complicated and must be solved numerically,
on a finite lattice. Therefore we model the composite system by
dividing each superconductor into a bulk part and a junction.
In the bulk of the s± superconductor, we set �x(n,n + 1) =
�y(n,n + 1) = �±, where �± is real, positive, and equal to
the pairing amplitude that is obtained self-consistently in a
translation invariant system, ignoring the contact. In the bulk
part of the s-wave superconductor, �0(n) = |�0|eiφ , with |�0|
self-consistently determined in the absence of the interface. φ

is the phase difference between the s-wave order parameter
away from the contact and the s± order parameter away from
the contact on the other side. In the part near the junction,
�x(n,n + 1), �y(n,n + 1), and �0(n) are determined by
the self-consistency equations, Eq. (22). Once the order
parameters of the system are determined self-consistently,
the energy of the system can be found. The current across
the contact can be obtained from the energy dependence
on the phase difference as I (φ) = 2e

�

dE
dφ

. For simplicity, we
ignore the small phase gradient in the bulk in situations where
a supercurrent is flowing through the junction.

B. Results

We have performed junction simulations on a 20 × 20
lattice for each of the s-wave and the s± superconductors,
allowing the order parameters of the system to be determined
self-consistently on up to five lattice sites from the contact.
In order to elucidate the effects of the self-consistent deter-
mination of the order parameter, we also perform non-self-
consistent energy and current calculations in which the order
parameters are fixed.

All of the energy relations found in our model are 2π peri-
odic and inversion symmetric [E(φ) = E(−φ)]. We therefore
present the energy-phase relation in the [0,π ] interval. For
the studied parameter space, we find four types of junctions:
(a) 0 junctions where the energy is minimized when the
phase difference between the order parameter of the s-wave
superconductor and the hole pockets is 0 (corresponding to
a phase difference of π between the s wave and the electron
pockets); (b) π junctions, where the energy is minimized for
phase difference π ; (c) φ junctions, see Fig. 2(a), where the
energy is minimized for a phase value φ, with 0 < φ < π ; and
(d) double minimum junctions, see Fig. 2(c), which present
two minima in the [0,π ] interval, a local minimum at 0 and
a global minimum at 0 < φ � π . In the following, we use

FIG. 2. (Left) Examples of energy vs phase behavior calculated
self-consistently for (a) a zero junction and (c) a double minimum
junction. (Right) (b) and (d) show the energy vs phase behavior ob-
tained from non-self-consistent calculations for the same parameters
used in (a) and (c), respectively.

the term π junction in the sense that the junction energy is
minimized for a phase difference of π between the s-wave and
the s±-wave order parameters of the hole pockets, as described
above.

1. Phase diagram

Our model contains parameters that characterize the proper-
ties of both superconductors and the contact between them. In
order to study some representative phase diagrams, we fix the
bulk properties of the s± superconductor, and focus on varying
the properties of the contact and the s-wave superconductor.
Following Ref. [40], we set t1 = −|t1|,t2 = 1.3|t1| and t3 =
t4 = −0.85|t1|. For this choice of parameters, half-filling
corresponds to μ = 1.54|t1|. Since doping is a common way to
tune the superconducting phase in FeSCs, we choose to work
away from half-filling and set μ = 1.805|t1|. This value of μ

corresponds to a doping of 0.18 electrons per Fe site. Following
the measurements from Refs. [42,43] and the estimates for
|t1| found in Ref. [44], we set the bulk pairing amplitudes
�x(n,n + 1) = �y(n,n + 1) = 0.08|t1|. In the subsequent
text, we work in units such that |t1| = 1. On the s-wave super-
conductor, we fix t0 = |t1| to get a similar bandwidth on the
two sides of the junction. The other parameters of the s-wave
superconductor, i.e., the chemical potential μ0 and the bulk
pairing amplitude �0, as well as the contact parameters are
varied. Sample phase diagrams are shown in Figs. 3, 4 and 5.

Figure 3 demonstrates the importance of treating the order
parameter close to the junction self consistently. The phase of
junctions with a double minimum in the energy-phase relation
only appears when the model is treated self consistently. We
also find that the phase boundaries between the π junction, 0
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FIG. 3. Value of the phase difference that minimizes the energy
of an s-s± junction at zero temperature for μ0 = −1.3 when (a) the
order parameter is solved self-consistently for both superconductors
close to the contact and (b) the order parameter is constant on both
sides. The areas marked by blue symbols represent a state with a
double minimum energy/phase relation, where the global minimum
is at 0 < φ � π , while the local minimum is at 0 phase difference. All
the parameters are given in units of |t1|. The green circle corresponds
to the parameters used in Figs. 2(a) and 2(b), and the red triangle to
those of Figs. 2(c) and 2(d).

junction, and the φ junction are shifted in the self-consistent
treatment as compared with the non-self-consistent one.

Observing the energy/phase relations, E(φ) we see that
the location of the global minimum changes continuously
as the model parameters are varied. If we start in a phase
where the minimum is at φ = 0 and change the parameters

FIG. 4. (a) and (b) show the phase diagram by plotting the phase
difference that minimizes the junction energy in color as a function
of the tunneling amplitudes, wx = wy and the chemical potential
of the s-wave superconductor, μ0. White regions correspond to
a phase difference of 0 between the s-wave superconductor and
the electron pocket order parameter while black color corresponds
to a phase difference of π . The gray areas represent intermediate
phase difference values and the blue symbols indicate areas with a
double minimum energy/phase relation. (c) is a schematic plot of
the phase diagram. In the black areas, the energy of the system is
minimized by a phase difference of π , while in the gray area there is
a close competition between the 0, φ, and π junction phases. In the
area marked by blue, there is a possibility of finding an additional
minimum at 0 phase difference.

FIG. 5. (Left) The phase difference of the energy minimum as a
function of wx and wy for (a) �0 = 0.04, μ0 = 3.6, and U = 2.33,
(c) �0 = 0.04, μ0 = −3.6, and U = 2.33, and (e) �0 = 0.04, μ0 =
−1.3, and U = 1.45. (Right) The areas marked by blue symbols
represent a state with a double minimum energy/phase relation. Fermi
surface of the two superconductors in the extended Brillouin zone
centered around the � point for (b) μ0 = 3.6, (d) −3.6, and (f) −1.3.
For the s± superconductor, the hole pockets marked by straight lines,
and the electron pockets with dashed lines. The red/blue coloring
indicates the portions of the Fermi surface whose main contribution
comes from the dxz/dyz orbital. The Fermi surface of the s-wave
system is shown with a solid black line. The shading marks the
values of ky for which there are s-wave Fermi surface states. Note
that since the system is only invariant to translation in the y-direction
ky is the only relevant momentum. All the parameters are given in
units of |t1|.

the minimum changes continuously until it reaches π . Hence
the φ junction is always between the zero and the π junctions.
When the tunneling parameters of the contact wx,wy are small,
the transition between the zero and π junctions is very sharp
and the φ-junction phase occupies only a narrow sliver in
parameter space. As the tunneling amplitudes are increased,
the φ junction takes up a larger portion of parameter space.

The parameter μ0, the chemical potential of the s-wave
superconductor, has a dramatic effect on the phase diagram.
We can relate this to the overlap between the hole and
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electron pockets with the Fermi surface underlying the s-wave
superconductor. This relation is further demonstrated in Fig. 4,
where we slice the phase diagram along the line wx = wy and
a constant order parameter �0. In all panels of Fig. 4, there
is a critical value of the chemical potential, μ0 such that for
μ0 > μc > 0, the energy of the junction is minimized when
the phase difference is π and for μ0 < μc, small changes in
μ0 can lead to transitions from 0 to π minimum. This striking
behavior with respect to the chemical potential, μ0, is also
found when the order parameter is not solved self-consistently.

We can also observe in Fig. 4 that for some values of μ0

and �0, transitions from 0 to π minimum can be driven by
increasing the tunneling wx = wy . These transitions become
more rare with increasing �0. The final insight that can be
gained from Fig. 4 is that the double minimum behavior
becomes more common as we increase �0, as well as the
tunneling strength wx = wy .

The role of the tunneling parameters wx and wy is further
explored in Fig. 5. The phase diagrams at zero temperature for
�0 = 0.04 and three different values of the chemical potential
of the s-wave side, μ0 = 3.6, − 3.6, and −1.3, are shown in
Figs. 5(a), 5(c) and 5(e), respectively. The orbital composition
of the Fermi surface for the s± superconductor together with
the Fermi surface of the s-wave superconductor is shown in
Fig. 5(b) for μ0 = 3.6, in Fig. 5(d) for μ0 = −3.6, and in
Fig. 5(f) for μ0 = −1.3. The contact preserves the momentum
in the y direction, hence fixing the value of μ0 will select
the values of ky for which Cooper pairs can tunnel through
the contact. For μ0 = 3.6, as shown in Fig. 5(a), a transition
from an energy minimum at π to an energy minimum at 0
is driven by increasing the ratio wy/wx . It can be seen in
Fig. 5(b) that for this value of μ0, the pairs from the electron
pockets that tunnel through the contact come from the dxz

orbital while the pairs that tunnel from the hole pockets come
mostly from the dyz orbital. The role of the parameters wx

and wy for μ0 = −3.6 in Fig. 5(c) is the opposite of the
one in Fig. 5(a), an energy minimum at 0 is obtained when
the ratio wy/wx is sufficiently small. The orbital composition
of the pairs tunneling from the s± superconductor to the s

superconductor for μ0 = −3.6 is shown in Fig. 5(c). In this
case, the electronlike pairs tunneling through the contact come
from the dyz, while the pairs coming from the hole pockets are
evenly composed of dxz and dyz electrons.

For a large s-wave Fermi surface, the role of the parameters
wx and wy is more difficult to understand. According to
Fig. 5(f), the electronlike pairs tunneling through the contact
mainly come from the dyz orbital, while the holelike pairs
are evenly composed of dxz and dyz electrons. Nonetheless,
in Fig. 5(e) a 0-junction phase is found for large enough wy ,
which cannot solely be explained by looking at the orbital
composition of the s± superconductor. The close competition
between electron- and holelike pairs for a large s-wave Fermi
surface is also evident in Fig. 5(e) by the wide area of
φ-junction phase and the appearance of the double-minimum
phase for large enough wy .

2. OP form

Since the s± order parameter is defined on the lattice links
we define an on-site order parameter in the s± superconductor

FIG. 6. (Left) Amplitude (in units of |t1|) of the order parameters
of the system for two values of the phase difference (a) φ = 0 and (c)
φ = π/4. (Right) Phase of the order parameters of the system for (b)
φ = 0 and (d) φ = π/4. The set of parameters used corresponds to
the red triangle in Fig. 3.

for the purpose of visualization:

�α(n) = 1
2 (�α(n,n + 1) + �α(n + 1,n)). (23)

In Fig. 6, we look at the various order parameters as a
function of their position with respect to the contact. We
set the parameters of the system to the double minimum
regime and plot the amplitudes in Figs. 6(a) and 6(c), and
the order parameter phase in Figs. 6(b) and 6(d) for two
phase difference values, 0 and π/4. The amplitudes of the
various order parameters of the system for 0 and π/4 phase
difference, shown in Figs. 6(a) and 6(c), respectively, presents
only small differences. The variation of the phase of the order
parameters from the bulk phase difference is imperceptible in
Fig. 6(b) and small in Fig. 6(d). Despite having only small
quantitative differences in the shape of the self-consistent
solution for different phases, determining the order parameter
self-consistently has important consequences for this choice
of parameters, as it leads to the double minimum phase.

In the different panels of Fig. 6, we observe the presence of
sharp oscillations. This kind of oscillations has been previously
found in microscopic models of s-wave superconductors close
to an insulating boundary and has been attributed to Friedel-
like oscillations [45–47]. The period of the oscillations seen
here is dependent on the chemical potential as expected.

In order to further explore the relation between the self-
consistent determination of the order parameter and the double
minimum phase, it is necessary to quantify the dependence of
�x and �y on the phase difference φ. To do this, we define
the following functions:

gx = |�x(N1,φ = π ) − �x(N1,φ = 0)|,
gy = |�y(N1,φ = π ) − �y(N1,φ = 0)|. (24)
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FIG. 7. Values of gx and gy (in units of |t1|) for the parameters
given by the (a) horizontal and (b) vertical cuts marked with red
on Fig. 3. The quantities gx and gy , defined in Eq. (24), measure
the dependence of �x and �y with respect to the phase difference
between the two superconductors.

The behavior of gx and gy for two different cuts of parameters
around the double minimum phase is shown in Fig. 7. In both
Figs. 7(a) and 7(b), gy is maximized in the double minimum
regime, indicating that �y has a greater dependence on the
phase difference φ in the double minimum regime. On the
other hand, the value of gx in Figs. 7(a) and 7(b) is an
order of magnitude smaller than that of gy , signaling a much
lower dependence of �x with φ, and it increases slowly with
increasing wx = wy and �0. The stronger dependence of �y

(compared to �x) with φ is consistent with the greater role that
wy (compared to wx) has in driving the transition to the double
minimum regime exhibited in Fig. 5(e). The critical current
of a Josephson junction increases when increasing the order
parameter of the superconductors and the tunneling through the
interface. Hence the energy cost of the Josephson frustration is
higher when wx, wy , or �0 increase, leading the to a stronger
dependence of the order parameter on the phase difference as a
mechanism to relieve this frustration. Accordingly, the double
minimum state is more likely to appear when wx, wy , or �0

are large.

C. Discussion

The problem of Josephson tunneling between an s±
superconductor and a single-band s-wave superconductor has
been considered previously using different approaches. These
previous studies point at two possible scenarios: (i) the s-wave
superconductor couples predominantly to either the electron
or hole pockets or (ii) the couplings between the s wave
and the electron and hole pockets are comparable leading to
Josephson frustration. The momentum space structure of the
order parameter in our model is �α cos(kx) cos(ky), hence in
the hole pockets the order parameter phase is the same phase as
�α , while in the electron pockets the order parameter phase is
shifted by π . Hence we can interpret the 0 junction as a scenario
in which the s wave is interacting primarily with the hole
pockets, the π junction as one where the s wave is interacting
primarily with the electron pockets, and the other two cases
(φ junction and a double minimum junction) as resulting from
competing interaction of the s wave with electron an hole
pockets.

In the current study, we find that the global minimum is
at a phase difference of π , i.e., when the phase of the s-wave

order parameter is equal to that of the electronlike pairs, for
a large portion of the parameter space. This is consistent
with the fact that we are working with an electron doped
s± sample. Hence the s± superconductor has more pairs that
come from electron pocket states rather than from hole pocket
states. Upon tuning of model parameters, the preferred phase
difference may shift to 0. In both these cases, the system
minimizes its energy by matching the OP phase of the s-wave
superconductor with either the hole or electron pockets. This
tendency is strongly dependent on the overlap between Fermi
surface states on both sides of the Junction. Figure 5 shows the
orbital composition of different parts of the s± Fermi surface, at
two different chemical potentials on the s-wave side and with
varying tunneling amplitudes. It should be noted that while the
hole pockets are composed of both the x and y orbitals, each
electron pocket is dominated by one orbital. Moreover, since
the contact conserves momentum only in the y direction, the
chemical potential of the s-wave part selects which parts of
the s± Fermi surface participates in the tunneling. Depending
on the value of μ0, the electronlike and holelike pairs involved
in the tunneling process have a different orbital composition.
Thus the ratio of wy/wx at which the junction switches from
the 0-junction to the π -junction phase depends on the value of
μ0 and the geometry of the junction.

Our phase diagrams suggest that a transition between a 0
junction and a π junction does not occur directly. Instead,
an intermediate φ junction or double minimum phase appears
[(see Fig. 2(a) and 2(c)]. Despite being a regime commonly
found in theoretical models, there is no consensus on the
mechanism behind these junction states. While Ref. [22]
stresses that the extent of the φ junction is related to the
second Josephson harmonic, this phase is also obtained within
a Ginzburg-Landau mechanism, which only considers first
order terms in the Josephson coupling. In this case, the
mechanism that leads to the φ/double minimum phase is the
possibility of twisting the relative phase between the holelike
and electronlike pairs.

In this work, we developed a model that considers both
higher-order Josephson terms and a self-consistently deter-
mined order parameter. Our results suggest that the higher
order Josephson harmonics play a more important role in
the realization of the φ state. This can be demonstrated by
comparing the results of a self-consistent order parameter
determination with the non-self-consistent solutions. In the
non-self-consistent case, the hole and electron pocket order
parameters are given by the form of Eq. (2). Unlike in the
self-consistent treatment, their amplitudes are related and
their phase difference is always π . Comparing the two cases
we see that the main difference is the appearance of the
double minimum phase (Fig. 3). A secondary effect is a
slight shift in the boundaries of the φ-junction state in the
phase diagram. We therefore conclude that the main reason
for the appearance of the φ junction is the inclusion of higher
harmonics in the Josephson tunneling. This is also supported
by the fact that the tendency to develop a φ junction is
increased when the tunneling amplitude across the junction is
increased.

To make this point clearer, let us look into the first two
terms in the Josephson coupling. It has been pointed out in
Ref. [24] that if the coupling between the holelike pairs and
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the s-wave superconductor is similar to the coupling between
the electronlike pairs and the s-wave superconductor, the first-
order terms on the Josephson energy tend to cancel each other,
increasing the importance of the next order terms. This can
be shown by writing the Josephson energy of the junction as
E = Eh + Ee, where Eh(e) is the Josephson energy associated
to the coupling between the s wave and the hole(electron)
pockets. Then we have

Eh(e) = E
(1)
e(h) cos(φh(e)) + E

(2)
h(e) cos(2φh(e)) + . . . , (25)

where φh(e) is the phase difference between the s-wave and
the hole(electron) pairs. Since φe = φh + π , the energy of the
contact is then

E = (
E

(1)
h − E(1)

e

)
cos(φh) + (

E
(2)
h + E(2)

e

)
cos(2φh) + . . . .

(26)

Hence, when E
(1)
h ≈ E(1)

e , the first Josephson harmonic cancels
and the second-order term cannot be neglected.

Several theoretical models of an s±-s junction can exhibit
0-junction, π -junction, or φ-junction behavior [12,20–34].
On the other hand, a double minimum behavior has only
been previously found in Ref. [19] within a Ginzburg-Landau
formalism. There are important differences between our results
and those of Ref. [19], namely, in the location of the two
minima. The double minimum phase found in Ref. [19] is
characterized by one global minimum at zero phase difference
across the junction and a local minimum at π phase difference.
In our microscopic model, the “double minimum” junction
behavior also occurs when there is a global minimum at some
phase φ 
= 0,π and a local minimum at zero phase difference.

It is interesting to note the differences and similarities
between this work and the phenomenological Ginzburg-
Landau treatment of Ref. [19]. While the two models describe
an interface between a single order parameter superconductor
and a double order parameter superconductor the details are
quite different. Most importantly, in the Ginzburg-Landau
model the order parameters are defined on each band and are
only coupled through their amplitudes (in a way that ensures
their opposite sign is favored in the bulk). In our microscopic
model, the order parameter is defined on the orbitals and
due to inter-orbital hopping, the two bands are gapped. As
a result, in the current work, we can not easily control the
gap magnitude on each band, nor can we directly control the
effective coupling between the order parameters on the two
bands. We should also note that while the Ginzburg-Landau
model does not explicitly contain terms of higher-harmonic
Josephson tunneling, our model does. These differences make
the comparison between the models difficult. However, we can
speculate that the differences mentioned above are responsible
for the different states found in the two models.

Overall, we find that for competing coupling between the
electron and hole pockets and the s wave, it is important
to consider higher order processes, such as higher-order
Josephson harmonics and the effect of the contact on the
order parameters of the system. At low tunneling strength,
the contact phase diagram is dominated by the 0-junction and
π -junction phases. When the tunneling strength is increased,
higher-order processes cause the TRB phase to widen and the
double minimum phase appears.

III. FLUX THREADED s±-s LOOP

We now proceed to use the formalism developed for
studying an s±-s junction to treat the experimentally relevant
problem of a flux threaded s±-s loop. The system we study
consists of bending the s±-s junction along the x direction
and adding another planar contact to form a loop. Each of the
contacts forming the loop is characterized by two tunneling
parameters: w(1(2))

α , which describe the amplitude of tunneling
an electron from the α orbital in the s± superconductor to an
adjacent site in the s-wave superconductor across contact 1(2).

After the addition of the second contact, the Hamiltonian
for the s±-s junction can still be described by Eq. (13) if we
modify Tα as

(Tα)m,n = −w(1)
α δm,N1δn,1 − w(2)

α δm,1δn,N2 , (27)

where the sites in the s± side of the loop are enumerated
1, . . . ,N1 and the sites on the s-wave side are enumerated
1, . . . ,N2. The self-consistency equations remain those given
in Eq. (22).

Next, we proceed by threading the loop with a magnetic
flux 
. As shown in Appendix, the flux dependence can be
transferred to the contact by performing a gauge transforma-
tion. With the addition of magnetic flux, the tunneling matrices
become

(Tα)m,n = −w(1)
α ei

φ1
2 δm,N1δn,1 − w(2)

α ei
φ2
2 δm,1δn,N2 . (28)

Here, φ1

2 is the phase an electron acquires through a clockwise
hopping across the tunneling contact 1 and φ2

2 the phase
acquired by an anticlockwise hopping across the contact 2.
These two phases will fully account for the effect of the
magnetic flux as long as φ1 and φ2 obey

φ1 − φ2 = 2π



0
, (29)

where 
0 = hc
2e is the superconducting flux quantum.

For long loops, N1,N2 � 1, the two junctions essentially
decouple. The OPs behavior near one contact is uninfluenced
by the presence of the other contact and the energy cost of the
two contacts is a simple sum. Moreover, by making an addi-
tional gauge transformation, the phase acquired by hopping
between the two superconductors, φ1(2)

2 , can be translated into
a phase difference φ1(2) between the two superconductor OPs.
Hence the ground-state energy of the loop is given by

E(
) = min
φ1−φ2= 2π



0

(E1(φ1) + E2(φ2)), (30)

where E1(2)(φ1(2)) is the energy of a single s±-s junction where
the phase difference between the superconductors is φ1(2) with
contact parameters w(1(2))

α .
If we denote the phase difference that minimizes the

energy of junction 1(2) by φmin
1 (φmin

2 ) then the values of
flux that minimize E(
) are given by ±
0

2π
(φmin

1 + φmin
2 ), ±


0
2π

(φmin
1 − φmin

2 ). This allows us to deduce the energy of the
flux threaded loop as a function of the flux.

We find four types of behavior of the energy versus flux
curve, shown in Fig. 8: (1) integer-flux-loop with energy
minima at integer flux quantum values, (2) 1/2-flux-loop
with energy minima at half-integer flux quantum values,
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FIG. 8. Energy vs flux examples. In (a)–(e), the s-wave supercon-
ductor parameters are �0 = 0.04, μ0 = −1.3, and U = 1.446, while
the junction parameters are (a) w(1)

x = w(1)
y = 0.146, w(2)

x = 0.31,
and w(2)

y = 0.092, (b) w(1)
x = w(1)

y = w(2)
x = 0.146 and w(2)

y = 0.8,
(c) w(1)

x = w(1)
y = w(2)

x = 0.146 and w(2)
y = 0.364, (d) w(1)

x = w(1)
y =

0.31 and w(2)
x = w(2)

y = 0.637, and (e) w(1)
x = w(2)

x = 0.5 and w(1)
y =

w(2)
y = 0.528. In (f), �0 = 0.02, μ0 = 0.3438, U = 0.9341, w(1)

x =
w(1)

y = 0.6638, and w(2)
x = w(2)

y = 0.6910.

(3) time-reversal broken loop (TRB) with energy minima at
fractional values of flux quantum, and (4) metastable, with two
types of energy minima. While the first three cases have been
found by several authors [22,24–28,35–38], the possibility of
an energy/flux relation with minima of different depth has not
been seen in a microscopic theory before. The case where
the energy of the loop is minimized for integer values of flux
quantum occurs whenever the energy of both of the contacts
is minimized at a phase difference of 0 or π .

The energy of the loop is minimized for half-integer flux
quantum values when the energy/phase relation one of the
contacts has a minimum at 0 and the other has a minimum at
π . Our analysis shows that it is possible to find this behavior
without changing the bulk parameters of the superconductors
if the tunneling parameters across each of the two contacts are
different.

If the energy of one of the contacts is minimized for a
phase difference 0 < φ < π , then the energy of the loop will

FIG. 9. Effects of inductance in the metastable and metastable’
energy vs flux relations.

be minimized for values of magnetic flux which are neither
integer flux quantum nor half-integer flux quantum. This
causes supercurrent to flow in the loop and therefore the phase
is named “time-reversal breaking.” The energy-flux relation
shown in Fig. 8(c) results from having one of the contacts in the
φ-junction phase, while the other is in the 0(π )-junction phase.
On the other hand, if the energy of both contacts is minimized
for a phase difference 0 < φ < π , we obtain four degenerate
minima: ±
0

2π
(φmin

1 + φmin
2 ), ± 
0

2π
(φmin

1 − φmin
2 ). An example

of this type of energy versus flux relation is shown in Fig. 8(d).
For a significant portion of the φ-junction phase, the value of
the minimum is close to π/2. If this is the case for the two
junctions forming the loop, we will find two energy minima
close to integer flux quantum and two energy minima close to
half-integer flux quantum.

An energy/flux relation with minima of different depth such
that one is a global minimum and the other is a (metastable)
local minimum can occur when the loop is formed by two
contacts that have a double minimum. As can be seen in
Fig. 8(e), the energy/flux relation exhibits the four degenerate
minima of Fig. 8(d) and two additional local minima. If one of
the contacts is in a double minimum phase while the other is
not, the resulting energy-flux behavior will be that of Fig. 8(c)
or of Fig. 8(d). In other words, in order to detect signatures of
the double minimum regime in the energy-flux relation, both
contacts must be in this regime. Therefore to obtain a loop
with minima of different depth, it is necessary to have (a) a
large tunneling amplitude across the two contacts and (b) a
large pairing amplitude in the s-wave superconductor.

The local minima in the metastable relations found in this
work are shallow [see Figs. 8(e) and 8(f)] and hence they
would be very hard to detect experimentally. However, we
find that these minima are considerably deeper for loops with
large inductance. The ground-state energy of a loop threaded
by a total flux 
 and with inductance L is given by [48]

E(
) = min
φ1−φ2= 2π



0

[∑
i=1,2

(
Ei(φi) + L

4
I 2
i (φi)

)]
, (31)

where, for simplicity, we have considered an equal inductance
in both arms of the loop. In Fig. 9, we show how the energy
versus flux relations of Figs. 8(e) and 8(f) are modified for
different values of the screening parameter βL = L(I0,1+I0,2)


0
,
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where I0,1 and I0,2 are the critical currents of the two junctions.
As can be seen in Fig. 9, increasing the inductance of the loop
has the effect of deepening the local energy minima.

IV. CONCLUSIONS

We studied the Josephson tunneling between an s± super-
conductor and a single-band s-wave superconductor within
a microscopic formalism in which the order parameters of
both superconductor are determined using self-consistent
Bogoliubov-deGennes equations. We find four possible junc-
tion behaviors, characterized by their energy/phase difference
relation. The possible states are (i) 0 junction where the
energy minimum is at zero phase difference, (ii) π junction
where the energy minimum occurs at π , (iii) φ junction where
0 < φ < π , and (iv) a double minimum junctions where there
are two minima, one of them global and the other local.

We find that allowing the order parameter to change its
amplitude and phase self-consistently close to the junction has
some important effects on the resultant phase diagram. It is
essential for the appearance of a new state, namely, the double
minimum junction.

We also use our results to study the energy of a flux threaded
s±-s loop. We find that the loop can have different types of
unconventional energy/flux behavior such as 1/2-flux-loop,
TRB, and metastable.
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APPENDIX A: MAGNETIC FLUX

In this appendix, we explain how the magnetic flux is added
to our microscopic model. For nonzero magnetic flux, we
select a gauge in which the magnetic potential is parallel to the
angular direction, i.e., A = Ax̂. The magnetic flux enclosed by
the loop 
 must be equal to

∮
A · dl. This yields A = 


N1+N2
x̂,

since the diameter of the circle is equal to the number of sites
in the x direction times the lattice constant (N1 + N2)a and
we have set a = 1. The hopping terms in the Hamiltonian
are modified with the introduction of the magnetic potential
according to Peierls substitution:

t → t exp

(
− ie

�c

∫ r

r ′
A · dl

)
. (A1)

For nearest-neighbor hopping around the loop, this leads to
t → te−iφ with φ given by

φ = π

N1 + N2

(




0

)
, (A2)

where 
0 = hc
2e is the superconducting flux quantum. The

system can still be described by equation (13) with the

appropriate modification of the matrices Ks± , Ks, Tx , and
Ty , which become dependent on the phase φ.

In order to simplify the Hamiltonian, we use
the transformation cky,σ (n) → ei

φ1
2 −inφcky,σ (n), dα,ky ,σ (n) →

e−inφdα,ky ,σ (n), which accordingly modifies the self con-
sistent order parameters defined by Eq. (22) as �0(n) →
eiφ1−2inφ�0(n), �α(n,n + 1) → e−i(2n+1)φ�α(n,n + 1).

It is easy to see that under this transformation the flux
dependence is transferred to the contacts. This can be seen in
the transformed Hamiltonian with the definitions in Eq. (13)
as Ks± and Ks loose their dependence and the pairing matrices
�s± and �s are invariant while the Tα matrices are now given
by

(Tα)m,n = −w(1)
α ei

φ1
2 δm,N1δn,1 − w(2)

α ei
φ2
2 δm,1δn,N2 , (A3)

where φ1 and φ2 are solutions of

φ1 − φ2 = 2π



0
. (A4)

APPENDIX B: NUMERICAL METHODS

1. Finding the relation between the superconducting coupling
constants and the bulk pairing amplitudes

In this work, we set the bulk pairing amplitudes �x(n,n +
1) = �y(n,n + 1) = 0.081. In a translationally invariant sys-
tem, this corresponds to the Hamiltonian given by equations
(1) and (2) with �x = �y = 0.162. The value of J2 is then
set such that the solution of the self-consistency equation (7)
for q = 0 is �x = �y = 0.162. The self-consistent equation
(7) can be solved numerically, iterating from an initial guess.
In a 100 × 100 lattice, the coupling J2 = 0.624 leads to the
desired value of the bulk s± pairing amplitude. The iteration
loop was stopped when the difference between the input and
the calculated order parameters was less than 1 × 10−5.

The bulk pairing amplitude �0 corresponding to given
values of μ0 and U can be calculated by solving the self-
consistency equation (10). This was done iterating equation
(10) in a 100 × 100 lattice with periodic boundary conditions
until the input and the calculated order parameters was less
than 1 × 10−5. To obtain the value of U corresponding to
given values of μ0 and �0, we used a numerical solver to solve
the equation �0(μ0,U ) − �0 = 0 with the function �0(μ0,U )
defined as the (numerical)solution of the self-consistency
equation. The values of U obtained for Figs. 3 and 4 are shown

FIG. 10. Values of the superconducting coupling U used in (a)
Fig. 3 and (b) Fig. 4.
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in Fig. 10, some finite size effects can be appreciated in the
solution for �0 = 0.02.

2. Self-consistent solution of the BdG equations: calculating
the order parameter magnitude close to the junction

The self-consistency equations (22) were solved in the
vicinity of the interface, using the bulk values of the or-
der parameters, i.e., �x(n,n + 1) = �y(n,n + 1) = 0.081 and
�0(n) = |�0|eiφ , as a starting point of the iteration loop. The
iteration loop is stopped when the difference in the order
parameters obtained in two consecutive iterations is less than
1 × 10−6. We consider periodic boundary conditions on the y

direction and a 20 × 20 lattice for each superconductor.
When changing the momentum resolution in the direction

along the junction cross section (ky) we find some sensitivity of
our results to the resolution. However, the main findings are not
altered. In the phase diagram, the nature of the different phases
is not sensitive to the ky resolution but the phase boundaries
may shift slightly.

3. Energy/flux curves

The energy/flux relation for the array in Sec. III can be
easily found from the energy/phase profile of the two interfaces
following Eq. (30). The energy/phase relation is found by
solving the order parameter self-consistently and the energy
using exact diagonalization for 41 evenly spaced values of the
phase difference between 0 and 2π . Afterwards, we can define
the energy/phase relations E1(2)(φ) for any value of φ using
cubic Hermite spline interpolation. Finally, the energy versus
flux curve is given by

E(
) = min
0�φ�2π

E1

(
φ + 2π



0

)
+ E2(φ). (B1)

Since the value of φ is bounded and the minima of
E1(φ + 2π



0
) + E2(φ) are very sharp for the metastable cases,

the most practical way to do the minimization is by brute force,
i.e., by directly evaluating the function for a grid of points in
the [0,2π ] interval. The curves in Fig. 8 were obtained using
a grid of 1000 points.
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