
PHYSICAL REVIEW B 93, 214435 (2016)

Spin-rotational-invariant theory of transition-metal magnetism at finite temperatures:
Systematic study of a single-site model
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A spin-rotational-invariant approach to the spin-fluctuation theory of itinerant-electron magnetism is proposed
and evaluated in the framework of a d-band model Hamiltonian including intra-atomic exchange interactions J

and the coupling to a local magnetic field B. Using a vector-field Hubbard-Stratonovich transformation, we obtain
a static approximation to the density matrix operator from which the equilibrium properties are directly derived.
The method is applied to a single-site model taking Fe as a representative example. Exact and approximate
analytical results are given for the local magnetic moments, their longitudinal and transversal components, the
field-induced magnetizations, entropy, and heat capacity. Goals and limitations of various approximations are
discussed as a function of J , B, and temperature. The quantum-mechanical origin of some important drawbacks
found in previous vector-field static approaches is identified. The significant improvements achieved with the
static density operator are demonstrated.
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I. INTRODUCTION

Magnetic materials based on transition metals and their
compounds define one of the most active research areas in
condensed-matter physics. Technological applications, rang-
ing from metallurgy, over high-density recording media,
to spin electronics, are certainly a major driving force in
this field [1–8]. Furthermore, understanding and controlling
itinerant-electron magnetism at a microscopic level represents
a particularly important and challenging open problem from
a fundamental perspective. Recent experimental progress
has opened the way to manipulation and characterization
techniques at extraordinary levels of spatial and temporal
resolution [6–9]. These advances motivate and indeed benefit
from the continuous development of first-principles and model
theoretical investigations [10,11].

From the point of view of theory, the subtle interplay
between environment-dependent electronic structure, corre-
lations, spin-orbit interactions, and magnetic excitations poses
a remarkable difficulty, especially at finite temperatures. In
past years, a large number of theoretical studies have been
performed by using spin models at different levels of approxi-
mation [12–17], exact numerical solutions of simple electronic
models [18], and realistic electronic structure approaches
[19–29]. From the latter perspective, most finite-temperature
calculations on itinerant-electron magnetism involve treating
Coulomb interactions in broken spin-symmetry approxima-
tions, where the spin-polarized density and its fluctuations
are assumed to be collinear. However, rotational-invariant
methods are currently attracting increasing attention since
they give access to more complex forms of magnetic order
and excitations. This is fueled by several factors. First, a
variety of stable noncollinear ground-state magnetic structures
has been observed, particularly in transition-metal (TM)
nanostructures [17,30–39]. The physics behind these phenom-
ena is far from obvious and deserves a specific theoretical
description [40–43]. Second, many-body rotational-invariant

theories are important in order to rigorously understand the
effects of spin-orbit interactions since they remove precisely
this symmetry, thereby leading to magnetic anisotropy and
some degree of noncollinearity [8,44]. Finally, transversal spin
excitations are expected to be important for describing the
finite-temperature behavior [45–48], as well as the magne-
tization dynamics triggered by external optical or electron-
injection pulses [9,11].

Several studies have been performed by taking into account
spin excitations beyond collinear approximations [49–52].
Hubbard already considered randomized vector exchange
fields by using a model expression for the energy associated
with each exchange-field configuration [49]. Uchida and
Kakehashi studied amorphous transition-metal systems within
a noncollinear two-field functional-integral method, in which
transversal spin fluctuations were neglected [53]. Lavrentiev
et al. combined a cluster expansion with kinetic Monte Carlo
simulations, including noncollinear arrangements of the spin
degrees of freedom [17]. In this way, they investigated the
effects of temperature on the energy and magnetic order
at the interfaces of Fe-Cr alloys. Furthermore, a dynamical
spin-fluctuation theory of narrowband itinerant electrons has
been proposed by using functional-integral methods and the
single-site coherent potential approximation [45–47]. More
recently, the role of transversal spin fluctuations and their
consequences on the Curie temperature of Fe have been studied
in the framework of a static virtual crystal approximation [48].
However, despite the obvious interest of incorporating the
transversal spin fluctuations in the finite-temperature theory,
the reputation of the vector-field functional approach has
been tarnished by some serious limitations in the atomic
limit. Indeed, as shown by Kakehashi [54], the vector-field
static approximation yields a negative specific heat and a
diverging entropy in the atomic limit at low temperatures.
These drawbacks can hardly be overlooked in the long run,
particularly since in TMs the dominant Coulomb interactions,
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G. M. PASTOR AND J. DORANTES-DÁVILA PHYSICAL REVIEW B 93, 214435 (2016)

and an important part of the electronic correlations, have local
roots. It is therefore important to understand the source of
these inaccuracies in more detail, and to find sound alternative
routes to the development of noncollinear spin-fluctuation
theory.

The main purpose of this paper is to introduce a simple
spin-rotational-invariant approach to the finite-temperature
magnetic properties of transition metals, which incorporates
the fluctuations of the transversal spin degrees of freedom,
and to demonstrate its accuracy by comparison with exact
results. The method is based on a static approximation to the
equilibrium density matrix operator ρ̂. The thermodynamic
properties are directly obtained from the statistical average of
the corresponding operators since the usual thermodynamic
relations involving derivatives of the logarithm of the partition
function Z cannot be taken for granted. In this way, we avoid
unnecessary violations of the commutation rules between the
spin operators, which are indeed responsible for the drawbacks
of previous noncollinear theories [54]. An exactly solvable
single-site model of 3d-electron magnetism is investigated
systematically in order to validate our theory. Exact and
approximate results for a number of observables are analyzed
as a function of temperature T and local magnetic field B. In
this way, the very good accuracy of the present approach is
demonstrated.

The remainder of the paper is organized as follows. In
Sec. II, the single-site model is presented and its equilibrium
properties are derived both exactly and in the vector-field static
approximation. The origin of the potential shortcomings of the
latter is identified and the static density operator is introduced.
The thermodynamic properties predicted by the different
approaches are reported and contrasted in Sec. III. Goals and
limitations of the static approximation are discussed in a broad
range of parameters, including isotropic and anisotropic cases.
The improvements achieved with the static density operator are
quantified. Finally, Sec. IV summarizes the main conclusions
and points out some important future perspectives.

II. THEORY

In this section, we determine the finite-temperature proper-
ties of the valence 3d electrons by considering the atomic limit
of a spin-rotational-invariant Hamiltonian. Once the model is
presented and its parameters defined, we determine its finite-
temperature properties exactly in the canonical ensemble. The
problem is then solved by using a vector-field functional-
integral method in the static approximation which, in contrast
to the exact solution, is universally applicable. Although the
decoupling scheme preserves the rotational symmetry of the
Hamiltonian, the static approximation does not respect the
commutation rules between the spin-operator components.
The consequences are quantified by contrasting the properties
derived from the static partition function Zst with the exact
solution. The relation between the derivatives of Zst and
the physical observables is analyzed from the perspective of
operator algebra. This brings us to propose a direct averaging
scheme based on the static density operator ρ̂st, which is shown
to remove all major limitations of Zst and to systematically
improve the quality of the static approximation.

A. Single-site model

We consider the d-band model Hamiltonian Ĥ proposed
in Ref. [48] in the atomic limit, i.e., for vanishing hopping
integrals. Setting the d-orbital energies equal to zero, the
single-particle term in Ĥ vanishes. Since there are no charge
fluctuations in the absence of hopping, we consider a constant
number of electrons, nd = 7, corresponding to Fe, and refer
all energies to the direct Coulomb energy NUnd (nd − 1)/2,
where U refers to the intra-atomic direct Coulomb integral
and N to the number of atoms [48]. Taking into account the
interaction with an external magnetic field or local anisotropy
field �B, the model takes the form

Ĥ = −J
∑

l

( �̂Sl · �̂Sl − 2 �B · �̂Sl), (1)

where J is the intra-atomic Coulomb exchange integral and �̂Sl

the spin operator at atom l. Throughout the paper, we measure
B in the same units as J by incorporating in B the Bohr
magneton μB = 5.8 × 10−5 eV/T. Since Ĥ splits in a sum
over all the atoms in the lattice, we may consider a single atom
and drop the index l, keeping in mind that all properties are
referred to one atom. We thus obtain the single-site model

Ĥ = −J Ŝ2 − 2BŜz, (2)

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z , and the magnetic field �B = Bẑ

points along the z axis.

B. Exact solution

In order to obtain the exact canonical partition function
Z = Tr{e−βĤ }, where β = 1/kBT , and the free energy F =
−kBT ln(Z), we observe that for nd = 7 electrons in a d shell,
there are 10 states with S = 3/2 and 40 states with S = 1/2.
It is then straightforward to calculate the trace in the S = 3/2
and 1/2 subspaces using the basis with well-defined S and Sz.
The result is [55]

Z = 20 e
15J
4T

[
(1 + 4e− 3J

T ) cosh

(
B

T

)
+ cosh

(
3B

T

)]
, (3)

where T incorporates the Boltzmann constant kB = 8.6 ×
10−5 eV/K and thus has energy units like J . The thermody-
namic properties of interest are obtained from the correspond-
ing derivatives of F ; for example, the spin magnetization along
the field,

〈Ŝz〉 = −1

2

∂F

∂B

= sinh
(

B
T

){
e

3J
T

[
3 cosh

(
2B
T

) + 2
] + 2

}
e

3J
T

[
cosh

(
B
T

) + cosh
(

3B
T

)] + 4 cosh
(

B
T

) , (4)

the local spin moment,

〈Ŝ2〉 = −∂F

∂J
= 15

4
− 6

e
3J
T cosh

(
2B
T

) + 2
, (5)

the z component of the local moment,

〈
Ŝ2

z

〉 = −T

4

∂2Fst

∂B2
+ 〈Ŝz〉2 = 9

4
− e

3J
T + 4

e
3J
T cosh

(
2B
T

) + 2
, (6)
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the entropy,

S = −∂F

∂T
= −15J

4T
+ ln

{
40 e

3J
4T cosh

(
B

T

)[
e

3J
T cosh

(
2B

T

)
+ 2

]}
+ 6J − 2B e

3J
T sinh

(
2B
T

)
T e

3J
T cosh

(
2B
T

) + 2T
− B tanh

(
B
T

)
T

, (7)

and the heat capacity,

C = −T
∂2F

∂T 2

= 2 e
3J
T

[
B2

(
e

3J
T + 4

) + 9J 2
]

cosh
(

2B
T

) + B
{
2B e

6J
T + 8 e

3J
T

[
3J sinh

(
2B
T

) + B
] + B

(
e

3J
T − 2

)2
sech2

(
B
T

)}
T 2

[
e

3J
T cosh

(
2B
T

) + 2
]2 . (8)

C. Functional integral method in the static approximation

In order to obtain the partition function Zst in the static
approximation, we first linearize the operators S2

α with α = x,
y, and z in the exponential of Ĥ by means of a Hubbard-
Stratonovich transformation [56]. An exchange field ξα is

thereby introduced for each Cartesian component �̂S, usually
gathered in the local exchange vector field �ξ . Since the
different Ŝ2

α do not commute with each other, �ξ depends on
Feyman’s “time” or ordering parameter [57]. However, the
static approximation neglects this “time” dependence, which
in the present case amounts to ignoring the noncommutativity
of the Ŝα . In this way, one obtains

Zst =
(

βJ

4π

)3/2 ∫
e− βJ

4 ξ 2
Tr{e−βĤ ′(�ξ )} d�ξ, (9)

where ξ 2 = ξ 2
x + ξ 2

y + ξ 2
z and

Ĥ ′(�ξ ) = −J �ξ · �S − 2BSz. (10)

The trace in Eq. (9) can be obtained straightforwardly by
choosing the spin quantization direction along J �ξ − 2 �B [see
Eq. (10)]. Integration over all �ξ yields [55]

Zst = 10 e
J

4T

{
5J

B
sinh

(
B

T

)
+ 10 cosh

(
B

T

)

+ e
2J
T

[
3J

B
sinh

(
3B

T

)
+ 2 cosh

(
3B

T

)]}
. (11)

The usual procedure in previous approaches using the static
approximation has been to obtain the thermodynamic proper-
ties from the approximate free energy Fst = −kBT ln(Zst), by
taking the corresponding partial derivatives [48,54]. It should
be noted, however, that this most often implies additional
approximations, beyond the static assumption at the Hubbard-
Stratonovich level, which can lead to serious drawbacks.
This can actually be avoided by performing the averages
in a well-defined static mixed state, as will be shown in
Sec. II D.

Partial derivation of Fst yields the following approximations
to the spin magnetization along the magnetic field

〈Ŝz〉 = −1

2

∂Fst

∂B
= (2B2 − JT )

[
3 e

2J
T sinh

(
3B
T

) + 5 sinh
(

B
T

)] + BJ
[
9 e

2J
T cosh

(
3B
T

) + 5 cosh
(

B
T

)]
2B

{
5J sinh

(
B
T

) + e
2J
T

[
3J sinh

(
3B
T

) + 2B cosh
(

3B
T

)] + 10B cosh
(

B
T

)} , (12)

the local spin moment,

〈Ŝ2〉 = −∂Fst

∂J
= 9

4
+ 5(T − 2J ) sinh

(
B
T

) + 3T e
2J
T sinh

(
3B
T

) − 20B cosh
(

B
T

)
5J sinh

(
B
T

) + e
2J
T

[
3J sinh

(
3B
T

) + 2B cosh
(

3B
T

)] + 10B cosh
(

B
T

) , (13)

the longitudinal component of the local moment,

〈
Ŝ2

z

〉 = −T

4

∂2Fst

∂B2
+ 〈Ŝz〉2

= 5J (B2 + 2T 2) sinh
(

B
T

) + 3J
(
9B2 + 2T 2

)
e

2J
T sinh

(
3B
T

) + 2B
(
B2 − JT

)[
9 e

2J
T cosh

(
3B
T

) + 5 cosh
(

B
T

)]
4B2

{
5J sinh

(
B
T

) + e
2J
T

[
3J sinh

(
3B
T

) + 2B cosh
(

3B
T

)] + 10B cosh
(

B
T

)} , (14)

and the entropy,

S = −∂Fst

∂T
= J

4T
− 5(8B2 + J 2) sinh

(
B
T

) + 3 e
2J
T

[
(8B2 + 9J 2) sinh

(
3B
T

) + 18BJ cosh
(

3B
T

)] + 30BJ cosh
(

B
T

)
4T

{
5J sinh

(
B
T

) + e
2J
T

[
3J sinh

(
3B
T

) + 2B cosh
(

3B
T

)] + 10B cosh
(

B
T

)}
+ ln

(
10

B

{
5J sinh

(
B

T

)
+ e

2J
T

[
3J sinh

(
3B

T

)
+ 2B cosh

(
3B

T

)]
+ 10B cosh

(
B

T

)})
. (15)
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The corresponding expression for the heat capacity,

C = −T
∂2Fst

∂T 2
, (16)

is given in the Supplemental Material [58].
It is important to recall that the static approximation ignores

the commutation rules between the operators describing the

interaction (e.g., �̂Sl and N̂l in the usual local models) and the
interatomic hopping terms responsible for charge fluctuations
and electron delocalization. In the low-temperature limit, this
leads to a mean-field treatment of Coulomb interactions,
which neglects potentially important electron-correlation ef-
fects [48]. Even in the present atomic limit, where charge
fluctuations are absent, the vector-field static approximation
is not exact, since the spin components do not commute
with each other. In fact, it has been shown [54] that in the
isotropic low-temperature limit (B = 0 and T � J ), the heat
capacity predicted by Eq. (16) tends to −1 in units of kB. In
Sec. III, we will show that this is not the consequence of the
static treatment of noncollinear spin fluctuations, but rather
of assuming that the thermodynamic properties can always be
derived from Fst. An alternative approach revealing the actual
goals and limitations of the static approximation is presented
in the following.

D. Static density operator and average properties

In order to assess the validity of Eqs. (12)–(16), it is useful
to recall the operator identity

∂

∂λ
eX̂ =

∫ 1

0
e(1−α)X̂ ∂X̂

∂λ
eαX̂ dα, (17)

where λ is any parameter on which X̂ may depend. This
relation, which can be easily derived by using Feynman’s
ordering technique [57], implies that

∂

∂λ
Tr{eX̂} = Tr

{
∂X̂

∂λ
eX̂

}
, (18)

irrespective of the commutation relation between X̂ and ∂X̂
∂λ

.
Therefore, computing 〈Ŝz〉 from ∂F/∂B as in (4) remains
valid in the static approximation. However, notice that simple

expressions such as (18) do not hold for the higher-order
derivatives or for the derivatives of average values. In fact,

∂

∂λ
〈Â〉 = Tr

{
Â

∂

∂λ
eX̂

}
=

∫ 1

0
Tr

{
Â e(1−α)X̂ ∂X̂

∂λ
eαX̂

}
dα,

(19)
even if, as assumed, Â is independent of λ. Very often,
∂X̂/∂λ or Â do not commute with X̂. It is therefore clear
that using equations such as (14) for 〈Ŝ2

z 〉 introduces additional
approximations, which are independent of the quality by which
the static approximation describes the equilibrium state. Notice
that this commutation problem does not appear when λ refers
to the temperature T , since ∂X̂/∂T is proportional to X̂.
Nevertheless, in the case of the local moment 〈Ŝ2〉, entropy
S, and heat capacity C, one should be concerned about the
physical meaning of the derivatives of Fst = −kBT ln(Zst),
which can be very different from the derivatives of the exact
F . This conditions the quality of Fst as a function of its various
parameters. For instance, −∂Fst/∂J corresponds to averaging
�ξ · �̂S rather than Ŝ2, and −(1/β)[∂ ln(Zst)/∂β] corresponds to
averaging Ĥ ′(�ξ ) rather than Ĥ [see Eqs. (9) and (10)]. It is
therefore important to keep in mind that this can also be the
source of inaccuracies.

In order to circumvent these problems and make the best
out of the static approximation, we take advantage of the fact
that the Hubbard-Stratonovich transformation is an operator
identity. Consequently, the transformation can be applied
to the density operator ρ̂ = e−βĤ in order to linearize the
quadratic terms in Ĥ . Introducing the static approximation in
the functional integration only at this basic level, we obtain
the static density operator

ρ̂st = 1

Zst

(
βJ

4π

)3/2 ∫
e−β[Ĥ ′(�ξ )+ J

4 ξ 2] d�ξ, (20)

which will be used in the following to describe the equilibrium
mixed state. The thermodynamic properties are thus obtained
by the usual ensemble averages, namely, 〈Â〉st = Tr{Âρ̂st} for
any observable Â.

As already discussed, averaging with ρ̂st yields Eq. (12) for
〈Ŝz〉st. In terms of ρ̂st, the local spin moment is given,

〈Ŝ2〉st = Tr{Ŝ2ρ̂st} = 15

4
− 12

[
J sinh

(
B
T

) + 2B cosh
(

B
T

)]
5
[
J sinh

(
B
T

) + 2B cosh
(

B
T

)] + e
2J
T

[
3J sinh

(
3B
T

) + 2B cosh
(

3B
T

)] . (21)

In the case of the longitudinal component of the local moment 〈Ŝ2
z 〉st = Tr{Ŝ2

z ρ̂st}, no closed analytic expression could be found,
except in the isotropic case (B = 0) where

〈
Ŝ2

z

〉
st = 5

4
− 4(J + 2T )

5(J + 2T ) + e
2J
T (9J + 2T )

. (22)

For finite B, one obtains 〈Ŝ2
z 〉st by means of a one-dimensional numerical integration. The average energy E = 〈Ĥ 〉st = Tr{Ĥ ρ̂st}

is given by

E = (20JT − 40B2 − 27J 2) sinh
(

B
T

) − 3 e
2J
T (8B2 + 15J 2 − 4JT ) sinh

(
3B
T

) − 74BJ cosh
(

B
T

) − 66BJ e
2J
T cosh

(
3B
T

)
20J sinh

(
B
T

) + 4 e
2J
T

[
3J sinh

(
3B
T

) + 2B cosh
(

3B
T

)] + 40B cosh
(

B
T

) , (23)
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from which the heat capacity

Cst = ∂〈Ĥ 〉st

∂T
(24)

is obtained. The expression for Cst is given in the Supplemental
Material [58]. Alternatively, one may derive the heat capacity
from

C ′
st = 〈Ĥ 2〉st − 〈Ĥ 〉2

st

kBT 2
, (25)

which for B = 0 is given by

C ′
st = 36J 2(J + 2T )[e

2J
T (9J + 2T ) + J + 2T ]

[5T (J + 2T ) + T e
2J
T (9J + 2T )]2

. (26)

For B �= 0, C ′
st can be calculated by means of a simple

numerical integration. Comparing these two approaches with
the exact results will allow us to infer the ability of the ρ̂st

to describe the temperature dependence of the internal energy
and its fluctuations.

The entropy Sst should be calculated directly from S[ρ̂st] =
−kB〈ln(ρ̂st)〉, which is a well-defined property of ρ̂st. However,
this seems very difficult in practice since it would require one
to determine the logarithm of an integral of noncommuting
operators. We therefore resort to the relations ∂S/∂T = C/T

and ∂S/∂β = −C/β, even though, strictly speaking, they hold
only for the exact equilibrium ρ̂ ∝ exp(−βĤ ). We expect this
assumption to be valid, as long as ρ̂st is sufficiently close
to ρ̂. An approximation to Sst is thus obtained by numerical
integration of Cst starting either from T = 0 or from β = 0.

One may finally note that the proposed noncollinear
approach can be readily applied to large finite systems and
to extended systems, since it involves quantum-mechanical
averages in the framework of the single-particle operator
Ĥ ′(�ξ ), followed by a classical average with respect to the
local exchange fields �ξ [see Eqs. (10) and (20)].

III. RESULTS AND DISCUSSION

In this section, the finite-temperature properties of the
single-site model Ĥ are presented and discussed. Goals
and limitations of the previously introduced approximations
to the noncollinear spin-fluctuation theory are analyzed by
comparison with exact results.

A. Isotropic case

In the absence of external or local anisotropy fields �B, the
model is spin-rotational invariant. In Fig. 1, the temperature de-
pendence of the most relevant thermodynamic properties of the
model is shown for J = 1 and nd = 7, which corresponds to
Fe. The exact local spin moment 〈S2〉 remains essentially at its
ground-state value S(S + 1) = 15/4 until kBT is comparable
to the exchange energy J , i.e., until the S = 1/2 excited states
become accessible. It then decreases monotonously towards
the high-temperature limit 〈S2〉∞ = 7/4, in which all states
are equally probable. The excitation of the low-spin states
manifests itself as a rather broad peak in the heat capacity
at kBT 
 J . In this temperature range (1/2 � T/J � 3),
the entropy shows a crossover from the ground-state value
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Exact
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FIG. 1. Thermodynamic properties of the isotropic single-site
model for nd = 7 electrons: (a) Total local moment S2 = 〈Ŝ2

ρ + Sz2〉,
longitudinal component 〈Ŝ2

z 〉, and transversal component 〈Ŝ2
ρ〉 =

〈Ŝ2
x + S2

y 〉, (b) heat capacity C, and (c) entropy S as a function of
temperature T . The full blue curves are obtained by averaging with the
static density operator ρ̂st [Eq. (20)], the dashed black curves are exact
results, and the dotted green curves result from the derivatives of the
static free energy Fst [Eqs. (12)–(16)]. In (b), the full and dash-dotted
blue curves correspond to Eqs. (24) and (26), respectively. In (c), the
full (dash-dotted) blue curve is obtained by integrating Cst/T starting
from T = ∞ (T = 0).

S0 = ln(40) towards the high-temperature limit S∞ = ln(120)
[see Figs. 1(b) and 1(c)].

Comparison with the exact results shows that calculating the
finite-temperature properties directly from the static partition
function Zst, i.e., by taking the corresponding derivatives
of Fst = −kBT ln(Zst), is a very poor approximation. As
shown by Kakehashi in the low-temperature limit [54], the
ground-state moment 〈Ŝ2〉 is significantly underestimated.
Moreover, 〈Ŝ2〉 increases with increasing T , which implies
that the internal energy decreases. Therefore, the method yields
a negative heat capacity C for kBT � 0.8J and a positively
diverging entropy for T → 0; see Figs. 1(b) and 1(c). At least
in the present atomic limit, this approach is not satisfactory.
Even at high temperatures (e.g., kBT � 2J ), it does not seem
particularly accurate.

Remarkably, the previous serious drawbacks are not a
consequence of the static approximation itself, i.e., they are
not inherent to the static description of spin fluctuations.
Indeed, the local moment 〈Ŝ2〉 and its Cartesian components
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calculated by using the static density operator ρ̂st are very close
to the exact results for all temperatures [see Fig. 1(a)]. Notice,
moreover, that this approximation respects the spin-rotational
symmetry on average, since 〈Ŝ2

z 〉 = 〈Ŝ2
y 〉 = 〈Ŝ2

x 〉 = 〈Ŝ2〉/3. As
shown in Fig. 1(b), very good results are also found for the
heat capacity Cst, as obtained either from the temperature
dependence of the average energy [Eq. (24)] or from the
energy fluctuations [Eq. (25)]. It should be noted, however,
that the latter tends to overestimate C and is thus somewhat
less accurate [see Fig. 1(b)]. This is understandable since the
variance of the energy involves a higher level of correlations
than the energy itself.

Finally, the approximations to the entropy Sst, calculated by
integrating Cst/T as a function of T , are also very good. On
the one side, starting the integration from T = 0 [dash-dotted
curve in Fig. 1(c)], one obtains quantitatively accurate results
for kBT � J/2 and a systematic overestimation of about 5–7%
for large T . On the other side, starting from β = 0 [full curve
in Fig. 1(c)], Sst matches the exact solution remarkably well,
except for kBT � J/2 where an underestimation by less than
4% is obtained. The quality of the results for Sst might seem
expected in view of the correctness of Cst. Still, this actually
shows that calculating S[ρ̂st] by integrating the heat capacity
Cst is a very useful approach. In the anisotropic case, however,
the approximation breaks down at very low temperatures, as
will be discussed below.

In sum, the results for the isotropic model demonstrate that
the static density operator ρ̂st provides a physically sound and
quantitatively accurate description of the finite-temperature
equilibrium state. This constitutes a significant improvement
with respect to previous formulations based on straightforward
derivations of the logarithm of the static partition function Zst.

B. Anisotropic case

While spin-rotational-invariant theories of magnetism are
required to perform well in an isotropic environment, it
is equally important to aim for an accurate description of
the response to symmetry-breaking perturbations. The local
magnetic field B considered in the present model may
correspond to a uniform external field or to a local anisotropy
field, which simulates the effects of spin-orbit interactions. In
Figs. 2 and 3, we consider B = 0.01J as a first representative
example, where J refers to the exchange integral. Assuming
that J 
 0.7–1.0 eV, as typically found in 3d transition
metals, this would represent an exceptionally strong external
B 
 120–170 T or a very large magnetic anisotropy energy
	E 
 7–10 meV/atom, sometimes reached in ultrathin films,
nanowires, or small clusters. Results for other values of B are
discussed below.

Two distinct temperature regimes need to be distinguished.
For not-too-low T (i.e., T/J > 0.1 or T/B > 10), the ther-
modynamic properties are qualitatively very similar to the
isotropic case. The drawbacks of previous static approaches
remain, while the results derived from the static density
operator ρ̂st are all in very good agreement with the exact
solution (see Fig. 2). The low-temperature regime displayed
in Fig. 3 is certainly more challenging, since it is comprised
of the crossover from a uniaxial ground state to the isotropic
behavior. The temperature here is comparable to the field-
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FIG. 2. Thermodynamic properties of the single-site model in a
local magnetic field B = 0.01J , where J is the intra-atomic exchange
integral: (a) Spin magnetization 〈Ŝz〉, total local moment S2 =
〈Ŝ2

ρ + Sz2〉, longitudinal component 〈Ŝ2
z 〉, and transversal component

〈Ŝ2
ρ〉 = 〈Ŝ2

x + S2
y 〉, (b) heat capacity C, and (c) entropy S as a function

of temperature T . The full blue curves are obtained by averaging with
the static density operator ρ̂st [Eq. (20)], the dashed black curves are
exact results, and the dotted green curves result from the derivatives
of the static free energy Fst [Eqs. (12)–(16)]. In (b), the full and
dash-dotted blue curves correspond to Eqs. (24) and (25), respectively.
In (c), the full (dash-dotted) blue curve is obtained by integrating
Cst/T starting from T = ∞ (T = 0). The low-temperature regime is
highlighted in Fig. 3.

induced multiplet splitting. In this range, the total local
moment 〈Ŝ2〉 remains at the ground-state value, since it is
governed by the much larger exchange energy J . This is
very accurately reproduced by 〈Ŝ2〉st, as obtained from ρ̂st,
but not by the corresponding derivative of Fst. The spin
magnetization 〈Ŝz〉 induced by B decreases with increasing
T , from the saturated ground-state value Sz = 3/2 to Sz 
 0
for T/J 
 0.1 (T/B 
 10). At the same time, the longitudinal
(transversal) component 〈Ŝ2

z 〉 (〈Ŝ2
ρ〉 = 〈Ŝ2

x + S2
y 〉) of the local

moments decreases (increases), attaining 〈Ŝ2〉/3 (2〈Ŝ2〉/3)
already for T/J 
 0.05 or, equivalently, T/B 
 5. This
crossover to the isotropic regime is well described in our
approximation [see Fig. 3(a)]. However, notice that 〈Ŝ2

z 〉 (〈Ŝ2
ρ〉)

is underestimated (overestimated). In fact, ρ̂st exaggerates
the temperature dependence of 〈Ŝz〉, 〈Ŝ2

z 〉, and 〈Ŝ2
ρ〉 at very

low temperatures. It predicts a linear temperature dependence
where the exact changes are exponentially small. The linear
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FIG. 3. Low-temperature thermodynamic properties of the
single-site model in a local magnetic field B = 0.01J , where J is
the intra-atomic exchange integral: (a) Spin magnetization 〈Ŝz〉, total
local moment S2 = 〈Ŝ2

ρ + Sz2〉, longitudinal component 〈Ŝ2
z 〉, and

transversal component 〈Ŝ2
ρ〉 = 〈Ŝ2

x + S2
y 〉, (b) heat capacity C, and (c)

entropy S. All model parameters and curve styles are the same as in
Fig. 2.

decrease of 〈Ŝz〉st also affects the temperature dependence of
the average energy E and its fluctuations. This leads to inac-
curacies in the specific heat and entropy for T → 0, which are
discussed below. The static approximation, therefore, fails to
accurately reproduce the thermal activation across the discrete
spectrum of the single-site model (finite gap of the order of B).
Even so, this problem is expected to become less important as
the system size increases and in the macroscopic limit.

In Fig. 3(b), results are given for the heat capacity C

as a function of T . As in the isotropic case, the values
obtained from the second derivative of Fst are negative. The
approximations Cst and C ′

st which are obtained using ρ̂st from
the temperature dependence of the average energy and its
fluctuations [Eqs. (24) and (25)] are very close to the exact
solution for T/B � 1 and T/B � 3, respectively. However,
some significant deviations appear again in the limit T → 0
[see Fig. 3(b)]. On the one side, Cst remains essentially at a
constant finite value for T/B < 1. This reflects the already
discussed linear decrease of 〈Ŝz〉st with increasing T . Far
more dramatic are the results for C ′

st = 	E2/T 2, deduced
from the average energy fluctuations 	E2 = 〈Ĥ 2〉st − 〈Ĥ 〉2

st.
Although 	E2 converges properly to zero, as expected, the
dependence on T is only linear. This is obviously too slow

and leads to a 1/T divergence of C ′
st. The breakdown of C ′

st
in the low-temperature limit is probably understandable since
	E2 involves higher-order correlations, which are difficult to
describe with the static linear decoupling.

The temperature dependence of the entropy S is shown in
Fig. 3(c). For T/J � 0.01 (T/B � 1), the results obtained by
integrating Cst/T ′ from T ′ = ∞ to T are remarkably close
to the exact solution. However, Sst diverges as ln(T ) in the
low-temperature limit [see Fig. 3(c)]. This is not surprising
since Sst ∝ ln(T ) is equivalent to the above-discussed result
that Cst tends to a finite constant for T → 0 [see Fig. 3(c)].
It is important to remark that this anomalous behavior is
not an intrinsic limitation of ρ̂st. It is a consequence of the
approximation used to compute Sst, which is based on a
relation between S and C that is not valid in general. The
entropy S[ρ̂st] = −〈ln(ρ̂st)〉 is actually a fundamental property
of the mixed state ρ̂st, to be computed independently from
E = 〈Ĥ 〉st. In fact, it is easy to see that S[ρ̂st] → ln(ng) for
T → 0, where ng � 1 is the degeneracy of the Hartree-Fock
ground state, in which the exchange field �ξ0 points along the
magnetic field �B.
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FIG. 4. Average spin magnetization 〈Ŝz〉, longitudinal component
〈Ŝ2

z 〉, and transversal component 〈Ŝ2
ρ〉 = 〈Ŝ2

x + Ŝ2
y 〉 of the local

magnetic moments 〈Ŝ2〉 = 〈Ŝ2
ρ + Ŝ2

z 〉 as a function of magnetic field
B. The temperatures are (a) T = 0.001J/kB , (b) T = 0.01J/kB ,
and (c) T = 0.05J/kB , where J stands for the intra-atomic exchange
integral. The full blue curves are obtained by using the static density
operator ρ̂st [Eq. (20)], while the dashed black curves are the
corresponding exact results. The green dotted curves show ∂Fst/∂J .
The total local moment S2 = 〈Ŝ2

ρ + Ŝz2〉 (not shown) remains almost
exactly equal to its zero-field ground-state value S2 = 15/4 for all
considered B.
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G. M. PASTOR AND J. DORANTES-DÁVILA PHYSICAL REVIEW B 93, 214435 (2016)

In Fig. 4, the spin magnetization and the local magnetic
moments are shown as a function of the external magnetic
field B, for three representative temperatures. As expected,
the total moments 〈Ŝ2〉 are not affected by changes in B,
unless B and T are unreasonably high. As in previous cases,
the results for 〈Ŝ2〉st obtained from ρst coincide with the exact
ones. Starting from the isotropic case (B = 0), the longitudinal
component of the moment 〈Ŝ2

z 〉 increases at the expense of
the transversal contribution 〈Ŝ2

ρ〉. For low temperatures [e.g.,
T/J = 0.001 in Fig. 4(a)], saturation is almost reached for
the largest considered fields (i.e., 〈Ŝz〉 = 3/2 and 〈Ŝ2

z 〉 =
9/4). Notice that the response to the magnetic field is, in
general, underestimated by ρst. In particular, the approach to
saturation is slower than in the exact solution. Although the
calculated 〈Ŝ2

z 〉st and 〈Ŝz〉st are exact for B = 0, the zero-field
susceptibility χ = (∂〈Ŝz〉/∂B)B=0 is underestimated by 40%
(see Fig. 4). This discrepancy is due to the fact that Ŝz does
not commute with the effective single-particle Hamiltonian
Ĥ ′(�ξ ), even though it commutes with Ĥ [compare Eqs. (2)
and (10)]. As a result, (∂〈Ŝz〉st/∂B) does not coincide with
χ = (〈Ŝ2

z 〉st − 〈Ŝz〉2
st)/T as in the exact case [see Eq. (19)]. If

we use the latter expression for χ , our results are essentially
exact.
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FIG. 5. Thermodynamic properties of the single-site model in
a local magnetic field B = 0.001J , where J is the intra-atomic
exchange integral: (a) Spin magnetization 〈Ŝz〉, total local moment
S2 = 〈Ŝ2

ρ + Sz2〉, longitudinal component 〈Ŝ2
z 〉, and transversal com-

ponent 〈Ŝ2
ρ〉 = 〈Ŝ2

x + S2
y 〉, (b) heat capacity C, and (c) entropy S.

The style assigned to each curve is the same as in Fig. 2. The
low-temperature regime is highlighted in Fig. 6.
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FIG. 6. Low-temperature thermodynamic properties of the
single-site model in a local magnetic field B = 0.001J , where J

is the intra-atomic exchange integral: (a) Spin magnetization 〈Ŝz〉,
total local moment S2 = 〈Ŝ2

ρ + Sz2〉, longitudinal component 〈Ŝ2
z 〉,

and transversal component 〈Ŝ2
ρ〉 = 〈Ŝ2

x + S2
y 〉, (b) heat capacity C,

and (c) entropy S. All model parameters and curve styles are the
same as in Fig. 5.

Before closing this section, we would like to briefly discuss
the temperature dependence of the thermodynamic properties
of the model for two additional values of B/J . As already
discussed, the results shown in Figs. 2 and 3 for B = 0.01J

correspond to a very strong external or local anisotropy field,
assuming that J 
 0.7–1.0 eV is appropriate for 3d transition
metals. It is therefore interesting to also consider smaller
fields, for example, B = 0.001J as shown in Fig. 5. For
not-too-low T , one observes that the temperature dependence
of all considered properties is very similar to the isotropic
case (Fig. 1). Of course, this does not hold at low T (i.e.,
for T � 5B) where the differences between isotropic and
anisotropic cases are always qualitatively important. The more
challenging low-temperature regime is highlighted in Fig. 6.
In this case, we find essentially the same behavior as for
B = 0.01J but in an accordingly scaled temperature range
(compare Figs. 3 and 6). This could have been expected
since for J � B,T only the lowest-S multiplet matters (in
the present case, S = 3/2) and therefore the temperature
dependence scales with T/B.

Perhaps more of a theoretical curiosity, at least at first
sight, is the case of an even larger local magnetic field, for
example, B = 0.1J , as shown in Fig. 7. Indeed, such values
of B are certainly unattainable, either as external or as local
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FIG. 7. Thermodynamic properties of the single-site model in a
local magnetic field B = 0.1J , where J is the intra-atomic exchange
integral: (a) Spin magnetization 〈Ŝz〉, total local moment S2 =
〈Ŝ2

ρ + Sz2〉, longitudinal component 〈Ŝ2
z 〉, and transversal component

〈Ŝ2
ρ〉 = 〈Ŝ2

x + S2
y 〉, (b) heat capacity C, and (c) entropy S. The style

assigned to each curve is the same as in Fig. 2.

anisotropy fields, if one presupposes that J corresponds to
3d transition metals. Nevertheless, the results still seem of
interest in order to complete the assessment of the different
approximations or as a possibility of modeling systems with a
weak exchange interaction J . The results show that averaging
with ρ̂st remains a very effective method of calculating the
temperature-dependent properties, even for very large fields.
This holds, in particular, for the local magnetic moments,
their longitudinal and transversal components and the field-
induced magnetization [Fig. 7(a)]. Significant deviation from
the exact results is only found at low temperatures. The
nonmonotonous temperature dependence of the heat capacity
is well reproduced by both approximations Cst and C ′

st,
except for T/B � 1, where the former remains constant,
failing to tend to zero, and the latter diverges. As for the
other values of B, the entropy Sst obtained by integrating
Cst is remarkably accurate over a very broad temperature
range, in contrast to previous approaches [see Fig. 7(c)].
Only in the limit of T → 0 does the approximation for
Sst, which consists in integrating Cst/T , break down since
Cst tends to a nonzero constant and, therefore, Sst ∝ ln(T ).
As already discussed, this is not a flaw of ρ̂st, which can
be shown to always have a finite positive entropy S[ρ̂st]
at T = 0.

IV. CONCLUSION

A spin-rotational-invariant theory of finite-temperature
transition-metal magnetism has been presented. Starting from
a many-body model Hamiltonian for the valence 3d electrons,
the noncollinear spin fluctuations are taken into account in
the framework of the static approximation to the vector-field
functional-integral method. A change of perspective to the
solution of this longstanding problem is proposed. Instead of
using the static assumption to calculate the partition function
Z and derive the thermodynamics from the derivatives of
the approximate free energy Fst = −kB ln(Zst), we regard the
Hubbard-Stratonovich transformation as an operator identity
and derive a static approximation to the density operator ρ̂

which characterizes the equilibrium mixed state. The thus
obtained static density operator ρ̂st gives us direct access to
the thermodynamic averages of any observable. The following
goal of this paper has been to assess the validity of the proposed
method or, in other words, to judge the ability of ρ̂st to describe
the many-body equilibrium state. To this aim, the atomic
limit of the model has been investigated in detail, taking
Fe as a representative example. The comparison between
exact and approximate results demonstrates that ρ̂st provides
a physically sound and quantitatively accurate account of the
finite-temperature properties over a wide temperature range.
Significant deviations from the exact behavior are only found
in the entropy and heat capacity, when a local magnetic field
B is present and the temperature is comparable to or smaller
than the multiplet splitting (i.e., kBT � μBB). This is not
expected to be a problem in most practical applications since
the temperature equivalent of external or anisotropy magnetic
fields seldom surpasses 20 K. We conclude that important
progress has been achieved, particularly in comparison with
previous static approaches, which yield unphysical results in
the atomic limit [54]. The quantum-mechanical reasons behind
these improvements have been identified. The general validity
of these arguments suggests that our conclusions should also
apply to more sophisticated multiband models as well as to
first-principles methods.

Understanding itinerant-electron magnetism at a micro-
scopic level represents a particularly important, yet un-
solved problem in condensed-matter physics. Spin-rotational-
invariant theories, incorporating longitudinal and transversal
spin excitations on the same footing, are particularly appeal-
ing. They are physically far superior to broken-symmetry
longitudinal models on both energetic and entropic issues.
Moreover, the noncollinear point of view gives access to
arbitrary complex forms of magnetic order (e.g., spin spirals,
skyrmions, and other chiral structures), which are attracting
considerable experimental and theoretical attention. Grasping
the stability of these magnetic structures at finite tempera-
tures and the nature of the dominant spin excitations is a
fascinating challenge. Furthermore, the vector character of
spin excitations is expected to be crucial for the study of
subtle, symmetry-sensitive effects such as spin-orbit coupling,
magnetic anisotropy, and orbital magnetism. The present
work opens an alternative route to the development of non-
collinear spin-fluctuation theory with a variety of interesting
perspectives. Improvements on the model, which allow a more
realistic description of the single-particle electronic structure,
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are straightforward, in particular by including sp electrons and
sp-d hybridizations. In this way, one could take advantage of
the relations between the present approach and first-principles
theories of finite-temperature magnetism. One may consider,
for example, a tight-binding representation of the Kohn-
Sham Hamiltonian, as proposed in Ref. [59], and derive the
thermodynamic properties from the static approximation to
ρ̂ developed here. The operator perspective adopted in this
work should also be helpful in the more general framework
of finite-temperature density-functional theory [60] and in the
context of dynamical approximations to the many-electron
problem in narrow bands [22].

The relative simplicity of the present approach can be
exploited to investigate large finite clusters, low-dimensional

systems, and nanostructures. Quantum-mechanical averages
can be obtained in the framework of the single-particle
Hamiltonian Ĥ ′(�ξ ) by using Green’s-function methods, while
statistical averages over the exchange-field configurations can
be performed by Monte Carlo methods or alloy-analogy ap-
proximations. Particularly challenging are the applications to
magnetic anisotropy and spin-orbit effects, whose temperature
dependence remains, to a large extent, unexplored from the
point of view of theory.
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