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Spin-wave localization in tangentially magnetized films
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We present an analytical description of localized spin-wave modes that form in a parabolic field minimum
in a thin ferromagnetic film. Mode profiles proportional to Hermite functions are eigenfuctions of the applied
field and exchange parts of the equations of motion, and also provide a basis for numerical approximation of
magnetostatic interactions. We find that the spin-wave modes are roughly equally spaced in frequency and have
roughly equal coupling to a uniform driving field. The calculated mode frequencies and corresponding profiles
of localized spin-wave modes are in good agreement with micromagnetic modeling and previously published
experimental results on multiple resonances from a series of localized modes detected by ferromagnetic resonance
force microscopy.
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I. INTRODUCTION

During the last decade, localization of magnetic excitations
(i.e., localization of spin waves) has drawn the attention of
many researchers. Localized spin excitations are important for
a range of applications from local measurements of magnetic
properties to the switching dynamics of novel memory devices
and the dynamics of spin torque oscillators.

The mechanism of spin-wave localization can have a variety
of physical origins. At the most basic level, excitations are
confined to the volume of a magnetic structure [1,2]. In a sheet
film, however, spin-wave localization may occur in regions
of low effective field, meaning regions where the precession
frequency is lower than the range of propagating spin-wave
frequencies in the surrounding medium. Without a separation
in frequency between localized and propagating modes, a
locally prepared excitation would likely couple to propagating
waves having the same frequency, allowing the precession
energy to disperse. Regions of low effective field occur as
a result of material property fluctuations in inhomogeneous
materials, and it has been shown through modeling that such
localization contributes to broadening of the ferromagnetic
resonance linewidth [3].

A fairly common situation where the conditions for spin-
wave localization are met occurs in patterned film structures
where internal fields may be strongly inhomogeneous, espe-
cially near film edges. Localized spin waves have been ob-
served near the edges of ferromagnetic stripes and rectangular
elements [4–8], and these edge modes have been used to
characterize the effects of lithography [9], oxidation [10], and
interactions in multilayer stripe arrays [11]. In straight stripes,
the localized spin waves are localized in two dimensions, but
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remain extended along the film edge, but along a curved film
edge, i.e., in ferromagnetic nanodisks, the spin waves can
be localized in three dimensions, allowing probes of edge
geometry and conditions along sample edges [12,13].

In addition to linear excitations, a rich variety of nonlinear
localization phenomena has been explored including propa-
gating solitons and stationary nonlinear excitations such as
bullets [14–16] and droplets [17–19] which are self-localized
via the intrinsic nonlinearity of the Landau-Lifshitz equations
of motion [20].

In this paper, we address small-angle spin-wave modes that
are localized in unpatterned films, and we treat a conceptually
simple case, in which the magnitude of the local field has a
parabolic minimum in the plane of the film. The parabolic field
well provides a useful approximation to the stray field of the tip
in magnetic scanned-probe experiments, for example, where
a magnetized tip can produce significant stray fields. Both
calculations and measurements have demonstrated spin-wave
localization under such a tip for perpendicular [21–25], tilted
[26], and in-plane orientations [13]. Localized spin waves of
this type can then be used as probes of material inhomogeneity
with spatial resolution similar to the size of the localized mode
[13,21]. Additionally, localized spin waves have been used in
the “magnetic well” method to nondestructively probe losses
in extended films with low damping [27].

This paper is organized as follows. In Sec. II we develop the
theoretical basis for analysis of spin waves that are localized
in a parabolic field well. In Sec. III we use this analysis to
approximate the modes formed in the field minimum due to
a magnetic cantilever tip, and we compare the results with
micromagnetic calculations. For better quantitative agreement
between theory and micromagnetic calculations, we extend the
theory to accommodate the case of strongly hybridized modes
in Sec. IV. In Sec. V we conclude with a discussion of results
in the context of existing models of spin-wave localization in
thin films and nanostructures.
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FIG. 1. Schematic representation of localized spin-wave mode
profiles formed in a film of thickness a, magnetized in plane. The
field is in the z direction while the magnitude of the field has a
parabolic spatial dependence.

II. DESCRIPTION OF THE MODEL

Figure 1 conceptually illustrates the situation for an in-plane
magnetized film. A magnetic film of thickness a lies in the y-z
plane with the x direction along the film normal. An external
source creates a field that varies in magnitude over position
but is always aligned along the z axis. We create a simple field
minimum by allowing the field magnitude to vary in the plane
of the film as a parabolic well,

Hi(y,z) ≈ H0(1 − C0 + Czz
2 + Cyy

2). (1)

Here, the internal field Hi includes a uniform applied field
H0 and a parabolic field well with depth H0C0 and curvature
parameters H0Cy and H0Cz. We choose the parabolic field
components to be proportional to the applied field in order to
treat the case of a field well due to a nearby, partially magne-
tized sphere. A parabolic magnetic field profile has a number
of intrinsic problems, including large field amplitudes far away
from the origin and violations of Maxwell’s equations. These
difficulties serve as reminders that the solutions to this problem
are only approximate solutions to any real physical problem.

We treat the magnetization of the film as the sum of the
saturation magnetization M0 and a weakly excited component,
m(r); M = M0 + m(r) exp(i�t), and we assume that the static
average magnetization M0 is parallel to the z axis.

An analytic solution for symmetric parabolic field wells
(i.e., Cy = Cz) has been used to describe spin-wave modes
localized by the dipole field from a probe magnet [25,27].
This model was developed for the case of sufficiently small
wave vectors, where the exchange fields are negligible. Bessel
functions were used to approximate mode profiles and the
results are reasonable for the lowest mode of spin-wave
spectrum [23]. Here, we treat the case of asymmetric field
wells (Cy �= Cz) and we incorporate the exchange interactions
explicitly.

To find the frequencies � as well as corresponding profiles
of spin-wave modes that are localized in the film in the
inhomogeneous field we use the Landau-Lifshitz equation

of motion. We include the dynamic dipolar field that is
generated by the precession of the magnetization of the film,
h = −∇�M , and the static parabolic external field.

i
�

γμ0
mx = Himy, − M0(D�my + hy), (2a)

−i
�

γμ0
my = Himx, − M0(D�mx + hx), (2b)

where M0 = |M0| is the saturation magnetization of the
film, γ /2π = 29.6 GHz/T is the gyromagnetic ratio, D =
2A/μ0M

2
0 is the exchange length squared, and A is the

exchange stiffness. The components of the dynamic dipolar
field, denoted in Eq. (2) as hx and hy , can be expressed as

hu = − ∂

∂u

∫
dr′(m · ∇′)

1

|r − r′| . (3)

Using the parabolic field given by (1), the equations of motion
can be rewritten in terms of a nonlinear differential operator
�(u) = (− ∂2

∂u2 + u2) which captures the exchange interactions
and the parabolic field:

i
�

γμ0
mx = M0Dmy

[
K2

z �(ξ )+K2
y�(η)

]
+H0(1 − C0)my − M0hy, (4a)

−i
�

γμ0
my = M0Dmx

[
K2

z �(ξ ) + K2
y�(η)

]
+H0(1 − C0)mx − M0hx. (4b)

Here we have also introduced dimensionless coordinates,
ξ = Kzz, η = Kyy with

Kz =
[
H0Cz

M0D

]1/4

and Ky =
[
H0Cy

M0D

]1/4

. (5)

These K values have dimensions of 1/length, they characterize
length scales associated with the well shape and exchange
interactions, and they play roles similar to wave numbers.

The differential operator � appears in pairs set off by
square brackets in (4). This operator is identical to the
Schrödinger equation of the quantum harmonic oscillator with
exchange and Zeeman energies taking the place of kinetic
and potential energies, respectively. Eigenfunctions ψn(x)
satisfying �(x)ψn(x) = λnψn(x) are known to be proportional
to Hermite polynomials Hn(x) and have the form

ψn(x) = 1√
2nn!

√
π

exp(−x2/2)Hn(x), (6)

where

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2), (7)

and the normalization condition is

〈ψi(x)ψj (x)〉 = δij . (8)

We refer loosely to these eigenfunctions as Hermite functions
in this paper. The eigenvalues corresponding to the functions
ψn(x) are λn = 2n + 1.
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It is natural to assume that the spatial profiles of the
magnetic excitations have a form of products

m(y,z) ∼ ϕmn(η,ξ ) = ψm(η)ψn(ξ ). (9)

If the dipolar terms, hx and hy in (2) and (4), were neglected,
the set of orthogonal functions ϕmn(η,ξ ) would provide exact
solutions for the eigenmodes of the equations of motion. In
such a case, modes with different indices would not interact
with each other. However, the solution proposed in (9) is
not an eigenfunction of the dipolar operator [Eq. (3)], so
the presence of the dynamic dipolar fields hx,hy leads to an
interaction between modes, and much of the remainder of this
paper will be concerned with approximating the magnetostatic
interactions.

The simplest approach is to use a diagonal approximation
[28,29]. Essentially, the approximation assumes that char-
acteristic exchange/well frequency spacing γM0DK2 [see
(10), below] is strong compared to a characteristic frequency
due to magnetostatic effects, γM0Ka, or ε ≡ a/(DKi) 
 1.
Qualitatively, the diagonal approximation will be valid for
ultrathin films and “narrow” field wells, i.e., large values of
Cy and Cz. We will find below that these conditions are not
met for the present example, but the diagonal approximation
is a useful first step, nonetheless.

The diagonal approximation leads to the spectra in a
simple diagonal form, which corresponds to an allowed set
of localized standing modes with frequencies given by

�mn = γμ0

√(
�0

mn − 〈hy〉mn

)(
�0

mn − 〈hx〉mn

)
, (10)

where

�0
mn = M0D

[
K2

z (2n + 1) + K2
y (2m + 1)

] + H0(1 − C0).
(11)

The diagonal matrix elements of the dipole-dipole interaction
are calculated by the formula

〈hi〉mn = −M0KyKz

4πa

∫
dr

∫
dr′ϕmn(η,ξ,)ϕmn(η′,ξ ′)

× ∂

∂i

∂

∂i ′
1

|r − r′| , (12)

where i can be x or y. These are essentially demagnetization
fields in the film-normal and in-plane directions. The sixfold
integral can be simplified substantially, and we refer the reader
to Appendix A for details of the simplification and tabulated
coefficients for expansion in small values of Kia.

III. SPIN WAVES LOCALIZED BY A MAGNETIZED
PROBE TIP

In this section we test the present theory with the diagonal
approximation, comparing it to micromagnetic solutions for
spin waves in a parabolic well. We choose a parabolic well
that approximates the potential well created by the probe tip
in a recent set of experiments. The tip is a magnetically soft
unsaturated sphere of radius R; the distance from the closest
point of the tip to the surface of the ferromagnetic thin film is
d, while the thickness of the film is a (see Fig. 2). Previous
micromagnetic solutions for the full dipolar tip field and the
corresponding experiment are described in Ref. [30].

FIG. 2. Geometry of the model, simulating a ferromagnetic
resonance force microscopy experiment. The parameters used in
calculations are as follows: tip radius, R = 500 nm; distance between
the tip and the surface of the film, d = 100 nm; thickness of the film,
a = 20 nm.

The magnetic potential at point r = (x,y,z) is equal to

�
sphere
0 = 1

3
Msphere

R3z

r3
, (13)

and if the value of the applied field is below saturation,
Msphere = 3H0. Here, r = |r| > R where r is a radial vector
from the center of the sphere to the point. For the thin film, Hi

can be written as a function of the two in-plane coordinates, y

and z, Hi ≈ H0f (y,z), where

f (y,z) = 1 − 1

r̃(y,z)3

(
1 − 3(z/R)2

r̃(y,z)2

)
;

(14)
r̃(y,z) =

√
(R + d + a/2)2 + y2 + z2/R,

To apply the analysis from the preceding section, we
make the approximation that the equilibrium magnetization
lies parallel to the z axis, i.e., M0 = (0,0,M0), and that the
excitations have only two components, m(r) = (mx,my,0). In
the full description, Hsphere has three spatial components, and
for rigorous analysis, one should take into account deflections
of the static magnetization by the x and y components of the
dipole field. However, the micromagnetic calculations reveal
that the angular deviations of M0 from the z direction are not
dramatic, and in fact the fields from the partially magnetized
probe tip are significantly smaller than the applied field H0.

To apply our model, we approximate the dipole field from
the tip with a truncated parabolic field well as illustrated in
Fig. 3, where the truncated parabola has the form given by
Eq. (1) when Hi(y,z) < H0 and a constant value H0 where
Hi(y,z) > H0. Taking the tip-to-film-surface distance as d =
100 nm, and the film thickness a = 20 nm, a least-squares
fit of the truncated parabola to the dipole field yields C0 =
0.41, Cz = 0.543/R2, and Cy = 0.0942/R2. The constant Cz

is more than five times larger than Cy , which means that the
parabola is “’steeper” in the z direction than it is in the y

direction.
To gauge the accuracy of the analytic results, we performed

micromagnetic calculations of the spin-wave dynamics in the
parabolic field wells. The images in Fig. 4 depict the lossy part
of susceptibility of the magnetization as a function of field and
frequency. The images are compiled from individual spectra
that were obtained by Fourier transform of the ring-down
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FIG. 3. The spatial dependence of the normalized dipolar field
from the micromagnetic tip. Two-dimensional potential well, calcu-
lated by the formula Hi/H0 = f (y,z) − 1, fitted by two-dimensional
harmonic oscillator potential −C0 + Czz

2 + Cyy
2, where C0 =

0.41, Cz = 0.543/R2, Cy = 0.0942/R2.
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FIG. 4. Dispersion of spin-wave modes in parabolic field wells
calculated by micromagnetic modeling as functions of applied field
H0. Material parameters are as follows: saturation magnetization of
the film, M0 = 700 kA/m; gyromagnetic ratio, γ /2π = 29.6 GHz/T;
exchange stiffness, A = 10−11 J/m; and film thickness a = 20 nm.
The parameters of the parabolic well C0,Cz,Cy approximate a dipole
field (see text and Fig. 3). (a) Truncated parabolic well field profile.
The dark band corresponds to resonance of the sheet film outside the
well, while the lowest solid black line is the uniform-film precession
frequency at the minimum field in the well, provided as a reference.
(b) Resonances in an “infinite” parabolic well extending over the
film plane. The inset shows spectra at 0.1 T for panels (a) and (b),
respectively.

response to a field impulse. Figure 4(a) shows the frequencies
of spin-wave modes for a truncated parabola approximation
to the tip field (see Fig. 3). The thick dark band corresponds
to precession in the region outside the field well. The lower
solid line is a visual reference that shows the uniform-film
precession frequency corresponding to the minimum field in
the well, H0(1 − C0).

For comparison, Fig. 4(b) shows the results calculated for
an extended parabolic field acting over the whole film plane,
using the same values for C0, Cz, and Cy . The inset compares
the imaginary part of the susceptibility at 0.1 T, and shows
very similar behavior for the lowest modes in the full parabola
and in the truncated parabola. For both types of field well, the
trapped spin-wave modes appear as a series of resonances,
roughly equally spaced, and roughly equal in amplitude
except the lowest mode, which appears as a shoulder in the
spectra. These features are also characteristics of previous
experimental results for localized spin waves in a tangentially
magnetized film [30]. Profiles of the lowest modes, calculated
by micromagnetic modeling at μ0H0 = 0.1 T, are given in
Fig. 5. We will discuss these profiles in comparing with
analytical results below.

Now we return to the approach developed in Sec. II, and
we compare the micromagnetic calculations with the results
generated by the diagonal approximation. For convenience, we
denominate a mode with the profile ϕmn(η,ξ ) = ψm(η)ψn(ξ )
by a pair of corresponding indices (m,n), where the first index
determines the y dependence, and the second index determines
the z dependence of the mode’s profile in the film plane.

FIG. 5. Mode profiles of the localized excitations calculated with
different approximations. The field and equilibrium magnetization
lie along the z axis. Profiles are presented in order of increasing
frequency. Top row: Profiles calculated by micromagnetic modeling
at μ0H0 = 0.1 T, corresponding to the shoulder and the first three
maxima in the inset of Fig. 4. Middle row: Mode profiles for
the diagonal approximation, equivalent to Hermite function basis
states ϕ0,m for m = {2,0,4,6}. With magnetostatic interactions, the
(0,2) mode has a lower frequency than the (0,0) mode. Bottom
row: Eigenmode profiles when hybridization via magnetostatic
interactions is taken into account, showing strong similarities to the
micromagnetic results.
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FIG. 6. Calculated dispersion of precession modes using
(a) Hermite function mode profiles and a diagonal approximation
and (b) when hybridization by magnetostatic interactions is taken into
account. Similarly to Fig. 4, the lower black dotted lines correspond
to the uniform precession frequency in the minimum field.

We consider only even indices, as only the modes with even
symmetry can be excited by a uniform driving field.

Mode frequencies calculated in the diagonal approximation
by Eq. (10), are presented in Fig. 6(a). The lowest part
of the spectra consists of a branch of modes with indices
(0,n) which are localized analogs of backward volume waves
with wavefronts perpendicular to the static magnetization and
common y dependence exp(−η2/2). Additionally, frequencies
of a few modes from the (2,n), (4,n), and (6,n) branches are
plotted and these modes generally have higher frequencies
than the (0,n) branch.

For this example field well, the diagonal approximation
yields results that are only qualitatively consistent with the
micromagnetic solutions, and the diagonal approximation
yields mode frequencies that are generally higher than the
micromagnetic results. Note the gap between the lowest
mode frequency and the dashed reference minimum-field
line Fig. 6(a), and compare that with the much smaller
corresponding gaps in Fig. 4. The mode frequencies are also
less evenly spaced, especially for the lowest frequency modes.
Interestingly, the lowest frequency mode is the (0,2) mode, not
the (0,0) mode.

The mode profiles, which are identical to the basis state
profiles, are shown in Fig. 5 (middle). These take the form of
standing waves along the field direction, similar to the modes
in the micromagnetic results in Fig. 5 (top). However, clear
differences can be seen between the calculated micromagnetic
profiles and the profiles of the Hermite functions with the
same parabolic well parameters [Fig. 5 (middle)]. The most
striking difference is that the micromagnetic mode profiles are
extended further in the y direction. A subtler difference can

be seen in the first profile in the top row. On either side of
the central maximum, there are slight minima visible as weak,
vertical dark streaks. The extension of the mode profiles in
the y direction and the extra minima in the profiles relative to
the basis profiles indicate that mode hybridization is needed to
improve upon the diagonal approximation.

The failures of the diagonal approximation are perhaps
not surprising. The validity criterion defined in the previous
section, εi ≡ a/(DKi) 
 1, is not well satisfied for this
example. For the present example, εy = 1.0 and εz = 0.7. We
can expect magnetostatic mode interactions to be important,
and we explore these effects in the following section.

IV. BEYOND THE DIAGONAL APPROXIMATION

In the previous section we found that the diagonal approx-
imation yields only a qualitative prediction compared to the
micromagnetic results. Here we look for a full solution using
the full set of Hermite function basis states while including
magnetostatic interactions between those states.

First, we combine the two first-order equations of motion in
(4) using substitution to obtain a single second-order equation
of motion for mx . Then we expand the excitations as a
superposition of basis states

mx ∝ ap(η,ξ ) =
∑
mn

Ap,mnϕmn(η,ξ ). (15)

The equations of motion then become an infinite system
of linear equations for coefficients Amn coupled by the off-
diagonal magnetostatic elements, 〈hx〉mn,m′n′ and 〈hy〉mn,m′n′ .
Calculation of these terms is described in the Appendices.
We find that the off-diagonal coupling values generally
weaken with “distance” from the diagonal, i.e., |m − m′|
and |n − n′|, and this fact allows us to approximate the full
problem with a finite-sized subset of the basis states. By
numerically diagonalizing the dynamical matrix, we obtain
the eigenfrequencies �p and the eigenmode profiles ap(η,ξ ),
and we choose the normalization of the profiles such that∫ |ap(η,ξ )|2dη dξ = 1.

In the results we show below, we have limited the basis set
to functions with even indices (m,n), where both n and m vary
from 0 to 28. The choice of even indices addresses the case of
a uniform excitation field where odd-symmetry modes would
not be excited. Images of the 12 lowest-frequency eigenmodes
are shown in Fig. 7 in order of increasing eigenfrequency. The
first three modes (with numbers 0, 1, and 2) and the fourth,
sixth, and ninth ones have profiles with vertical nodal lines
similar to the micromagnetic images [Fig. 6 (top)]. However,
a distinct set of modes appears (the third, the fifth, the seventh,
the eighth and so on) with additional horizontal nodal lines.
Resonances from this second set are not prominent in the
micromagnetic results.

As an explanation for the apparent absence of certain modes
from the micromagnetic results, we show next that these modes
couple weakly to a uniform driving field. The intensity of each
mode p with spatial profile ap(η,ξ ) is calculated as

Ip =
[ ∫

dy dz ap(Kyy,Kzz)
]2

∫
dy dz ap(Kyy,Kzz)2

. (16)
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FIG. 7. Mode profiles of the 12 lowest modes, calculated on the
basis of an array of functions ϕmn(η,ξ ) with even indices (m,n),
where both m and n vary from 0 to 28. Corresponding frequencies
(intensities) are given in the upper right (lower left) corners of every
image. Magnetic parameters and parabolic well were defined in the
previous section. Applied field μ0H0 = 0.1 T.

The integral in the numerator of this expression is proportional
to the Zeeman interaction between the transverse magnetiza-
tion in the mode and a uniform, transverse applied driving
field. The integral is squared; in an absorption experiment,
this coupling integral acts twice, once as the field excites the
mode, and a second time as the precession acts on the field

FIG. 8. Intensities vs frequencies for hybridized modes calcu-
lated on the basis of an array of functions ϕmn(η,ξ ) with even indices
(m,n), where both m and n vary from 0 to 28. Intensities describe
coupling to a uniform microwave field, as in ferromagnetic resonance
experiments. Corresponding profiles for the lowest 12 modes were
presented in Fig. 7.

source. The intensity values for the modes are provided in
each image in Fig. 7. Calculated intensities of the modes vs
their frequencies are given in Fig. 8. The modes with largest
intensities comprise a set of peaks roughly equally spaced
in frequency and roughly equivalent intensity, in agreement
with the micromagnetic spectra presented in Fig. 4. Profiles of
these modes are very similar to the images in Fig. 5. The low
intensity of the lowest frequency mode is also captured by the
eigenmode calculation.

V. DISCUSSION

Summarizing, we present here calculations of localized
spin-wave modes that are excited in a parabolic field well. The
model treats the field well and exchange interactions exactly by
using Hermite functions as mode profiles. However, numerical
computation was required to incorporate the magnetostatic
interactions with sufficient fidelity to agree with results
obtained by micromagnetic simulation.

For analysis of localized spin-wave modes, the selection
of the basis functions is dictated by the symmetry of the
situation [31]. For thin films in uniform fields, plane waves
are the obvious basis choice due to translational invariance
and the fact that the plane waves are also eigenfunctions of
the applied field, exchange, and magnetostatic interactions
[29]. In confined structures, the plane waves are no longer
eigenfunctions of the magnetostatic interactions or of possible
nonuniform static internal fields, but plane waves remain a
good choice for analysis of excitations in rectangular dots [32]
and in stripes [33].

For a normally magnetized film, the axial symmetry
suggests the use of Bessel functions. In the case of a field well
with axial symmetry, the field breaks the radial uniformity,
and the Bessel function profiles are no longer eigenfunctions
of the applied field. Also, the precession contains in-plane
components of magnetization that break the axial symmetry,
and the Bessel function field profile is not an eigenfunction
of the in-plane magnetostatic interactions. Despite these
shortcomings, Bessel-function basis functions have been used
to good effect in circular dots [22,28,34], and in normally
magnetized field wells [21,23–25].

Symmetry is not the driving motivation for using Hermite
functions in the tangentially magnetized field well case.
Rather the motivation comes from the Hermite functions’
ability to solve the combination of the parabolic field well
profile and the exchange interaction. Improving solutions are
then found with increasingly sophisticated approximations to
the magnetostatic interactions between a modest number of
basis states. The use of Hermite functions also simplifies the
calculation of magnetostatic interactions by virtue of the fact
that they are essentially their own Fourier transforms.

In closing we note that the method we have used here is
not limited to the in-plane case. The method can be easily
generalized for different orientations of the applied field
relative to the film plane, and it may prove to be useful in
planning future ferromagnetic resonance imaging experiments
involving spin wave localization [24]. In particular, the method
is applicable to the case of normally magnetized film [21],
when the potential well is either isotropic or anisotropic.
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APPENDIX A: CALCULATION OF MAGNETOSTATIC
INTERACTIONS

In general, magnetization precession produces dynamic
fields that then exert torques on the magnetization. In this
appendix, we describe the magnetostatic coupling that occurs
when the field produced in one mode, (m,n), acts on a
mode (m′,n′). Equation (12) describes the case when (m,n) =
(m′,n′), but here we treat the more general case of interaction
between possibly different modes. The magnetostatic interac-
tion terms are given by

〈hi〉mn,m′n′ = −M0KyKz

4πa

∫
dr

∫
dr′ϕmn(η,ξ,) ϕm′n′(η′,ξ ′)

× ∂

∂i

∂

∂i ′
1

|r − r′| , (A1)

where i stands for x or y and the dimensionless coordinates
are ξ = Kzz, η = Kyy.

To simplify the sixfold integral in (A1) we use Fourier
transforms of the integrand terms. The reward is gained from
the fact that the nonlocal kernel of the integral in (12) becomes
a local function in reciprocal space. In terms of Fourier
transform, the kernel can be expressed as

1

|r − r′| =
∫

dq
(2π )2

2π

q
e−q|x−x ′ |eiq(ρ−ρ ′), (A2)

where ρ and ρ ′ are two-dimensional vectors (y,z) and (y ′,z′),
correspondingly.

The remaining in-plane integrals over y, y ′, z, and z′ are
simplified by using the Fourier transform of the Hermite
functions (6). Here the Hermite functions yield an additional

unique advantage: their Fourier transforms are proportional to
the functions themselves.

ψn(x) = 1

(i)n
√

2π

∫ ∞

−∞
dk ψn(k)eikx. (A3)

As a result, the magnetostatic matrix elements (12) simplify
to twofold integrals

〈hx〉mn,m′n′ ≈ −M0

∫∫
du dv

[1 − e−qa]

qa
ϕmn(u,v)ϕm′n′ (u,v),

(A4a)

〈hy〉mn,m′n′ ≈ −M0

∫∫
du dv

q2
y

q2

{
1 − 1 − e−qa

qa

}

×ϕmn(u,v) ϕm′n′(u,v), (A4b)

where ϕmn(u,v) are the mode profiles given by (6)–(9),
q = (qy,qz) = (Kyu,Kzv), and q = √

(Kyu)2 + (Kzv)2.

APPENDIX B: MAGNETOSTATIC INTERACTIONS
IN THE THIN FILM LIMIT

In the thin film limit, the coefficients given by (A4) can be
approximated by a first-order expansion in aKi 
 1. Because
the functions ψn(u) decay strongly as exp(−u2/2) we can
use an expansion in aq under the integrals. Then we obtain
the diagonal matrix elements of a dipole-dipole operator in a
linear approximation.

〈hy〉mn,m′n′ = −M0aKyYmn, (B1a)

〈hx〉mn,m′n′ = −M0(1 − aKyXmn), (B1b)

Xmn,m′n′ =
∫∫

du dv
q

2Ky

ϕmn(u,v) ϕm′n′(u,v), (B2a)

Ymn,m′n′ =
∫∫

du dv
q2

y

2Kyq
ϕmn(u,v) ϕm′n′(u,v). (B2b)

TABLE I. Numerical values of X0n and Y0n depending on C = √
Cz/Cy .

C X00 Y00 X02 Y02 X04 Y04 X06 Y06 X08 Y08

0 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282
0.2 0.332 0.256 0.482 0.211 0.552 0.19 0.627 0.176 0.692 0.166
0.4 0.366 0.244 0.571 0.187 0.707 0.164 0.818 0.149 0.915 0.139
0.6 0.395 0.235 0.659 0.172 0.831 0.148 0.97 0.134 1.091 0.124
0.8 0.42 0.228 0.735 0.161 0.937 0.137 1.101 0.124 1.242 0.114
1.0 0.443 0.222 0.803 0.152 1.032 0.129 1.216 0.116 1.375 0.107
1.2 0.465 0.216 0.866 0.146 1.119 0.123 1.322 0.11 1.497 0.101
1.4 0.485 0.212 0.923 0.14 1.199 0.117 1.419 0.104 1.609 0.096
1.6 0.504 0.208 0.978 0.135 1.273 0.113 1.51 0.1 1.713 0.092
1.8 0.522 0.204 1.029 0.131 1.344 0.109 1.595 0.097 1.812 0.088
2.0 0.539 0.201 1.178 0.127 1.411 0.106 1.677 0.093 1.905 0.085
2.2 0.555 0.198 1.124 0.124 1.475 0.102 1.754 0.091 1.994 0.083
2.4 0.571 0.195 1.169 0.121 1.536 0.1 1.828 0.088 2.079 0.08
2.6 0.587 0.192 1.211 0.119 1.594 0.097 1.899 0.086 2.161 0.078
2.8 0.602 0.19 1.253 0.116 1.851 0.095 1.968 0.084 2.239 0.076
3.0 0.616 0.188 1.293 0.114 1.705 0.093 2.034 0.082 2.315 0.074
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Numerical coefficients X and Y depend only on the ratio of
curvature parameters,

√
Cz/Cy .

In those cases where diagonal approximation is expected
to be valid and where the thin film limit holds, a good
description of the trapped modes can be obtained using a

few magnetostatic matrix elements from the diagonal. The
lowest branch values of X0n and Y0n will give magnetostatic
corrections to the exchange-dominated frequencies. These
values for different values of C = √

Cz/Cy are presented in
Table I.
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