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A general theory of collective spin-wave edge modes in semi-infinite and finite periodic arrays of magnetic
nanodots having uniform dynamic magnetization (macrospin approximation) is developed. The theory is
formulated using a formalism of multivectors of magnetization dynamics, which allows one to study edge
modes in arrays having arbitrarily complex primitive cells and lattice structure. The developed formalism can
describe spin-wave edge modes localized both at the physical edges of the array and at the internal “domain walls”
separating the array regions existing in different static magnetization states. Using a perturbation theory, in the
framework of the developed formalism, it is possible to calculate damping of the edge modes and to describe their
excitation by external variable magnetic fields. The theory is illustrated on the following practically important
examples: (i) calculation of the FMR absorption in a finite nanodot array having the shape of a right triangle;
(ii) calculation of the spectra of nonreciprocal spin-wave edge modes, including the modes at the physical edges
of an array and modes at the domain walls inside the array; and (iii) study of the influence of the domain wall
modes on the FMR spectrum of an array existing in a nonideal chessboard antiferromagnetic ground state.
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I. INTRODUCTION

Novel magnonic [1–5] and spintronic [6,7] signal process-
ing devices will require novel dynamically reconfigurable
magnetic materials which are able to operate without an
external magnetic field. These “self-biased” magnetic mate-
rials, which can function without heavy and bulky external
permanent magnets, will be very attractive for applications
in microwave signal processing and magnetic logic. One of
the examples of such self-biased artificial magnetic materials
are the arrays of periodically arranged and dipolarly coupled
anisotropic magnetic nanoelements, in which the nanosize
of the element guarantees its monodomain state, while the
shape or/and crystallographic anisotropy determines the def-
inite direction of its static magnetization [8–22]. The static
magnetization of each anisotropic nanoelement can have more
than one stable direction, which means that an array can exist in
several distinct metastable static magnetization states [14,21].
Obviously, the static magnetization state of an array strongly
affects the array’s dynamic magnetization properties, such
as the spectrum of its spin-wave excitations and characteris-
tics of the array’s interaction with external electromagnetic
waves [17,19,23]. Moreover, the static magnetization state
of an array can be dynamically switched between several
metastable configurations by application of a short pulse of
an external bias magnetic field of a particular direction and
duration [18,24]. Thus a magnetic metamaterial based on an
array of dipolarly coupled magnetic nanoelements is, indeed,
dynamically reconfigurable, as its static and dynamic magnetic
and electromagnetic properties can be substantially altered
without any changes to its physical structure or composition.
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Although the recent progress in the electron and ion beam
lithography has made possible the fabrication of arrays of
magnetic nanoelements (nanodots) on a large scale [9,11–
13,20,22,25–27], the fabrication of arrays of elements with
high aspect ratios (height substantially larger than the radius),
which is necessary for the effective dipolar interaction between
the elements [22], still remains a challenging technological
problem. Nonetheless, we believe that materials with uniaxial
crystallographic anisotropy [28], like multilayered composites
of CoPt, Co3Pt, FePt, and CoPd [29], which exhibit strongly
perpendicular static magnetization in the absence of a bias
magnetic field, will make possible the physical realization of
the magnetic nanodot arrays for signal processing applications
in the near future.

Integration of nanostructured magnetic metamaterials with
modern CMOS electronics will require miniaturization, and,
therefore, the presence of edge effects in relatively small
pieces if magnetic metamaterials will play an increasingly
important role with the progress in the systems miniaturization
[30–33]. Thus the properties of the edge excitations in such
systems should be well-understood. In one of our previous
works [33], we calculated the spectrum of collective spin-wave
edge modes in a periodic dipolarly coupled nanodot array
having one dot per a primitive cell. However, for an array
of magnetic nanodots to have such interesting and unusual
properties as nonreciprocity of a spin-wave spectra [19] or
nontrivial topological properties of a spin-wave passbands
[34,35], it is necessary to have a complex primitive cell, e.g., a
primitive cell containing several elements of a different kind or
several similar elements having different orientations of their
static magnetization.

The idea to use analytical methods capable of describing
magnetization dynamics in arrays of magnetic elements goes
back to the time when the first ferrite computer memory arrays
were developed. One of the first attempts to calculate the
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distribution of the static demagnetization magnetic fields in an
infinite 3D array of magnetic spheres arranged in a periodic lat-
tice was undertaken by Kaczér and Murtinová [36], where they
used a Fourier expansion of a magnetization distribution across
the 3D lattice, and solved the Poisson equation in the reciprocal
space. Later, several theoretical approaches were developed
to describe spin-wave excitations in systems where magnetic
properties are spatially periodic. The developed approaches
include the method of plane wave expansion (PWE) [37–40],
which was adopted from the theory of periodic dielectric
[41] and acoustic [42] structures, the dynamic matrix method
[12,43–45], the transfer matrix method [46,47], the multiple
scattering theory [32], and several other. The above mentioned
methods have proven their applicability and convenience for
the analysis of infinite periodic magnetic systems.

The attempts to handle problems of spin-wave excitations
in finite periodic structures with boundaries, however, faced
significant difficulties. An accurate treatment of the finite
magnetic systems require: (i) taking into account the boundary
conditions at the system’s edges, and (ii) taking into account
the demagnetization field for all the periodic structure. This
demagnetization field is shape-dependent (and not lattice-
dependent), and, also, is nonuniform across the structure
[31,33]. Several attempts were undertaken to treat finite
magnetic periodic structures, either by using the PWE methods
[48,49] or by developing dedicated methods for special cases
[34]. However, since the spatial Fourier harmonics of the
magnetization and magnetic field do not satisfy the boundary
conditions at the edges of the finite magnetic structure auto-
matically, in finite systems with boundaries, the PWE-based
methods lose their simplicity and elegance.

Dynamics of spin-wave excitations in a finite array of
dipolarly coupled magnetic dots, in principle, can be simulated
using one of the available micromagnetic numerical techniques
[43,45,50]. However, using only the results of micromagnetic
simulations, that provide the frequencies and profiles of the
system’s eigenmodes, it is, sometimes, difficult to extract
the symmetry properties of the system [19,51] or to describe
the system’s behavior in a critical regime, when the stable
static state of the system is changed [18,24]. Also, direct mi-
cromagnetic simulations could be computationally intensive,
while their results would be neither scalable nor reusable,
since the change of any of the system parameters, such as the
quasistable state of the array’s static magnetization or/and the
material properties of the array’s elements, would require a
complete rerun of the entire simulation.

Thus, below, in our attempt to describe the general
properties of collective edge modes in magnetic dot arrays,
we decided to use approximate analytical methods based on
the Fourier transform of the mutual demagnetization tensor of
individual array’s elements [17,33,36,52,53] and an operator
form of the linearized Landau-Lifshitz equation [45]. The
analytical approach developed by Verba et al. [17] calculates
the spin-wave spectra in spatially infinite periodic arrays
of magnetic nanodots using the fundamental tensor F̂k of
the array. This tensor contains all the information about the
array (including the lattice symmetry and other geometrical
properties of the array’s element) that is necessary for the
calculation of the spin-wave spectrum of the array. The sym-
metry properties of the fundamental tensor F̂k can be evaluated

analytically, providing an opportunity to check the symmetric
features of the spin-wave spectrum, such as nonreciprocity,
analytically without preforming time-consuming numerical
calculations [19]. The operator from of the linearized Landau-
Lifshitz equation developed by Buijnsters et al. [45] allows one
to reduce the calculation the spectrum of collective spin-wave
excitations of the array to solving a generalized Hermitian
eigenvalue problem.

In this paper, we will generalize the analytical method de-
veloped in Refs. [17,33] to include the possibility of theoretical
analysis of the spectrum of collective edge spin-wave modes
in a semi-infinite array of magnetic nanodots with a complex
primitive cell. Our method uses the “macrospin” approxima-
tion, which assumes that each individual magnetic dot has a
spatially uniform distribution of magnetization. In general, the
modes having a uniform spatial distribution are expected to
be dominant in magnetic nanodot arrays [11,13], however,
one can easily extend the theoretical formalism developed
below to handle the cases with nonuniform mode profiles
simply by adjusting the form of the mutual demagnetization
tensor. A brief description of the possible extension of our
formalism beyond the macrospin approximation is presented
in Appendix A. The formalism presented below can describe
both the spin-wave modes localized at the physical edge of
a semi-infinite array of magnetic dots and the spin-wave
excitations localized at the array’s internal boundaries formed,
e.g., by the domain walls separating the regions existing in
different metastable states of static magnetization. The latter
type of the localized spin-wave excitations is analogous to
the Winter magnons [54] existing near the domain walls in a
continuous ferromagnetic medium.

Another feature of the analytical formalism developed
below is that it makes possible to use a conventional a
perturbation theory to find the damping rates of the edge spin-
wave modes and their coupling to spatially uniform external
magnetic fields. In particular, this technique allows one to cal-
culate the ferromagnetic resonance (FMR) absorption spectra
of finite magnetic nanodot arrays, in which the influence of the
edge spin-wave modes could be quite significant.

The paper is organized as follows. Section II gives a basic
description of the dipolar interaction between the nanodots
in an array and formulates the general equations that are
used in the further spectral calculations. Section III introduces
a multivector formalism for magnetic dot arrays having a
complex primitive cell and presents equations necessary for
the calculations of the spectra of bulk and edge spin-wave
excitations in such arrays. Section IV formulates a perturbative
technique used to calculate a response of a finite magnetic
dot array on an externally applied microwave magnetic field.
Section V is devoted to the discussion of the specific features
of the numerical solutions for the equations derived in Sec. III,
while Sec. VI deals with the several examples showing the
applications of the developed analytical theory to real physical
systems: (i) calculation of the FMR absorption spectrum
in a finite magnetic nanodot array having the shape of a
right triangle; (ii) calculation of nonreciprocal spin-wave
spectra of edge modes, including the modes at the physical
edges of an array and the modes localized at the domain
walls inside an array; and (iii) study of the influence of
the domain wall modes on the FMR spectrum of an array
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existing in a nonideal chessboard antiferromagnetic ground
state. Section VII formulates the conclusions of our work. The
developed theoretical formalism is implemented in a computer
program, which is available to general public at Ref. [55].

II. BASIC FORMULATION

A. Mutual demagnetizing tensor with uniaxial anisotropy

Let us consider an array of dipolarly coupled magnetic
nanodots. For the sake of mathematical simplicity, we consider
dots having the identical shape and saturation magnetization
Ms . The dots may, however, have different values of the
uniaxial crystalline anisotropy. The spatial position of a dot
denoted by the index i and having the static magnetization
vector M i is determined by the position vector r i . For a dot
having the index i the effective magnetic field acting on the
dot can be written as

Be
i = Bext

i + 2Ka
i

μ0M2
s

ni(ni · M i) − μ0

∑
j

N̂ ij · Mj , (1)

where Bext
i is the external magnetic field, Ka

i is the energy of
the first-order uniaxial anisotropy [56,57] of the ith dot, ni is
the unit vector directed along the anisotropy axis, and N̂ ij =
N̂ (r i−rj ) is the mutual demagnetization tensor between the
dots i and j . This tensor is defined by the dot shape and the
interdot distance [17,53]. The second term in the right-hand-
side part of (1) is the anisotropy of the ith dot. This field can
be represented in terms of a tensor K̂i having the following
form [56]:

K̂i = − 2Ka
i

μ0M2
s

ni ⊗ ni , (2)

where ⊗ is the direct vector product.
The tensors N̂ ij and K̂i enter (1) in a similar way, so that

it is possible to introduce an effective demagnetization tensor:

N̂ ij = N̂ ij + δijK̂j , (3)

and to rewrite (1) in the form

Be
i = Bext

i − μ0

∑
j

N̂ ij · Mj , (4)

which formally coincides with equation (3.4) in Ref. [17] for
dipolarly coupled isotropic magnetic nanodots. The introduc-
tion of the effective demagnetization tensor N̂ ij in the form
(3) allows us to use some results from the previous works
[17,19] in the case of anisotropic magnetic dots, since the
symmetric properties of the tensor N̂ ij remain the same, with
the exception that Tr(N̂ ii) = 1 − 2Ka

i /(μ0M
2
s ).

Although the above described procedure cannot be applied
to some types of the crystalline anisotropy (e.g., cubic), in
most practical cases the uniaxial crystalline and shape (defined
by the tensor N̂ ij ) anisotropies of a magnetic nanoelement
are dominant. Then, the effective demagnetization tensor N̂ ij

gives an adequate description of the magnetic properties of a
magnetic dot array.

We would also like to note, that, although the above
presented approach cannot be directly used for the arrays of
dots having different shapes and volumes, one can approximate
such arrays by arrays of dots having the same shape and

volume, but different uniaxial anisotropies, and the above
presented approach will allow one to obtain results that are
qualitatively correct [19].

B. Equation of motion in the operator form

Spin-wave dynamics for an array of magnetic nanodots is
described by the Landau-Lifshitz equation for each dot:

d M i

dt
= γ

(
Be

i × M i

)
, (5)

where γ /2π ≈ 28 GHz/T is the modulus of the gyromagnetic
ratio. In this work, we are interested in spin waves with
small precession angles. To linearize (5), we decompose the
magnetization vector into the static and dynamic parts:

M i = Ms(μi + mi) + O(|mi |2), (6)

where mi is a small dimensionless deviation of the magneti-
zation of i − th dot from the equilibrium. The direction of the
static magnetization of a dot is defined by the unit vector μi .
Since the length of the magnetization vector M i is conserved,
the vectors μi and mi are orthogonal to each other:

μi · mi = 0. (7)

In equilibrium, the effective magnetic field acting on each dot
is parallel to the static magnetization of the dot:

Be
i = Biμi , (8)

where Bi is the scalar internal field in the ith dot. To solve
the equation of motion one should plug (4) and (6) into
(5) using condition (7), and retain only the terms linear in
mi . Spin-wave eigenmodes are the harmonic solutions of
the linearized equations, mi(t) = mie

−iωt + c.c., where ω is
the frequency of the mode and mi is the complex mode
profile. Using this decomposition one can linearize (5) and
split it into two equations, for static and dynamic parts of the
magnetization, respectively:

Biμi = Bext
i − μ0Ms

∑
j

N̂ ij · μj , (9)

−iωmi = μi ×
∑

j

�̂ij · mj , (10)

where

�̂ij = γBiδij Î + γμ0Ms N̂ ij , (11)

and Î is the identity matrix. These equations completely define
the behavior of the nanodot array. Solutions of these equations
for a finite aperiodic array and an infinite periodic array have
been discussed previously in Ref. [17].

Equation (10) contains a cross product operation, which
is not convenient for the further analysis. One can eliminate
the cross product by formally replacing it by the operator
Ĵ i = e · μi , where e is the Levi-Civita symbol [58]. It can
be shown by direct substitution that the tensor Ĵ i has the
following properties:

Ĵ
T

i = − Ĵ i ,

− Ĵ
2
i = P̂ i = Î − μi ⊗ μi , (12)

P̂ i · mi = mi .
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Here, P̂ i is the projection operator to the plane that is
perpendicular to the vector μi .

Substituting the operator Ĵ i for the cross product in (10),
multiplying the resulting expression by Ĵ i , and using the
properties in (13) one obtains the following equation:

−iω Ĵ i · mi =
∑

j

�̂
′
ij · mj , (13)

where

�̂
′
ij = P̂ i · �̂ij · P̂j . (14)

Equation (13) is a generalized eigenvalue problem, where Ĵ i

is an antisymmetric matrix and �̂
′
ij is a real symmetric matrix

(in the sense �̂
′
ij = �̂

′T
ij ). Using the properties of the tensors Ĵ i

and �̂
′
ij one can immediately show that the eigenfrequencies

ω are real for all stable static magnetic configurations of
the array [17]. We note, that the similar operator approach
was successfully used to study Goldstone’s modes in spin
exchange-coupled systems [45].

The vector mi is a three-dimensional vector in our notation.
However, because of the condition (7) only two components
of the vector are independent. Thus the eigenvalue problem
(13) is degenerate. This degeneracy can be avoided by using
circular coordinates of the Holstein-Primakoff transformation
[59], however, we keep three-dimensional presentation of the
vector mi to retain notational flexibility. Of course, during
actual numerical simulations the nonphysical solutions should
be discarded. This can be easily done, as in (13), all the
nonphysical solutions (mi ||μi) have zero eigenfrequencies,
ω = 0.

III. SPIN-WAVE DYNAMICS IN A PERIODIC LATTICE

A. Multivector notation

Both bulk [17] and edge [33] collective spin-wave excita-
tions were considered previously in the arrays having a single
dot in a primitive cell. Below, we will develop an analytical
model for a periodic lattice with a nontrivial primitive cell
containing several identical magnetic nanodots (having several
sublattices), as shown in Fig. 1. For this purpose, we introduce
a multivector notation, which will allow us to significantly
simplify the theoretical formalism for the case of arrays having
multiple magnetic dots in a primitive cell and, basically, to
formally reduce it to the well-developed formalism describing
dynamics in arrays with a simple primitive cell [33].

The lattice of the array is defined by the primitive vectors
a1 and a2, and the primitive cell consists of P identical dots.
Relative positions of the dots inside the primitive cell are
defined by a set of vectors δp, p ∈ [1,P ] defined in the local
coordinate system of the cell, see Fig. 1. The static and dynamic
magnetization of the dots in the cell are defined as m(ip) and
μ(ip), and the modulus of the effective static field is denoted as
B(ip), where i is the index of a cell and p denotes an individual
dot inside the ith cell.

δq

δp

E
d
ge

a2

a1

n

l

FIG. 1. A sketch of a semi-infinite spatially periodic array of
magnetic nanodots with a complex elementary cell. The primitive
vectors of the lattice are a1 and a2, while vectors δp define the
positions of nanodots within the cell. Directions of l and n cell
enumeration are shown in red.

Using the (ip) enumeration of the dots, Eq. (13) takes the
following form:

−iω Ĵ (ip) · m(ip) =
∑

j

P∑
q=1

�̂
′
(ip)(jq) · m(jq), (15)

where

�̂(ip)(jq) = γB(ip)δpqδij Î + γμ0Ms N̂(r i − rj + δpq), (16)

and δpq = δp − δq . Unfortunately, this representation is rather
cumbersome and restricts further analysis, as it obscures the
structure of the problem.

To simplify Eq. (15), we introduce a multivector of the
length P as

m̃j =

⎛
⎜⎜⎝

mj1

mj2
...

mjP

⎞
⎟⎟⎠. (17)

Analogously, we introduce multivectors for the static com-
ponents of the magnetization μ̃j = (μj1,μj2, · · · ,μjP ). In the
following, the multivectors are used as ordinary vectors in
all the vector-vector and vector-matrix operations. As we will
see further, the multivector notation is rather convenient in
both the analytical and numerical analysis. The algebra of the
multivectors is briefly formulated in Appendix B.

Rewriting Eq. (15) by replacing the sum over q with a
formally written matrix-vector multiplication and by using the
multivector notation (17), one can represent it in the following
form:

−iω ˆ̃J i · m̃i =
∑

j

ˆ̃�′
ij · m̃j , (18)

where i,j denote the cell index, ˆ̃�′
ij and ˆ̃J i are the 3P × 3P

block matrices defined as

ˆ̃J i = diag( Ĵ i1, · · · , Ĵ1P ), (19)

ˆ̃�′
ij = ˆ̃P i · ˆ̃�ij · ˆ̃P j , (20)
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and ˆ̃P i = − ˆ̃J i · ˆ̃J i . Here, the tensor ˆ̃�ij is also represented
by a block matrix

ˆ̃�ij = γ δij
ˆ̃Bj + γμ0Ms

ˆ̃N(r i − rj ), (21)

where ˆ̃Bi = diag(B(i1) Î, · · · ,B(iP ) Î) and

ˆ̃N(r) =

⎛
⎜⎝

N̂(r) · · · N̂(r + δ1P )
...

. . .
...

N̂(r + δP 1) · · · N̂(r)

⎞
⎟⎠. (22)

The block matrix ˆ̃�ij describes the behavior and interactions
of a whole primitive cell of the array in contrast to the tensor
�̂ij [defined by Eq. (11)], which describes the behavior of a

single dot. The block matrix ˆ̃�′
ij is the projection of the block

matrix ˆ̃�ij in the same sense as presented by Eq. (14).
Using the same procedure, one can rewrite Eq. (9) for static

magnetization in terms of multivector notation in the following
form:

ˆ̃Bi · μ̃i = B̃
ext
i − μ0Ms

∑
j

ˆ̃N ij · μ̃j , (23)

where the “components” of the multivector B̃
ext
i represent the

external magnetic fields acting on the each dot in the ith cell.

B. Edge modes

In this section, we consider collective spin-wave excitations
in a semi-infinite array. The array occupies a half-plane and
has an edge parallel to one of the lattice primitive directions,
see Fig. 1. In this case, the static magnetic properties of the
array demonstrate a translation symmetry along one of the
principal directions, but there is no translational symmetry
along the other lattice direction. Using this arrangement, we
will develop an analytical model to describe the collective
spin-wave excitation localized near the edges of a semi-infinite
array of magnetic dots.

We define the position vector r i of ith cell as

r i = r (nl) = la1 + na2, (24)

where l and n are the integers enumerating cells in the
directions a1 and a2, respectively (Fig. 1). The half-plane
occupied by the array corresponds to n � 0, while the index l

can take any integer value.
Since the array has a translational symmetry along the a1

direction, the static configuration of the magnetization depends
only on the index n:

μ̃i = μ̃(nl) = μ̃n,
(25)

ˆ̃Bi = ˆ̃B(nl) = ˆ̃Bn,

and elementary spin-wave solutions mi can be found in the
form

m̃i = m̃(nl) = m̃ne
iκa1l , (26)

where κ is the wave number of the spin-wave mode. Using
these expressions in Eq. (18) yields the equation for the spin-

wave profile m̃n:

−iω ˆ̃Jn · m̃n =
∞∑

n′=0

ˆ̃�′
κ,nn′ · m̃n′ , (27)

where

ˆ̃�κ,nn′ = γ δnn′ ˆ̃Bn + γμ0Ms
ˆ̃Eκ (n − n′) (28)

and
ˆ̃Eκ (n) =

∑
l

ˆ̃N(la1 + na2) · e−iκa1l . (29)

To compute the sum in (29), we introduce the Fourier transform
of the cell mutual demagnetizing tensor:

ˆ̃N(r) = 1

(2π )2

∫∫
ˆ̃N ke

ik·rdk. (30)

Using the well-known “shift property” of the Fourier trans-
form, we obtain from (22):

ˆ̃N k =

⎛
⎜⎝

N̂ k · · · N̂ ke
−ik·δ1P

...
. . .

...
N̂ ke

ik·δ1P · · · N̂ k

⎞
⎟⎠. (31)

Considering that N̂ k is a real and symmetric tensor [53] in

the sense that N̂ k = N̂
T

k = N̂−k, the Fourier image of the
cell demagnetization block matrix has the following symmetry
properties:

ˆ̃N k = ˆ̃N∗
k = ˆ̃NT

−k. (32)

Using the expression for the Fourier image (31) for ˆ̃N(r),
Eq. (29), one gets

ˆ̃Eκ (n) = 1

(2π )2S

×
∑

l

∫∫
ˆ̃NαK 1+β K 2e

i(αK 1+β K 2)·(la1+na2)e−iκa1ldαdβ,

(33)

where K 1 and K 2 are the reciprocal primitive vectors of the
lattice and S is the area of a unit cell. Using the well-known
properties of the reciprocal primitive vectors and the identity∑

l e
iαl ≡ 2π

∑
l δ(2πl − α), Eq. (33) can be simplified:

ˆ̃Eκ (n) = 1

2πS

∑
l

∫ ∞

−∞
ˆ̃N (l+κa1/2π )K 1+β K 2e

i2πnβdβ. (34)

The analytical expressions for the Fourier image of the dot
demagnetization tensor ˆ̃N k are known for all the practically
interesting dot shapes (see Eqs. (2.5)–(2.8) in [17]). Therefore
Eq. (34) allows one to calculate the components of the block
matrix ˆ̃Eκ (n) that are necessary for the solution of Eq. (27).

In general, the block matrix ˆ̃Eκ (n) is not Hermitian and has
no symmetry in respect to Hermitian conjugation. However,
from the properties of the Fourier transform and the properties
of the block matrix ˆ̃N k in Eq. (32), one can conclude that it
has the following symmetry properties:

ˆ̃Eκ (n) = ˆ̃E∗
κ (−n) = ˆ̃ET

−κ (−n) = ˆ̃E∗
−κ (n) (35)
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and

Tr ( ˆ̃Eκ (n)) = δn0

⎛
⎝P −

P∑
p=1

Ka
p

μ0M2
s

⎞
⎠. (36)

The static equation (23) can be rewritten in a similar way,
considering that the static quantities (25) do not change in the
direction of the vector a1:

ˆ̃Bi · μ̃n = B̃
ext
n − μ0Ms

∞∑
n′=0

ˆ̃E0(n − n′) · μ̃n′ . (37)

Together, Eqs. (27) and (37) are the central result of this paper.
Using these equations, one can calculate the distribution of the
internal magnetic field ( ˆ̃Bi)in the array, equilibrium directions
of the magnetic moments in each dot (μ̃i), and the spectrum of
collective spin-wave edge excitations in a semi-infinite array
of magnetic nanodots with a complex primitive cell.

Although Eqs. (27) and (37) were obtained using purely
analytical methods, further analytical solution of these equa-
tions (e.g., using the nearest-neighbor approximation [60]) is
tedious and does not allow one to obtain qualitative analytical
results in a closed form. The internal structure of the tensors
ˆ̃Eκ (n) is complicated, and, moreover, the dispersion equation
(27) leads to a generalized eigenvalue problem with an infinite
block “Toeplitz-like” matrix, in which blocks standing on the
main diagonal are not equal, because ˆ̃Bn 	= ˆ̃Bm when n 	= m

in Eq. (28).
Certain analytical results may be obtained in a rather

artificial case when it is assumed that the internal magnetic
field ˆ̃Bn = ˆ̃B is uniform [in this case, ˆ̃�nn′ = ˆ̃�n−n′ , which
simplifies the solution of Eq. (27) considerably]. However,
even in this case the analytical calculation of the eigenvalues
of Eq. (27) with a non-Hermitian block Toeplitz matrix is
nontrivial [61], and the spectrum of collective spin-wave
excitations of the array may include distinct edge modes [33].

Therefore, in this paper, we solve (27) and (37) numerically.
The details of the numerical procedure are discussed in Sec. V.
We would like to stress, that even for the numerical solution
of Eq. (27), the knowledge of the analytical structure of
this equation provides significant advantages. For example,
one can scale the results obtained numerically for relatively
small systems for the case of much larger systems and can
calculate spin-wave damping and FMR absorption spectra
without additional numerical analysis (see Sec. IV for further
details).

Equations (27) and (37) were derived for a semi-infinite
array of magnetic nanodots, but this specific geometry is
only reflected in the range of summation over the index n′
(n � 0, i.e., half-plane). The same equations with different
summation ranges describe a number of other geometries, that
are characterized by a translational symmetry along only one
direction (l). In particular, Eqs. (27) and (37) with unrestricted
n′ should describe spin waves in an infinite array (see the next
section). These equations, without any further modifications,
can be used to describe the spin waves in a finite “stripe”
(0 ≤ n < N) of a magnetic dot array, or the waves propagating
along the internal “domain walls” in an infinite array. The latter
example is considered in more details in Sec. VI B. In all the
following sections, we shall not indicate explicitly the range of

summation over the transversal indices (n, n′), assuming that
they take physically relevant values in each particular case.

C. Bulk modes

In the previous section, we developed a model describing
the dynamics of a magnetic dot array under the assumption
that the array has a periodic translational symmetry along the
vector a1, but that the translational symmetry is broken along
the vector a2 due to the existence of the array’s boundary.
Nevertheless, the model should be valid for the cells located far
from the boundary, where the edge effects are negligible. Here,
we show, that for an infinite array (or for the cells located far
from the boundary) our theory can be reduced to the previously
developed theory of infinite arrays [17]. Also we provide a
link between the tensor ˆ̃Eκ (n) and the fundamental tensor F̂k

introduced earlier.
To consider the case of an infinite dot array, we assume that

the translational symmetry also holds in the direction parallel
to the primitive vector a2, meaning that all the cells in the array
are equal: μ̃n = μ̃, and ˆ̃Bn = ˆ̃B for all n. In this case, we can
introduce a wave number κ⊥ describing the wave profile in the
a2 direction. Now, the solution can be found in the form

m̃n = m̃eiκ⊥a2n. (38)

Direct substitution of (38) into the dynamic equation (27)
yields a simple equation:

−iω ˆ̃J · m̃ = ˆ̃�′
k · m̃, (39)

which coincides with Eq. (3.32) from Ref. [17], obtained for
bulk spin-wave modes in an infinite array of nanodots. Here,
k is the total spin-wave wave vector:

k = κa1

2π
K 1 + κ⊥a2

2π
K 2. (40)

The interaction matrix ˆ̃�k has the following form:

ˆ̃�k = γ ˆ̃B + γμ0Ms
ˆ̃Fk, (41)

where the block matrix ˆ̃Fk (fundamental tensor of the array
[17]) may be found as

ˆ̃Fk =
∑

n

ˆ̃Eκ (n)e−iκ⊥a2n = 1

S

∑
K∈L∗

ˆ̃N k+K , (42)

where L∗ represents the reciprocal lattice of the array. We can
use expression (42) to relate the tensors ˆ̃Fk and ˆ̃Ek(n) as

ˆ̃Eκ (n) = 1

2π

∫ ∞

−∞
ˆ̃Fκa1/(2π)K 1+β K 2 ei2πnβdβ. (43)

This equation provides a way of computing the block matrix
ˆ̃Ek(n) from the array’s fundamental tensor ˆ̃Fk by performing
only a single Fourier transform.

Another consequence of (43) is that the solutions of the
eigenvalue problem (27) always include solutions of (39), i.e.,
numerically obtained spectrum of (27) will also contain the
bulk spectrum of an infinite array.

To distinguish the localized edge spin-wave modes from
the set of all the other solutions of Eq. (27), the spin-wave
profile (distribution of the spin-wave amplitude |m̃n|) for each
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mode should be analyzed. Edge modes will have a stronger
magnetization near the edge, while the profiles of the bulk
modes do not decay into the depth of the array.

IV. FMR EXCITATION IN CONFINED ARRAYS

A. Stationary amplitudes of forced edge modes

The excitation and damping of collective spin waves in
arrays of magnetic nanodots may be considered in terms
of a standard perturbation theory. Perturbation theory was
previously used for a finite array in Ref. [17], however,
that solution has a significant drawback, namely, it requires
the information about the magnetization dynamics in each
particular dot, which makes the computation in the case of
arrays containing a significant number of dots ineffective and
time consuming.

Let us, first, consider a semi-infinite array. As it was shown
in the previous section, a semi-infinite array has two types
of modes: bulk modes and edge modes. The edge modes are
localized in the area near the edge of the array, while bulk
modes exist throughout the array. From (27), one may easily
obtain the following normalization conditions for the bulk
spin-wave modes:

∑
n

m̃∗
s ′,κ,n · ˆ̃Jn · m̃s,κ,n = −iAs,κδs,s ′ (44a)

and, likewise, for the edge modes:∑
n

m̃∗
ν ′,κ,n · ˆ̃Jn · m̃ν,κ,n = −iAν,κδν,ν ′ . (44b)

Here, the indices s denote the bulk mode zones, while the
indices ν denote the localized edge modes. The bulk and edge
modes are orthogonal to each other in the sense of Eq. (44).

The norm defined by Eq. (44a) is not practical for the
numerical computations, as it cannot be obtained directly from
numerical solutions of Eq. (27). If we neglect the influence of
the boundary on the bulk modes [33], we can eliminate the
summation along the row n using the dependence (38) and
come to a more practical expression:

m̃∗
s ′,k · ˆ̃J0 · m̃s,k = −iAs,kδs,s ′ , (44c)

where ˆ̃J0 describes the directions of the magnetic moments in
a primitive cell situated far from the edge. The norm As,k can
be directly calculated from the numerical solution of Eq. (39).

Both the damping and driving microwave fields may be
included in (5) as small magnetic fields bi(t) acting on each
dot in the array:

d M i

dt
= γ (Bi × M i) + γ (bi × M i). (45)

First of all, we are interested in the excitation of spin-wave
modes of the array by a spatially uniform external magnetic
field (b̃0). Thus the perturbative magnetic field b̃i can be written
as

b̃i = −αG

γ

d

dt
m̃i + (b̃0e

−iω0t + c.c.), (46)

where αG is the Gilbert damping constant, ω0 is the excitation
frequency, and c.c. denotes a complex conjugate.

In the case of a spatially uniform excitation only the
edge modes with κ = 0 and the bulk modes with k = 0 are
effectively excited. This allows us to consider the solutions for
(45) only for a single row of cells, as in Fig. 1. The solution
for the perturbed equation (45) may be written as

m̃n(t) =
∑

ν

cν m̃ν,ne
−iω0t +

∑
s

cs m̃se
−iω0t + c.c., (47)

where cν and cs are the stationary amplitudes of edge and bulk
modes, m̃ν,n are the localized solutions of (27), and m̃s are the
solutions of (39). To find the amplitudes of the excited modes,
one should plug (47) into (45) and use the normalization
conditions (44) to separate the equation of motion into a set
of equations for individual spin-wave amplitudes. In the first
approximation we can neglect all the terms that are nonlinear in
m̃n, and for the nondegenerate modes the stationary amplitude
of each of the edge modes is given by

cν = γβν

δων − i
ν

, (48)

where δων = ω0 − ων ,


ν = αGων

Aν

∑
n

m̃∗
ν,n · m̃ν,n,

βν = 1

Aν

∑
n

m̃∗
ν,n · b̃0.

(49)

For bulk modes, the stationary amplitude is defined by the
expression that is similar to (48), but with


s = αGωs

As

m̃∗
s · m̃s ,

βs = 1

As

m̃∗
s · b̃0.

(50)

Here, 
ν/s are the Gilbert damping rates for the corresponding
spin-wave modes, and βν/s represents the coupling coefficient
between the spin-wave mode and the spatially uniform external
driving magnetic field.

B. Power absorption of a finite polygon-shaped array

Now let us consider a finite array containing N magnetic
dots in the shape of a polygon. The polygon, shown in Fig. 2,
has Z sides and each side (z) contains Nz dots. The array
is sufficiently large, so the edge modes traveling along the
different faces may be treated as independent, and the bulk
modes are unaffected by the edges of the array.

The total power absorbed by a finite array can be calculated
as [57]

P = MsV ω
∑

i

P∑
p=1

Im (b∗
0 · m(i,p)), (51)

where V is a volume of a single dot.
Since the magnetization amplitude of the bulk modes is

identical in each unit cell of the array, it can be found as

mp =
∑

s

P∑
q=1

γ (m∗
s,q · b0)ms,p

As(δωs − i
s)
. (52)
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N
z

a1
1

a1
2

a2
2

a2
1

FIG. 2. A sketch of a finite array in the shape of a polygon.
Number of cells along each side of the polygon is Nz. Local sets of
primitive vectors for different sides are shown.

Thus the power absorbed (per unit cell) by the bulk modes is

Pb = V ω

μ0
Im(b∗

0 · χ̂ · b0), (53)

where

χ̂ =
∑

s

P∑
p,q

ωM

δωs − i
s

ms,p ⊗ ms,q

As

(54)

and ωM = γμ0Ms .
The magnetization profiles of the localized edge modes

are not uniform in a direction along which the translational
symmetry is lacking. To calculate the absorption caused by the
edge modes localized at each edge of the array, we choose one
of the local primitive vectors (az

1) to be parallel to the chosen
edge, as in Fig. 2. In this case, we can calculate the power
absorbed by a single row of primitive cells in the direction of
the primitive vector az

2:

Pz = ωV

μ0
Im(b∗

0 · χ̂ z · b0), (55)

where

χ̂ z =
∑
νz

ωM

δωνz
− i
νz

∑
n,n′

P∑
p,q

mνz,(np) ⊗ mνz,(n′q)

Aνz

(56)

and mνz,(np) are the localized solutions of (27) for the set of
primitive vectors az

1,2 and for κ = 0.
Finally, the total absorption power of the array having

number of cells N may be calculated as

P = NPb +
∑

z

NzPz. (57)

This equation demonstrates that the influence of the edge
modes fades away with increasing number of dots in the array
as Nz/N ∼ 1/

√
N .

The tensors χ̂ and χ̂ z defined by Eqs. (54) and (56),
respectively, have the form of effective partial susceptibility
tensors for the bulk and edge modes at each particular edge. By
analyzing eigenvectors of these tensors one may find certain
polarizations of external microwave field that are necessary for

a maximum or/and minimum absorption caused by a certain
particular mode (see examples presented below for more
detail). The ability to analytically calculate the macroscopic
polarization properties of an array is not only useful for the
engineering development of novel magnetic metamaterials, but
also can provide a way to experimentally verify this theory.

A separate note should be made about the “corner modes” of
the array, e.g., the spin-wave modes localized near the vertices
of an array of a finite size. Obviously, the power absorption
caused by these modes does not depend on number of dots in
the array, so their influence is smaller than the influence of the
edge modes, and, in most practical cases, can be neglected.

Finally, if the array has spatial dimensions that are much
larger than the wavelength of the driving microwave field, the
edge effects become less important. However, if the tensor χ̂

is known, one can calculate not only the absorbed microwave
power, but also the reflection of electromagnetic waves from
an array with an arbitrarily complex primitive cell using the
approximate electrodynamic boundary conditions derived in
Ref. [23].

V. PECULIARITIES OF NUMERICAL SOLUTION

To solve Eqs. (27) and (37) numerically, one should truncate
the number of terms in the summation to some integer N.
Such a reduction of the initial problem for a semi-infinite
array is equivalent to the problem of collective spin-wave
propagation in a finite stripe of magnetic nanodots. If the finite
number N of rows in a strip is sufficiently large, the edge
spin-wave modes localized at the opposite sides of the finite
stripe will not interact with each other. Also, these edge modes
may be degenerate [i.e., will have the identical values of the
eigenfrequency (ων) for certain value of wave number (κ)]. For
arrays of dots having a perpendicular magnetic anisotropy, the
degeneracy occurs in the symmetry points of the Brillouin zone
[33]. In such a situation, an eigenvalue solver returns vectors of
the null space, which may be not localized near the opposite
edges of the finite stripe, but the symmetric/antisymmetric
combinations of such eigenmodes. In this case to analyze the
“real” eigenmodes, one should construct a linear combination
of those combined modes which are localized at the desired
edge.

The numerical solution of the truncated eigenvalue problem
(27) gives a discrete set of eigenfrequencies and eigenmodes.
To determine if a particular mode is localized near an edge, the
profile of a given mode should be investigated. The numerical
solution, however, cannot determine the number of localized
modes, as when the truncation number N increases, new
localized modes may appear [62,63]. However, since the main
mechanism of the localization is the nonuniformity of an
internal magnetic field [31–33] and since the magnetic field
decreases as 1/

√
n for the dots at the position n away from

the array edge, these new localized modes merge with the bulk
spectrum and have no influence on magnetization dynamics of
the array.

Equations (27) and (37) were written assuming that transla-
tional symmetry only holds along the direction of the primitive
vector a1, while such a symmetry is lacking in the direction of
a2. This absence of the translational symmetry may manifest
itself not only at a physical edge of an array, but, also, at
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an internal boundary within the array, e.g., at a domain wall
or at a peculiarity of the static magnetic field. For example,
consider an internal boundary created by a domain wall with
the following ground-state distribution:

μ̃n =
{
μ̃1, n > 0,

μ̃2, n � 0,
(58)

where μ̃1 and μ̃2 are the multivectors describing the stable
states in the two domains separated by a domain wall. Using
(58) in (27) and (37), it is possible to find a dispersion relation
for the collective spin-wave modes traveling along a domain
wall in the array. Thus, using the above presented theory, one
can calculate all the edge, domain wall, and bulk modes in a
magnetic nanodot array. The analysis of the spatial profile of
each of these modes will allow one to correctly distinguish
bulk and domain-wall spin-wave modes.

Truncating the summation range to |n| < N, one could
calculate the dispersion of spin-wave modes in a stripe of
dots containing a domain wall, but, it should be noted, that
using such an approximation one may also introduce some
“artifact” modes localized near the edges of the finite-size
“stripe”. Taking the number N to be sufficiently large ensures
that the “artifact” modes do not interact with the domain wall
modes, and by analyzing the spatial profiles of the different
modes one can filter out all the “artifact” modes.

Of all the procedures required to obtain the numerical
solution from the above presented theory, calculation of the
numerical values of the block tensor ˆ̃Eκ (n) requires the most
processing power, since the dipolar sum in (34) converges
slowly. However, the convergence rate is different for different
values of n. Starting from a certain value n0 only the elements
of the sum with l = 0 will be really significant. The exact value
of n0 depends on the dot shape and the interdot distance.

To compute the integral in (34), one may also use a
fast Fourier transform (FFT) procedure or direct numerical
integration, especially if only a few members of the sum
are needed. Combining these techniques one can tune one’s
computation procedure and optimize the time of computation.

The numerical values of the elements of the block matrix
ˆ̃Eκ (n) depend only on the geometrical characteristics of the
array (dot shape and lattice symmetry), and does not depend on
the orientation of the static magnetization or on the direction
of the external magnetic field. Thus, once computed, the value
of ˆ̃Eκ (n) may be saved, and, then, reused to calculate the
array’s characteristics for different stable states and crystalline
anisotropy values, drastically reducing computation time.

VI. EXAMPLES

Below we consider several examples demonstrating appli-
cations of the above presented theory for different physical
systems. We show that the developed theory can be used for
the calculation of the collective spin-wave spectra in rather
complicated systems, which may be interesting for practical
applications.

In all the following examples, we will consider arrays of
dots that are have a shape of round cylinders with the radius R

and height h. The static magnetic moments of all the dots are
oriented perpendicular to the array plane. If the static magnetic

N1 dots

ahyp
1

ahyp
2

aleg
1

aleg
2

FIG. 3. Sketch of the array of magnetic nanodots in the form of
a right triangle. The primitive vectors of the array’s lattice used to
calculate spin waves localized near hypotenuse (legs) are shown to
the right (left).

moments of all the dots are oriented in the same direction
(either +ez or −ez), the static state will be called ferromagnetic
(FM). If the magnetic moments of the nearest dots point in
the opposite directions, the static magnetization state will be
called antiferromagntic (AFM). A computer program imple-
menting the proposed theoretical formalism is available on the
Internet [55].

A. Edge modes

1. FMR excitation of a finite triangular array of magnetic
nanodots in the FM static state

In this example, we consider an FMR excitation of a
finite array of magnetic nanodots. The dots are periodically
arranged in the form of a right triangle, and have a square
lattice with the lattice constant a, as shown in Fig. 3. The
array hs the following parameters: a = 2.2R, h = 0.25R,
Ka = 0.5μ0M

2
s , and αG = 0.01, the number of dots along a

leg of the triangle is N1 = 40, for a total of N = 820 dots in the
array. These particular parameters were chosen to guarantee
the perpendicular stability of the FM state (Ba) and to ensure a
significant dipolar interaction between the dots (a − 2R < h).

The array considered in this example has the shape of a
right triangle with three edges, two of which (the legs of the
triangle) are equivalent and one is different (the hypotenuse).
To employ the technique presented in Sec. IV, we need to
calculate collective spin-wave spectra for two sets of the
primitive lattice vectors:

aleg
1 = (a,0), aleg

2 = (0,a), (59a)

for the modes localized near the legs and

ahyp
1 = (a,a), ahyp

2 = (0,a), (59b)

for the modes localized near the hypotenuse.
The dispersion relations for the legs of the triangle are

shown in Fig. 4(a), while the dispersion for the hypotenuse is
shown in Fig. 4(b). These relations were calculated numeri-
cally using Eq. (27) for equivalent stripes oriented along the
primitive vectors defined by (59a) and (59b) with N = 31. The
properties of the spin-wave modes in an FM stripe of magnetic
elements was previously investigated in detail in Ref. [33]. For
each stripe, it is important to note, that the FMR excitations
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FIG. 4. Results of FMR calculation in a triangular array of
magnetic dots: (a) and (b) dispersion of the spin-wave modes
traveling along (a) legs and (b) hypotenuse of the triangle. Solid
lines correspond to the edge modes, yellow area denotes the bulk
mode zone. (c) Distribution of the magnetization amplitude for two
edge modes localized near the legs of the triangle. (d) Absorption
power spectrum of the array for a microwave signal with right
circular polarization. The inset shows absorption caused by the edge
modes in more details. The black line represents the calculation
results based on the theory presented in this paper, while the red
dots correspond to the direct numerical simulations. The absorption
peaks associated with different modes are marked as follows: α

are the bulk modes; λ1 and λ2 are the edge modes localized near
the legs; ζ is an edge mode localized near the hypotenuse of the
triangle, η is a “corner mode” localized near vertexes of the triangle.
Parameters of the array: a = 2.2R, h = 0.25R, Ka = 0.5μ0M

2
s ,

αG = 0.01, and the total number of dots in the array is N = 820.
The frequency values are normalized by the characteristic frequency
ωM = γμ0Ms .

can be localized along the stripe edges, and that these edge
modes form pairs, localized on the opposite sides of the stripe.
The edge modes in each pair are slightly split in frequency [see
the inset in Fig. 4(a)], due to the symmetry breaking part of
the dipole-dipole interaction [33], but the frequency splitting
vanishes at the symmetry points of the Brillouin zone. Thus,
to calculate the partial permeability tensors (56), one should
take a linear combination of the eigenvectors of (27) in such a
way that the high frequency components of the magnetization
appear to be nonzero for dots located near one side of the
stripe. For this particular configuration, two well-separated
edge modes are formed for the both sets of primitive vectors.
The distribution of the high frequency components is plotted
in Fig. 4(c) for the primitive vectors in (59a) for two edge
modes with κ = 0.

The FMR absorption spectrum of the array is plotted in
Fig. 4(d) with a solid black line that corresponds to the
results of the numerical solution of Eq. (57). As expected,
the absorption spectrum consists of a main peak (marked with
the symbol α) corresponding to bulk spin-wave modes in the
array, and several side-peaks associated with localized edge
spin-wave modes from the legs of the triangle (marked with
λ1 and λ2) and from the hypotenuse (marked with η). The
higher edge modes are less localized [see Fig. 4(c)], therefore
these modes are less pronounced in the absorption spectrum,
and the peak associated with the second mode localized on
the hypotenuse is completely suppressed by the neighboring
peaks.

When the number of the dot in the array is not large, it is
possible to solve the Landau-Lifshitz equation (45) directly.
Since we are interested only in the linear dynamics, we can
linearize (45) using the same procedure as described in Sec. II:

∑
j

[iω( Ĵ i − α Î)δij + �̂
′
ij ] · mj = γ P̂ i · b0. (60)

The static properties can be found from (9), where the external
field Bext

i is absent in our case.
In Fig. 4(d), we also show (see red dotted line) the

absorption spectrum found by the direct numerical solution
of the linear inhomogeneous system of 1640 equations (60)
for N = 820 dots. It is evident, that the direct numerical
simulation agrees reasonably well with our theory, as the
frequencies and heights of the absorption peaks are in good
quantitative agreement. The most notable difference between
the theoretical and numerical simulations is the broadening
of the bulk peak obtained in the direct numerical simulations.
The direct numerical simulations also show an additional peak
(marked by η), which does not correspond to any of the peaks
obtained in the quasianalytical theory.

To further analyze the FMR absorption spectra and explain
the differences between the theoretical and numerical values
of the power absorption, we present in Fig. 5 the distribution of
the microwave magnetization in the array for several values
of the excitation frequency, calculated from (60). In Fig. 5(a),
we plot the distribution of the magnetization at the central
frequency of the bulk peak (marked with the an α in Fig. 4).
The distribution is not uniform across the array, especially
at the vertexes. This nonuniform distribution is caused by a
nonhomogeneous internal magnetic field within the elements,
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FIG. 5. Distribution of the high-frequency component of the
magnetization in the triangular array of magnetic nanodots (see Fig. 3)
excited by a variable external magnetic field, obtained by a numerical
solution of the linearized Landau-Lifshitz equations. The frequency of
the excitation is chosen to be at the central frequency of the absorption
peaks marked in Fig. 4(d): (a) α line (bulk mode), (b) ζ line (one of
the edge modes), and (c) η line (corner mode).

and, in its turn, is causing inhomogeneous broadening of the
main absorption peak [17] seen in Fig. 4(d).

The magnetization distribution for the hypotenuse mode
(marked in Fig. 4 with a ζ ) is plotted in Fig. 5(b) for the
central frequency of the absorption peak. As one can see,
most of the dots having the maximum values of the precession
amplitude are localized near the hypotenuse, as theoretically
predicted. The peak marked with the symbol η in Fig. 4 is
not present in the theoretical calculations. The distribution of
magnetization at the central frequency of this peak is plotted
in Fig. 5(c). For this case one can see, that the dots with
the maximum amplitudes are situated at the vertexes of the
triangle. These “corner modes” were neglected in (57), and
they do not appear in the results obtained using the developed
theory. The direct numerical simulation shows that although
the influence of these “corner modes” is rather small, one
should not completely neglect them for an array of this rather
small size.

Overall, our theory gives results which correspond closely
with direct numerical simulations, and provide a convenient
way to analyze the features of the absorption spectra an-
alytically. We would like to emphasize the computational
advantage of our theoretical method. Each red dot in Fig. 4(d)
required an independent solution of the inhomogeneous linear
system of Eq. (60), having the arithmetic complexity of O(N3),
making the direct numerical simulations impractical for large
arrays of magnetic dots. Even for a system with only 820
dots, the time required to calculate the numerical absorption
spectra was considerable. On the other hand, the theoretical
line in the same figure, along with the dispersion relation
in Fig. 4(a), can be almost instantaneously computed for an
array of any size, independently of the number of dots. In
other words, the arithmetic complexity of the quasianalytical
problem for the same array is of O(1). Surely, this simple
analytical technique cannot compete in numerical accuracy
with the available micromagnetic packages [50], however, it
can be useful for the approximate “engineering” of the desired
absorption spectra with a subsequent quantitative verification
using a computationally intensive micromagnetic simulation.

2. Nonreciprocal spin-wave edge mode

This example is illustrating the nonreciprocal properties
of the spin-wave spectra in arrays of magnetic nanodots
with complex unit cell. The nonreciprocity of a spin-wave
propagation is a desirable feature for the development of
miniaturized and bias-free microwave isolators and circulators.
Recently, nonreciprocal bulk collective spin-wave modes have
been investigated in detail for infinite arrays of magnetic
nanopillars in Ref. [19]. In particular, it was shown that for
arrays of identical dots, nonreciprocal spin-wave bulk modes
only exist when the constituent elements have an out-of-plane
magnetization. It was also shown that nonreciprocal spin waves
bulk modes exist in infinite dot arrays with complex unit
cells, e.g., containing two different types of dots. For example,
the dots may have different values of the anisotropy field or
different dot shapes, thus forming two different sub-lattices in
the array.

In terms of the nonreciprocity the edge modes are not as
restrictive as the bulk mores, and for the edge modes the
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FIG. 6. Sketch of a semi-infinite array of magnetic nanodots with
a complex unit cell having dots with different anisotropy within a
primitive cell. White and green dots have the different value of the
anisotropy field Ba . The black arrow points towards the “forward”
direction of the spin-wave propagation.

necessary conditions for the nonreciprocal behavior could be
lifted. For example, even a simple system of identical dots may
have nonreciprocal edge modes [33]. The general properties
of the bulk spin wave spectra may be obtained by analyzing
the symmetry properties of the fundamental tensor ˆ̃Fk. For
edge modes, however, an analytical solution is not possible, as
the eigenvalue problem (27) is not symmetric. Nevertheless,
much information can be gained by performing a numerical
analysis based on (27) and (37).

Here, we consider a semi-infinite array of magnetic nan-
odots having a rectangular lattice and a unit cell containing
two different dot types, each having a different crystalline
anisotropy within the same physical geometry (Fig. 6). Thus
each cell of the array consists of a heterogeneous pair of
dots separated by the vector δ. To handle this problem in
the framework of our theory the diagonal components of the
demagnetization block matrix (22) should rewritten in the
following way:

ˆ̃N(r) =
(

N̂ (r) N̂ (r + δ)
N̂ (r − δ) N̂ (r)

)
+ δ(r)

(
K̂ 1 0̂
0̂ K̂ 2

)
,

(61)

where 0̂ is a zero 3 × 3 matrix.
For this example, when performing the actual numerical

calculations of the block matrix ˆ̃Eκ (n) using (29), it is
convenient to separate the part of ˆ̃N(r) that corresponds to the
crystalline anisotropy. Since the anisotropy tensors K̂ i enters
directly only into the multitensor ˆ̃Eκ (0), it is not necessary to
recalculate the numerical values of ˆ̃Eκ (n) for a different values
of the anisotropy.

For the easy comparison with the previous results, we use
the same geometrical parameters of the array as in Ref. [19]:
a1 = 3.3R, a2 = 10R, δ = 5R, and h = 5.0R. The unit cell
consists of two dots, one magnetically isotropic and another
having an out of plane easy axis crystalline anisotropy of the
value of Ba

2 = 0.2μ0Ms . It has been shown previously that
if δ = a2/2, the bulk spectrum is reciprocal. However, the
edge modes in this case are not reciprocal. This is shown by
the results of a numerical simulation plotted in Fig. 7. The
numerical simulations of edge spin waves in the array were
performed for the stripe of width N = 31 cells.
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FIG. 7. Dispersion of collective spin-wave modes in a semi-
infinite array of magnetic dots with different crystalline anisotropy,
shown in Fig. 6. Dispersion curves for the edge modes traveling in the
forward (backward) direction are plotted with solid (dashed) lines.
The bulk spectrum is shown by a yellow region. Parameters of the ar-
ray: a1 = 3.3R, a2 = 10R, δ = 5R, h = 5.0R, Ka

1 = 0.1μ0M
2
s , and

Ka
2 = 0. The frequency values are normalized by the characteristic

frequency ωM = γμ0Ms .

In Fig. 7, we present the dispersion of the edge modes
traveling along one side of the stripe. The spectrum consists
of two zones of bulk waves and several well-separated edge
modes for each zone. The mechanism of the edge mode
formation is the same as in the case considered in Sec. VI A 1,
namely, a nonuniform static magnetic field near the edge of
the array. Corresponding to the previous results, the bulk mode
spectrum is reciprocal, while the spectrum of the edge modes
is nonreciprocal, because the waves traveling in the opposite
directions have different eigenfrequencies. The effect of
the nonreciprocity is more pronounced for the modes that are
separated from the bulk spectrum. However, the difference
between the frequencies for the opposite values of κ is
relatively small in this case.

The edge spin-wave spectrum is reciprocal if the boundary
in the array is made along the a2 direction. The derivation of the
exact analytical conditions of nonreciprocity for the spectrum
of edge spin-wave modes is beyond the scope of our current
work and would be published elsewhere as a separate study.

B. Domain walls

1. Nonreciprocal spin waves traveling along domain walls in
arrays in FM stable state

In the previous example, the edge mode was well-separated
in frequency from the bulk spectrum, and it exhibited a
nonreciprocal behavior. While the nonreciprocity was present,
the effect was relatively small. As it will be shown below, the
nonreciprocal property of the spin-wave modes propagating
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a2

a1

FIG. 8. A sketch of an array of magnetic nanodots with a domain
wall in ferromagnetic static magnetization state. Open (orange) dots
correspond to dots having the static magnetization directed up (down).

along the domain walls is substantially more pronounced
than for the modes propagating along the array’s edges. The
reason is that the nonreciprocal frequency splitting depends
on the difference in ellipticity between the adjacent dots, and
should be the most pronounced for the dots with the opposite
directions of the static magnetic moments, and therefore, the
opposite senses of the magnetization precession [19]. Such a
case is realized for an array in the FM stable state having a
domain wall, which separates dots with anti-parallel directions
of the magnetic moment, as is shown in Fig. 8.

Consider an infinite array, where the static magnetization
[see Eq. (25)] has the following dependence of coordinate in

the a2 direction:

μn =
{−ez, n > 0,

ez, n � 0,
(62)

where ez is a unit vector perpendicular to the array plane.
The dispersion relation for this array is shown in Fig. 9(a).

The numerical simulations were performed for a stripe having
N = 82 rows. This number of rows was chosen to guarantee
the absence of interaction between the domain-wall modes
and the “artifact” edge modes (the “artifact” edge modes have
been removed from the plot). The spectrum consists of the bulk
modes, similar to the modes considered in Sec. VI A 1, and
the domain wall modes that are separated in frequency from
the bulk modes. The mechanism responsible for the formation
of the domain wall modes is a “potential well” formed by the
nonuniform static magnetic field profile near the domain wall,
as shown in Fig. 9(b). The domain-wall modes can be divided
into two types: the modes localized directly on the domain
wall and the modes localized near the domain wall, as shown
in Fig. 9(c). The modes localized near the domain wall (green
triangles in Fig. 9(c) are similar to the modes formed near the
edge of an array in FM stable state [33]. The modes formed
directly on the domain wall [magenta stars in Fig. 9(c)] exhibit
a different behavior, as these modes are more localized and are
highly nonreciprocal. In fact, these nonreciprocal modes still
exist in a stripe of dots consisting of only two rows of dots
with opposite directions of the static magnetization.
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FIG. 9. (a) Dispersion of collective spin-wave excitations localized on a domain wall in an array of magnetic nanodots existing in the FM
static state. (b) Static magnetic field profile near a domain wall. (c) Profiles of time-averaged high-frequency component of the magnetization
for the first (magenta stars) and the third (green triangles) modes traveling in the κ > 0 direction. The modes are marked by similar symbols as
in (a). (d) Insertion losses for the collective spin waves traveling along the domain wall in two directions. Parameters of the array: a = 2.2R,
h = 0.25R, Ka = 0.5μ0M

2
s , and αG = 0.01. The frequency values in (a) and (d) are normalized by the characteristic frequency ωM = γμ0Ms .
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Nonreciprocal signal processing devices, such as isolators
and circulators, allow propagation of waves in one direction
and ado not allow such propagation in the opposite direction.
This property is, typically, achieved due to the different
insertion losses for waves traveling in the opposite directions.

Below, we demonstrate that such a nonreciprocal isolation
effect can be achieved for the spin waves propagating along a
domain wall in an array of magnetic nanodots.

The propagation losses of any of the spin-wave modes
caused by the magnetic damping can be calculated as

dν = −20 log10(e)
a
ν∣∣V g

ν

∣∣ [dB/dot], (63)

where a is the distance between the nearest dots and V
g
ν

is the group velocity of the spin-wave mode. The direction
of the wave mode propagation (“forward” or “backward”) is
determined by the sign of the group velocity.

It is clear from Fig. 9(a), that there is a small region near
κ = 0, where the spin-wave mode marked by a magenta star
in Fig. 9(a) has a negative group velocity V

g
ν = dων/dκ < 0,

and, therefore, can be considered as a “backward-propagating”
wave in this region.

The results of calculation of the propagation losses for
spin-wave modes forward and backward propagating along the
domain wall using (63) are presented in Fig. 9(d). In contrast
with the previous example, in this case the difference in
losses between the forward- and backward-propagating wave
modes is rather big (up to 0.2 dB/dot), and is comparable
to the direct insertion losses for the faster (Vg < 0 in our
case) spin-wave mode. This makes the nonreciprocal spin
waves propagating along the domain walls in the FM -state
magnetic dot arrays rather interesting for practical realization
of nanosized microwave isolators.

2. Spin-wave domain wall modes in chessboard AFM stable state

A magnetic dot array with a square lattice existing in
the AFM static magnetization state, where the neighboring
nanodots have opposite magnetization directions, has the
lowest potential energy, and, therefore, forms a true ground
state of the array. Such a state of the static magnetization,
shown in Fig. 10 and having a zero net magnetic moment, is,
usually, naturally formed during the demagnetization and is

a2

a1

δ

FIG. 10. A sketch of a domain wall in an array in chessboard
antiferromagnetic ground state. The boundary between two states in
shown by a dashed grey line. Green rectangles show the elementary
cells for two different states. Open and orange dots has the same
meaning as in Fig. 8.

called the chessboard AFM (CAFM) state [14,17]. In reality,
however, demagnetization does not lead to an ideal CAFM
state [18], but, instead, it leads to the formation of clusters with
local periodicity due to the spontaneous symmetry breaking
between the two equivalent ground states of the array. A
boundary between the two equivalent states CAFM states
forms a “domain wall,” as shown in Fig. 10.

This example will explore the FMR (wave number equal
to zero) absorption spectrum of the domain-wall modes in an
array existing in a CAFM. To calculate the spin-wave modes
localized on the domain walls in the array we consider a single
infinitely long domain wall within an infinite array, as shown
in Fig. 10. The spectrum of the collective spin-wave modes
localized on the domain wall in the CAFM state is presented
in Fig. 11(a). The spectrum consists of two bulk zones [17]
and a well-separated domain-wall mode. As in the previous
example, we have removed the “artifact” modes caused by
the specifics of the numerical solution (see Sec. V). The main
reason for the modes localization on a domain wall is the
variation of the internal magnetic field near the domain wall
[see Fig. 11(b)]. However, this variation is much smaller than
in the example described in the previous section: only the dots
that are the closest to the domain-wall have a distinct difference
in their internal magnetic field, and this field variation is
rather small, making the corresponding potential well rather
shallow. Therefore, only a single localized mode appears
in the spectrum of the array for the considered geometrical
parameters, and the localization of this mode ir rather weak as
shown in Fig. 11(b).

An array in the CAFM ground state does not have a net
magnetic moment. Thus its FMR absorption spectrum does not
depend on the polarization of the external signal. In contrast,
the contribution made by the external microwave field to the
domain wall mode has a polarization dependence. If one takes
the axis Ox to be parallel to the domain wall, the partial
susceptibility tensor (56) associated with the domain-wall
modes has the following structure:

χ̂dw =
⎛
⎝χxx

dw 0 0
0 0 0
0 0 0

⎞
⎠, (64)

making the mode insensitive to the component of the external
magnetic field that is perpendicular to the domain wall.

The difference in response of the bulk and edge modes is
caused by the symmetry of the problem. In a domain existing
in a uniform CAFM ground state, the magnetization in a
particular dot will precess clockwise and counter-clockwise
depending on the orientation of the magnetic moment of this
dot [17], making χ̂b a diagonal real tensor with χxx

b = χ
yy

b .
However, in the case of domain-wall modes the boundary

between the two CAFM ground states “synchronizes” the
precession in the adjacent domains. The mirror symmetry of
the problem requires that

mx
(n+1,1) = mx

(−n,1) = mx
(n+1,2) = mx

(−n,2) (65a)

and

my

(n+1,1) = −my

(−n,1) = −my

(n+1,2) = my

(−n,2). (65b)
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FIG. 11. (a) Dispersion of the collective spin-wave modes localized on a domain wall in an array of magnetic nanodots existing in the
chessboard AFM static magnetization state. (b) Blue circles show the profile of the static internal magnetic field near the domain-wall (left axis).
Red stars show the profile of the localized spin-wave mode for κ = 0 (right axis). (c) Absorption power spectrum of the array in a multidomain
chessboard AFM state for the microwave signal with linear polarization oriented in the [11] direction for two values of the characteristic domain
size calculated using the above developed quasianalytical theory. The absorption peaks associated with the bulk and domain-wall modes are
marked with the symbols α and τ , respectively. (d) Absorption power spectrum calculated using the direct micro-magnetic simulation procedure
described in Ref. [18] (black line, bottom axis); solid and dashed vertical lines indicate theoretically calculated resonance frequencies for bulk
and domain-wall modes, respectively (upper axis). Physical dimensions of the array for (a)–(c) are the same as for Fig. 9. The frequency values
in (a), (c), and (d) are normalized by the characteristic frequency ωM = γμ0Ms .

Using the above properties on can easily to show that

my

(n,1)

(
my

(n′,1)

)∗ = −my

(n,2)

(
my

(n′,2)

)∗
. (66)

Using Eq. (65) in (56), it is easy to get that χ
yy

dw = 0.
Analogously, one can show that χ

xy

dw = 0, and, therefore, χxx
dw

is the only nonzero component of the susceptibility tensor of
the domain-wall spin-wave mode.

A convenient characteristic of the final state of a demag-
netized array [18] is the typical value of the number of dots
forming a one CAFM cluster A (cluster size). Thus the total
length (in dots) of a domain wall encircling all the clusters can
be approximated as

L ≈ 2
√
A N

A . (67)

The full absorption power can be found from the expression
that is analogous to (57)

P ≈ N

(
Pb + 2√

A
Pdw + 4√

N
Pe

)
, (68)

where Pb is the total absorption caused by the bulk modes,
Pdw is the total absorption caused by the domain wall modes,
and Pe is the total absorption caused by the edge modes.

For sufficiently large arrays, the role of the edge modes
vanishes, although the absorption caused by the domain wall
modes is inversely proportional to the size of a cluster in the
array, and does not vanish in the limit N → ∞. The absorption
spectra calculated for two different values of the cluster size
are shown in Fig. 11(c). The peaks associated with the bulk
modes and domain-wall modes are marked with the symbols
α and τ , respectively. For the clusters containing A = 64
dots, these domain-wall modes may be clearly pronounced,
producing an absorption that has a magnitude larger than 10%
of the magnitude of the bulk mode peak. Thus the absorption
caused by the domain wall mode can be easily observed
experimentally. Obviously, the static magnetization states with
smaller clusters produce a larger absorption, however, when
the linear dimensions of the domains get closer to the spin-
wave localization length [see Fig. 11(b)] the approximation of
an infinitely long domain wall is no longer valid.

A previous work [18] calculated the FMR absorption
spectrum for a CAFM array containing stable clusters using a
micro-magnetic simulation. When the data from the micro-
magnetic simulation is compared with our quasianalytical
theory, the results appear to be quite similar. These results
are shown in Fig. 11(d), where the data taken from Ref. [18] is
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shown by a continuous thin black line, while the vertical lines
show the spectral positions of the absorption peaks calculated
from our quasianalytical. It is evident that the bulk peak
obtained in the framework of our theory and shown by a solid
vertical line, matches nicely with the absorption peak obtained
from the micromagnetic simulations. Likewise, the dashed
vertical line, which marks the absorption peak corresponding
to the cluster of domain walls, matches well with the position
of the plateau obtained in the micromagnetic simulations.
Unfortunately, the data from Ref. [18] were obtained for
the cluster sizes of A ≈ 23, for which the localized domain
wall modes were not completely formed. That makes a
more detailed quantitative comparison between the theory
presented here and the micromagnetic simulations impossible.
This is confirmed by the lack of a strong absorption peak
corresponding to the domain wall modes in the micromagnetic
simulations. The difference in the mode frequencies between
the micromagnetic results and the analytical theory is caused,
most likely, by the inhomogeneity of the internal magnetic
field, the effect similar to the one described in Sec. VI A 1.

Thus the developed theory provides a reasonably good tool
to estimate the cluster size from the FMR response measured
or calculated for the arrays with sufficiently large clusters.
However, for arrays with smaller clusters, the development of a
technique capable of estimating the cluster size from the FMR
response require a more rigorous estimation of the domains
boundary length, than the one given by Eq. (67). A more
rigorous estimation must take into account the “corner modes”
that form at the domain wall intersections and the interactions
between the domain-wall modes exsisting within one domain.

VII. CONCLUSIONS

A general theoretical formalism, developed in this pa-
per, allows one to calculate the following characteristics of
the finite magnetic dot arrays having a complex primitive
cell and a translational symmetry along one of the lattice
vectors: (i) distribution of the internal magnetic field inside
the array; (ii) equilibrium directions of the static part of
the dot magnetization inside the array; and (iii) spectra
of the collective spin-wave edge excitations in the array. We
have shown that by introducing a “multivector” notation it is
possible to reduce the solution of the Landau-Lifshitz equation
for a dot array to a generalized eigenvalue problem. The
components of the block-matrices involved in the eigenvalue
problem for edge spin-wave excitations are obtained using
a one-dimensional Fourier transform of analytically defined
functions, which requires substantially less computation time
than the typical micromagnetic simulations for the same
system. Although only a macrospin approximation of the
magnetization dynamics in a single dot is considered in this
work, the developed formalism could be extended to describe
the magnetization dynamics in a dot array with a nontrivial
distribution of the dynamic magnetization inside the dots (for
one of possible extensions see Appendix A).

The above developed quasianalytical approach made pos-
sible to develop a theory of the FMR excitation of finite dot
arrays, taking into account the edge effects. It was also shown
that, using the developed theory, it is possible to calculate
the absorption spectra of finite dot arrays using much less

computation effort than required for the direct micromagnetic
simulations of a similar system. Moreover, the quasianalytical
representation of the partial magnetic susceptibility tensors
provides a way to understand how each spin-wave mode of the
array interacts with the applied electromagnetic driving field.

We have also developed a computer program implementing
our method [55] and illustrated the application of the developed
theory on the examples that fall into two categories: edge
effects and domain-wall effects. In particular, it has been
demonstrated that the FMR absorption spectrum calculated
using our quasianalytical theory for a finite array of magnetic
nanodots having a shape of right triangle agrees very well
with the results obtained by direct micromagnetic simulations.
An example of an array with a complex elementary cell
containing two different magnetic dots was also considered.
It was demonstrated that such arrays, while having reciprocal
spectrum of bulk spin-wave modes, may have a nonreciprocal
spectrum of the edge spin-wave modes.

The spectra of spin-wave excitations localized at the domain
walls in arrays of magnetic nanodots were calculated for two
cases: a domain wall between the two ferromagnetic static
magnetization states and a domain wall between the two
chessboard antiferromagnetic static magnetization states. In
the first case, it was demonstrated that the modes localized on
the domain-wall have a very high degree of nonreciprocity. The
propagation losses for these modes appear to be significantly
different for the opposite propagation directions, which can
be used for the development of nanosized microwave isolators
and circulators. For the case of an array existing in a chessboard
antiferromagnetic static magnetization state with domain walls
(which is a natural state for a demagnetized array), it has been
shown that the spin-wave modes localized on the domain walls
may produce a significant contribution to the FMR absorption
spectra. In contrast to the spin-wave modes localized at the
array’s edges, that have been considered in previous examples,
the contribution to the FMR response by the modes localized
on the domain wall in the chessboard antiferromagnetic ground
state depends on the size of the domains, providing a tool to
estimate the size of the domains, and, therefore, the “quality”
of the static magnetization state of the dot array.
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APPENDIX A: AN EXTENSION OF THE THEORY
BEYOND THE MACROSPIN APPROXIMATION

In the theory devolved above, we used the same demagne-
tization tensor N̂(r) for static (9) and dynamic (10) equations.
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This approximation is correct, when the dots are assumed to
be magnetized uniformly among their volume (“macrospin
approximation”) and the crystalline anisotropy is uniaxial.
Here we show that the developed theory can be extended to
cover more general situations.

We demonstrate below that the theory can be substantially
generalized if we use different static and dynamic demagneti-
zation tensors in (9) and (11):

Biμi = Bext
i − μ0Ms

∑
j

N̂
st
ij · μj (9′)

and

�̂ij = γBiδij Î + γμ0Ms N̂
dyn
ij , (11′)

where N̂
st
ij and N̂

dyn
ij are the static and dynamic demagnetiza-

tion tensors found in each particular case. In all the equations
of the above developed theoretical formalism, the static and
dynamic demagnetization enter independently, so it is easy to
trace all the changes caused by using different demagnetization
tensors for static and dynamic magnetization.

1. High-order crystalline anisotropy

A high-order crystalline anisotropy is usually rather weak,
compared to the uniaxial anisotropy of the magnetic material
and the shape anisotropy of the magnetic sample. However,
in some particular cases the high-order anisotropy can be
qualitative important. For example, this happens when the
shape and crystalline anisotropies are not present (e.g., when
magnetic elements are spherical and made of an isotropic ma-
terial [36,57]) or when the shape and crystalline anisotropies
cancel each other.

As an example of the high-order anisotropy here we
consider the first-order cubic anisotropy. Let us assume that
the energy of the cubic anisotropy is Kc1 and the crystalline
axes are e1, e2, and e3. The energy added by the first-order
cubic anisotropy to the energy of a single magnetic dot can be
written [56] as (here and below we drop the dot’s index):

Wc = Kc1

M4
s

∑
αβγ δ

Tαβγ δMαMβMγ Mδ, (A1)

where

Tαβγ δ = e1 ⊗ e1 ⊗ e2 ⊗ e2 + e1 ⊗ e1 ⊗ e3 ⊗ e3

+ e2 ⊗ e2 ⊗ e3 ⊗ e3. (A2)

Thus the effective field caused by the anisotropy can be found
as

Bc1 = −∂Wc1

∂ M
= −4Kc1

M4
s

∑
αβγ

T
sym
αβγ δMαMβMγ , (A3)

where

T
sym
αβγ δ = 1

24
(Tαβγ δ + Tβαγ δ + Tβγαδ + . . . ). (A4)

To linearize (A3), we use expansion (6). In contrast with
the uniaxial case, the static and dynamic magnetic fields are

different. The static field can be found as

Bst
c1 = −4Kc1

Ms

∑
αβγ

T
sym
αβγ δμαμβμγ , (A5)

while the dynamic field is found as

Bdyn
c1 = −4Kc1

Ms

N̂c1(μ) · m, (A6)

with

N̂c1 =
∑
αβγ

T
sym
αβγ δ(μαμβ + μαμγ + μβμγ )

= 3
∑
αβ

T
sym
αβγ δμαμβ. (A7)

Thus the correction to the demagnetization tensor caused by
the cubic anisotropy can be written as

N̂
st
ij = N̂ ij + δij

4Kc1

3μ0M2
s

N̂c1(μ), (A8)

N̂
dyn
ij = N̂ ij + δij

4Kc1

μ0M2
s

N̂c1(μ). (A9)

Note that the effective demagnetization tensor now explicitly
depends on the magnetic ground state of a dot. The dynamical
equations do not get any additional complexity, however, the
static problem (9′) becomes considerably more complicated.
Although, in a particular case, when the static component is
aligned along one of the axes of the cubic anisotropy e3 =
μ, the correction to the demagnetization tensor has a simple
form [56]:

N̂c1 = (e1 ⊗ e1 + e2 ⊗ e2)/2. (A10)

2. Dots with nonuniform dynamic magnetization

For the sake of simplicity, we derived the above presented
theory implying that the magnetic dots have a uniform mag-
netization profile. Nevertheless, the theory can be extended
for the cases, when the spatial profile of the spin-wave mode
is not uniform. A straightforward extension is possible when
(i) the ground state of the static magnetization of the dot is
uniform; (ii) the interactions between the dots do not alter the
ground state of a single dot, e.g., when the interdot interaction
is weaker than the exchange and dipolar self-interactions in a
single dot; and (iii) the eigenmodes of a dot are substantially
separated in frequency. Under these assumptions, our approach
remains sufficiently simple to allow the analytical analysis,
and can describe dynamics of realistic experimental systems
[11–13].

Let us assume that we know from either a micromagnetic
simulation [43,45,50] or from an analytical solution [31,43,64]
the linear magnetization dynamics of a single isolated mag-
netic dot in a form

M(t,r)/Ms = μ +
L∑

λ=1

mλ(r)e−iωλt + c.c., (A11)

where μ is the static magnetization component, mν(r) is the
vector mode profile of the λ − th spin-wave mode, and L is the
number of these spin-wave modes. For simplicity, we assume
that the modes do not interact. It is convenient to switch to
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a temporary coordinate system (denoted by the symbol ′), in
which μ = z′, and write the distribution of the dynamic part
of the magnetization in this system as [65]

cλm′
λ(r) = Â

′
λ(r) ·

⎛
⎝1

i

0

⎞
⎠, (A12)

where Â
′
λ(r) is a real dimensionless matrix density

Â
′
λ = cλ

⎛
⎝Re (mx(r)) − Im (mx(r)) 0

Im (my(r)) Re (my(r)) 0
0 0 0

⎞
⎠. (A13)

The normalization coefficient cλ is found from the condition

1

V

∫
V

Âλ(r) · Ĵ · Âλ(r)d3r = Ĵ, (A14)

where V is the volume of the dot and the operator Ĵ is defined
in the same way as in (13).

Following the same procedure as in Ref. [52], we obtain the
Fourier representation of the effective demagnetization tensor:

N̂λ,K = 1

V K2
Âλ,K · (K ⊗ K ) · Â

∗
λ,K , (A15)

where K in the three-dimensional reciprocal vector and Âλ,K

is

Âλ,K =
∫

V

Âλ(r)e−i K ·rd3r. (A16)

After that, the effective dynamic demagnetization tensor

N̂
dyn
λ,ij and its in-plane Fourier image N̂

dyn
λ,k can be found

straightforwardly [17]:

N̂
dyn
λ,k = 1

2π

∫
N̂λ,k+zκz

dκz. (A17)

Now one substitutes this tensor into (11a′) and finds
eigenfrequencies ων and spin-wave mode profiles mν,n of the
collective spin-wave excitations in an array of interacting nan-
odots using (27). After that, the distribution of magnetization
within a single dot for the νth array mode can be found for
each dot in the array:

mν,λ,n(r) = Âλ(r) · mν,n. (A18)

A case of multiple interacting modes within a dot can
be considered introducing a new “layer” of multivectors,
representing amplitudes of different modes, similarly to
the approach used for a complex unit cell in this paper.
The operators Ĵ will, however, have to be renormalized, as
the different modes may carry a different magnetic moment.

APPENDIX B: MULTIVECTOR ALGEBRA

“Multivectors” are introduced as the first rank objects in a
multivector space. Instead of scalars for “ordinary” Euclidean

vectors, each multivector (ã) is an ordered collection of three-
dimensional vectors ai . A multivector of the size P contains
P three-dimensional vectors:

ã =

⎛
⎜⎜⎝

a1

a2
...

aP

⎞
⎟⎟⎠. (B1)

Below we define the algebra in the multivector space. First
of all, we define a bilinear operation (scalar product) of two
multivectors of the size P :

ã · b̃ =

⎛
⎜⎜⎝

a1

a2
...

aP

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

b1

b2
...

bP

⎞
⎟⎟⎠ =

P∑
i=1

ai · bj . (B2)

The second rank objects in the multivector space are the block-
matrices P by P , each element of which is a 3 × 3 matrix
of scalars. A product of a multivector and a block matrix is
defined as follows:

ˆ̃M · ã =

⎛
⎜⎝

M̂11 · · · M̂1P

...
. . .

...
M̂P 1 · · · M̂PP

⎞
⎟⎠ ·

⎛
⎜⎝

a1
...

aP

⎞
⎟⎠

=

⎛
⎜⎝

∑P
i=1 M̂1i · ai

...∑P
i=1 M̂P i · ai

⎞
⎟⎠ = b̃, (B3)

and returns another multivector. Although it is never used
in the paper, one can also define scaling a multivector as a
multiplication of a multivector by a scalar and other higher
rank operations.

The multivectors are convent for analytical and numerical
calculations. In computer algebra systems, the operations (B2)
and (B3) can be defined as custom user operations and one can
analyze the object in the multivector space analytically.

For numerical simulations, one can formally use multivec-
tors as ordinary vectors of scalars of the size 3P :

ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ax
1

a
y

1

az
1
...

ax
P

a
y

P

az
P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· (B4)

One can easily check, that the operations (B2) and (B3) remain
valid in this case. It is important to stress that our notation for
“multivectors” is not related to the “Multivector Calculus”
described in Ref. [66].
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