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We show the possibility of long-range ferrimagnetic ordering with a saturation magnetization of ∼1μB per spin
for arbitrarily low concentration of magnetic impurities in semiconductors, provided that the impurities form a
superstructure satisfying the conditions of the Lieb-Mattis theorem. Explicit examples of such superstructures are
given for the wurtzite lattice, and the temperature of ferrimagnetic transition is estimated from a high-temperature
expansion. Exact diagonalization studies show that small fragments of the structure exhibit enhanced magnetic
response and isotropic superparamagnetism at low temperatures. A quantum transition in a high magnetic field
is considered and similar superstructures in cubic semiconductors are discussed as well.
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I. INTRODUCTION

In order to launch the engineering of a new generation
of electronic devices, one needs new materials with special
properties. For instance, spintronics has a need for room-
temperature ferromagnetic semiconductors [1]. Since the
discovery of high-TC ferromagnetism in GaAs:Mn [2] and the
prediction of room-temperature ferromagnetism in p-doped
ZnO:Co,Mn systems [3], a lot of attempts have been made to
obtain ferromagnetism in transition-metal-doped ZnO, TiO2,
and GaN and in other oxides and nitrides. The p-type carrier
doping is necessary for the p-d Zener ferromagnetic long-
range interaction [4]. Up to now all attempts to obtain ZnO with
p-type current carriers have failed. Nevertheless, numerous
reports of “ferromagnetic” room-temperature behavior of
ZnO and other insulating, or n-doped tetrahedral [5–9], and
cubic [10–14] semiconductors have been published. The
puzzle was summarized by Dietl: “Perhaps the most surprising
development of the past decade in the science of magnetic
materials is the abundant observations of spontaneous magne-
tization persisting to above room temperature in semiconduc-
tors and oxides, in which no ferromagnetism was expected
at any temperature, particularly in the p-d Zener model”
[6].

In the absence of p-type current carriers, the interaction
between magnetic impurities is governed by the superex-
change mechanism. Superexchange is often regarded as an
obstacle in the way towards magnetic semiconductors as it
has antiferromagnetic (AFM) character and tends to antialign
the interacting spins, leading to cancellation of the net
magnetization. In fact, the AFM interaction does not preclude
spontaneous magnetization. In a seminal paper [15], Lieb
and Mattis showed that the ground state of an AFM system
depends on the topology of the interacting bonds and, under
certain conditions, it is ferrimagnetic rather than AFM. The
Lieb-Mattis theorem applies if there is no magnetic frustration
in the spin system.

There exists another class of magnetic insulators with-
out charge carriers, and antiferromagnetic nearest-neighbor
magnetic coupling, which shows room-temperature hysteresis
loops and nonlinear magnetization curves [10–13,16]. Re-

cently, these phenomena were explained by the existence
of Lieb-Mattis ferrimagnetic superstructures in these per-
ovskite solid solutions of multiferroics PbFe1/2Nb1/2O3 or
PbFe1/2Ta1/2O3 with ferroelectric perovskites [17,18].

In this paper we study various structures formed by the
interacting magnetic impurities in wurtzite semiconductors.
We take antiferromagnetic nearest-neighbor interaction into
account and consider diluted lattices without frustration in or-
der to remain within the Lieb-Mattis scheme. First we construct
several finite clusters that show an enhanced magnetic response
at low temperatures. Not alone do they possess a net magnetic
moment; they all share a further interesting peculiarity: below
a certain temperature their magnetic susceptibility exceeds that
of noninteracting spins. We call it isotropic superparamagnetic
response [17,19]. Next we construct extended lattices of these
clusters, which undergo a ferrimagnetic ordering transition
at a finite temperature. The average ground-state spin per
magnetic ion of spin S tends to a finite value (of about
S/3) despite the low concentration of magnetic ions. So,
we propose a mechanism that may explain the observation
of spontaneous magnetization at rather high temperatures in
wurtzite structures with a low concentration of magnetic ions
and no charge carriers at all. The extension of our idea to other
lattices and the influence of frustration is briefly discussed at
the end of the paper.

We take the interaction in the form

Ĥ = 1

2

∑

R,r

JrŜRŜR+r, (1)

i.e., we adopt the notation Jr for the interaction between one
pair of spins [20]. We assume that only the nearest-neighbor (in
the metal sublattice) interaction is nonzero. This assumption
is relevant to magnetic semiconductors, where the nearest-
neighbor exchange dominates [21–23]. Two kinds of nearest-
neighbor arrangements are present in wurtzites: those where
both ions lie in the same plane and those where they lie in two
adjacent planes. The corresponding exchange integrals, J1 (in
plane) and J2 (out of plane), are different [24–26].
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II. SUPERPARAMAGNETISM OF
ANTIFERROMAGNETICALLY
INTERACTING IMPURITIES

The magnetic response of a system is characterized by its
magnetic susceptibility. Talking about a compound A1−xMxX

(where X is a ligand of group V or VI, A is a metal of group
IIId or IId, and M is a transition metal), we attribute all the
magnetic moment to transition-metal ions (TMIs) only. We
now introduce the magnetic susceptibility per one spin,

χ ≡ μM

H
, (2)

where μM is the average magnetic moment of one TMI.
For noninteracting spins, the susceptibility obeys the Curie
law χC = [(gμB)2S(S + 1)]/(3kBT ), where S is the spin of
the TMI and g is its gyromagnetic ratio. Besides isolated
spins, TMI impurities may form pairs, trimers, tetramers,
and more complex structures (see Fig. 1). The antiferro-
magnetic interaction depresses the magnetic response at high
temperatures. For T � JmaxS(S + 1) ≡ Ts , the susceptibility
of an interacting system obeys the Curie-Weiss law χCW =
[(gμB)2S(S + 1)]/[3kB(T − θ )] < χC , with −θ = [S(S +
1)]/(3kBN )

∑
R,r(R) Jr(R). Here N is the number of spins and

Jmax is the strongest exchange interaction in the system, R
runs over all spins of the lattice, and r runs over all nearest
neighbors of each spin.

At temperatures T � Ts , the response of the system
depends on its geometry. Analytic expressions for the suscepti-
bility can be obtained for small systems [21,27,28]. Figure 2(a)
shows the results for the simplest S = 1/2 case. We see that
at T ∼ Ts the response of three spins arranged linearly (3′)
is larger than that of a triangular arrangement of the same
spins (3). For four-spin systems we see the striking difference
between the response of a star arrangement (4′) and that of a
rhombus (4).

Even more interesting is the response of the complexes
shown in Figs. 1(b) and 1(c). Each one of these systems can
be decomposed into two sublattices A and B (denoted by

1

3

4 4’

3’

(a)2 (b)

J1

2J

(c)

FIG. 1. (a) Complexes formed by transition-metal impurities (ar-
rows): isolated ions (1), dimers (2), trimers (3,3′), and tetramers (4,4′).
Black solid line segments depict the nearest-neighbor-interaction
J1 bonds. One wurtzite ab plane is shown, blue circles denote
nonmagnetic host metal ions, and ligands are not shown. (b, c) More
complex Lieb-Mattis systems with ferrimagnetic ground state: linear
chains of impurities in the ab plane are “decorated” by spins in
adjacent planes (gold arrows); pink line segments depict J2 bonds.
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FIG. 2. Inverse susceptibility (per spin) χ−1 for the complexes
shown in Fig. 1. Straight solid red line shows the Curie law χ−1

C ;
straight dashed lines show the low-temperature asymptotics: “super”
-paramagnetic Curie laws (gμB )2/χg = 3NkBT/[Sg(Sg + 1)] for
Lieb-Mattis systems. (a) clusters shown in Fig. 1 a with S = 1/2;
(b) the complex shown in Fig. 1 b with two different values of spin S;
the straight dash-dotted red line is the high-T Curie-Weiss asymptote.
(c) the same complex with S = 1 and various values of J2/J1; (d) the
complex shown in Fig. 1 c with S = 1/2 and various values of J2/J1.

arrows “up” and “down”), the interaction being nonzero only
between sites that belong to different sublattices. Such a system
satisfies the requirements of the Lieb-Mattis theorem [15]
and possesses a ferrimagnetic ground state with total spin
Sg = S|NA − NB |. In this case, the term “ferrimagnetic” refers
to correlations of the spins in the ground state, in the absence
of a long-range magnetic order [29]. We have performed
full exact diagonalization (ED) studies of thermodynamic
properties of clusters shown in Figs. 1(b) and 1(c) using Schu-
lenburg’s SPINPACK program [30,31]. The susceptibility χ (T )
is calculated as the ratio of the induced magnetization M to the
“vanishing” magnetic field H = 10−5J1/gμB . One observes
in Figs. 2(b), 2(c), and 2(d) that the response of the systems
shown in Figs. 1(b) and 1(c) exceeds the response of nonin-
teracting spins at low temperature. Thus, an antiferromagnetic
interaction may result in an enhancement of magnetic response
if the geometry of spin arrangement favors the formation of
a ferrimagnetic ground state. Then for temperatures T � Ts

the susceptibility per spin shows superparamagnetic response
χg = [(gμB)2Sg(Sg + 1)]/[3kBT (NA + NB)]. Evidently, the
enhancement of the low-temperature response takes place if

K ≡ χg

χC

= |NA − NB |(|NA − NB |S + 1)

(NA + NB)(S + 1)
> 1. (3)

Not every system satisfying the requirements of the Lieb-
Mattis theorem and having a ferrimagnetic ground state has
an enhanced susceptibility. Thus, the complexes 3′ (NA = 1,
NB = 2, K = 1/3) and 4′ (NA = 1, NB = 3, K = 2/3) both

214433-2



LIEB-MATTIS FERRIMAGNETISM IN MAGNETIC . . . PHYSICAL REVIEW B 93, 214433 (2016)

have K < 1, i.e., their response is weaker than that of the
same number of noninteracting spins. The complexes shown
in Figs. 1(b) and 1(c) have K ≈ 1.3 and 1.6, respectively.

The S-shaped form of the T dependence of the in-
verse susceptibility [Fig. 2(b)] was previously reported
for small fragments of ferrimagnetic superstructure in
double perovskites [17,18]. The inverse susceptibility of
Pb(Fe1/2Sb1/2)O3 [18] as a function of temperature is shown
in the Supplemental Material [28]. It interpolates between the
Curie-Weiss law χCW at T � Ts , and the “superspin” Curie
law χg = KχC at T � Ts .

III. LIEB-MATTIS FERRIMAGNETIC NETWORKS

The complexes shown in Figs. 1(b) and 1(c) (or similar
ones) may be arranged into many kinds of networks. In
general, they will be irregular [28], but it is especially easy
to analyze periodic superstructures having two (or more)
nonequivalent spin positions. Then a ferrimagnetic ground
state is possible. For noticeable concentrations of impurities,
regular structures can be energetically favorable due to the
interactions between impurities [32,33]. Let us denote the
number of spins in the superstructure unit cell nA + nB , where
A and B refer to the nonequivalent positions. If the spins
of sublattice A interact (antiferromagnetically) only with the
spins of sublattice B (absence of frustration), and nA �= nB , the
ground-state spin of the unit cell is [15] Sc = S|nA − nB |. For
a fragment of such a ferrimagnetic superstructure containing
Nc cells, the ground-state spin is Sg = NcSc = Nc|nA − nB |S,
and the enhancement ratio equals K = |nA − nB |(Nc|nA −
nB |S + 1)/[(nA + nB)(S + 1)]. It is clear that for a sufficiently
large number of cells, Nc, the ratio K will not only be greater
than 1, but can reach very large values. Figure 3(a) shows a
honeycomb superstructure that may be formed by TMIs in the
ab plane of the wurtzite structure. The hexagon edge length
is ah = 2a, a being the lattice parameter of the wurtzite. It is
easy to imagine superstructures with ah = 2La, L = 1,2, . . .,
all of them being ferrimagnetic.

Flat superstructures like those shown in Fig. 3(a) can
be linked together by some bridging spins to form a three-
dimensional ferrimagnetic superstructure, which will undergo
a ferrimagnetic phase transition provided that the number of
cells is macroscopically large. Figures 3(b) and 3(c) show
examples of the structures. It is clear that this motif may be
repeated in an infinite number of variations. Like the host
wurtzite lattice, the unit cell of the superstructure contains
metal ions in two planes. The magnetic ions in one plane
(green “down” and brown “up” arrows) form a honeycomb
lattice with the hexagon edge 2La. In the second plane, the
magnetic ions (gold “up” arrows) occupy the positions nearest
to the green “down” arrows. The interaction between the ions
in the first plane is J1, whereas the interaction between the ions
in two adjacent planes is J2. We note that the complexes shown
in Figs. 1(b) and 1(c) are building blocks of the honeycombs. It
is demonstrated below that many other Lieb-Mattis networks
can be built of such blocks. The number of magnetic ions
in the unit cell is nA + nB = 9L − 1, the ground state spin
of the cell being Sc = S|nA − nB | = S(3L − 1). Now the
total number of ions in the cell is nc = 24L2. Thus, the
concentration of magnetic ions equals x = (9L − 1)/(24L2)

(a) (b)

(c)

(d)

FIG. 3. Examples of ferrimagnetic superstructures: (a) flat and
(b) three-dimensional two-leg honeycombs, L = 1; (c) four-leg
honeycomb, L = 2; and (d) a unit cell of a square network, which
may be also regarded as a face of cubic unit cell. The notation is the
same as in Fig. 1. The cyan rhombi show the unit cells.

and can be made very small for sufficiently large L. At the
same time, the average ground-state spin per magnetic ion,
〈SR〉 = Sc/(nA + nB) = S(3L − 1)/(9L − 1), tends to a finite
value, S/3, as L → ∞.

The inverse magnetic susceptibility χ−1 of such superstruc-
tures is presented in Fig. 4 as a function of normalized tem-
perature T/Ts . It was calculated using a program [36] based
on the tenth-order high-temperature expansion (HTE) [38].
The program computes the exact coefficients of the HTE as
well as its Padé approximants (ratios of two polynomials),
χ (T ) ≈ [m,n] = Pm(T )/Pn(T ). The Padé approximants al-
low one to extend the region of validity of the HTE down
to T ∼ 0.5Ts [36] [Fig. 4(c)]. This extension sometimes fails
if an approximant has a pole in the temperature region of
interest. Our experience shows that the [5,5] approximant
works well in almost all cases. Sometimes difficulties arise
for S = 1/2, and for small J2/J1 ratios, i.e., for the extreme
quantum case. Nevertheless, due to the weak dependence
of the shape of the curve χ−1(T/Ts) on the spin value S

[Fig. 4(a)], it can still be analyzed. At T � 3Ts , the inverse
susceptibility follows the Curie-Weiss asymptotic law with
θ = −[S(S + 1)/3kB]12L(J1 + J2)/(9L − 1). For T � Ts it
sharply deviates from the asymptotic behavior and changes
sign at T = TC . This is the temperature of ferrimagnetic
ordering—the Curie temperature.

The precision of the determination of critical temperatures
from the zero of χ−1 [Fig. 4(c)] was estimated to be about
10% [36]. Figure 4(b) shows that TC decreases as the ratio
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FIG. 4. Temperature dependence of inverse susceptibility given
by [5,5] Padé approximants for tenth-order high-temperature expan-
sion (HTE) for ferrimagnetic superstructures: (a) two-leg honeycomb
(L = 1) with various spin values shown, solid (dash-dotted) straight
red line shows Curie (Curie-Weiss) law; (b) four-leg honeycomb
(L = 2), S = 5/2 and various J2/J1 values are shown; (c) four-leg
system, L = 2, S = 2 and various Padé approximants for 8th-order
([4,4]) [34,35], 10th-order ([4,6], [5,5], [6,4]) [36], and 11th-order
([5,6], [6,5]) [37] HTE; and (d) the vicinity of TC for various
honeycomb superstructures with size parameter L = 1,2, . . . ,6, S =
5/2, and J2 = J1.

of out-of-plane to in-plane couplings, J2/J1, is reduced.
At J2 = 0 the system becomes a stack of noninteracting
two-dimensional planes, and TC should vanish. This limit lies
outside the range of applicability of the HTE, and we postpone
its study to future works. Here we mention only that magnetic
anisotropy, which is neglected in our study, should act in the
opposite direction; i.e., it should enhance the TC as it depresses
spin fluctuations.

Figure 4(d) shows that the ordering temperature de-
creases very slowly as L is increased. Note that the su-
perstructure parameter values L = 1,2,3,4,5,6 correspond
to the following concentrations of magnetic ions: x =
0.33,0.18,0.12,0.09,0.07,0.06. To get a closer relation to
experiments, we may consider, e.g., ZnO:Mn,Co, where the
in-plane superexchange values are J1/kB ∼ 50 K [20,22,23]
and Ts = J1S(S + 1)/kB ∼ 438(188) K for S = 5/2(3/2).
For other Co-doped semiconductors 66 � J1/kB � 100 K
(Refs. [21,26,39] and references therein); i.e., Ts lies within
the interval 248 � Ts � 375 K. The Mn-doped semiconductors
have 12 � J1/kB � 32 K [21,40], and 105 � Ts � 280 K.

Thus, a very diluted system may have an appreciable
ordering temperature (TC � 100 K) provided that some of
the magnetic ions are arranged in a Lieb-Mattis ferrimagnetic
superstructure.

In many aspects, the behavior of a ferrimagnet in its ordered
state is similar to that of a ferromagnet with the same value of
spontaneous magnetization Ms . But in a high magnetic field the

ferrimagnet exhibits a transition accompanied by reorientation
of its sublattices [41–43]. At T = 0 the magnetization per spin
has a constant value, μM,s = gμBS|nA − nB |/(nA + nB), up
to a certain critical field, Hc,1; then it grows up linearly to the
saturation value, μM,max = gμBS, which is reached at a second
critical field, Hc,2. For a two-sublattice ferrimagnet having the
structure shown in Fig. 3(a) (L = 1) and J1 = J2 = J we
find gμBHc,1 = JS, and Hc,2 = 5Hc,1. For J/kB ∼ 20 K this
gives Hc,1 ∼ 37 T, Hc,2 ∼ 185 T.

Figure 3(d) shows an example of a two-dimensional (2D)
square superstructure unit cell with L = 2, which is possible
in a cubic host. It has nA = 1 + 2(L − 1) and nB = 4(L −
1) + 2L. One can also imagine a three-dimensional cubic
network; then Fig. 3(d) corresponds to a face of the cubic
unit cell having nA = 1 + 3(L − 1), nB = 3L + 12(L − 1),
and the concentration of magnetic ions x = (nA + nB)/nc =
(9L − 7)/(4L3). Formation of such superstructures is possible
in perovskite solid solutions mentioned in the introduction.

IV. CONCLUSION

We conclude that Lieb-Mattis ferrimagnetism is a possible
route to obtaining long-range magnetic order in semiconduc-
tors containing transition-metal ions as substitutional impuri-
ties, which requires no additional charge carriers. A precursor
of the ordering transition is the enhanced magnetic response of
a finite cluster showing isotropic superparamagnetism. Our re-
sults for the inverse susceptibility show a characteristic S-like
form of the curves, which could be used to identify the present
mechanism. Adding the magnetic anisotropy to our theory, we
expect also other ingredients of superparamagnetism, namely
a finite blocking temperature and hysteresis.

These superparamagnetic clusters serve as building blocks
to create infinite sublattices of the wurtzite structure that
obey the Lieb-Mattis rules. As we have already noted, there
is an enormous wealth of such Lieb-Mattis sublattices; our
proposals (Fig. 3) may only serve as examples for regular
structures. It is easy to imagine other, more realistic, irregular
structures, one of which is presented in the Supplemental
Material [28]. We expect a finite transition temperature for
all these lattices and we have shown it explicitly for the
subclass that we considered. Of course, a question arises
of whether frustration in a realistic diluted semiconductor
can influence the above-discussed scenario. First we argue
that there are several numerical studies showing that the
Lieb-Mattis theorem, although not rigorously valid, applies to
many frustrated spin systems; see, e.g., Ref. [44]. Furthermore,
we know that there are various frustrated 2D lattices with
antiferromagnetic nearest-neighbor exchange, such as the
triangular or the Shastry-Sutherland lattices, which show
ground-state magnetic long-range ordering [45,46]. Last but
not least, the stability of the ferrimagnetic ground state
against frustration has been demonstrated for several specific
ferrimagnetic models; see, e.g., Refs. [47–49]. Consequently,
there is ample evidence that the above-sketched mechanism
should be robust against frustration. Also a small number of
charge carriers will not destroy the magnetic order. In contrast,
the finite magnetization will polarize the charge carriers. The
final proof that the mechanism proposed here can, indeed, be
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realized in a real material demands further studies, in close
collaboration between experiment and theory.

In this work, we have considered only semiconductors
doped with one kind of magnetic ion, where ferrimagnetism
can appear due to the topology of interacting bonds. Another
option is co-doping with two kinds of ions having different
spin values. In both cases a ferrimagnetic semiconductor may
be a good alternative to a ferromagnetic one.
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