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Phenomenology of chiral damping in noncentrosymmetric magnets
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A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking
inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization
gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such
a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect
and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping
in terms of domain-wall motion is investigated in the flow and creep regimes.
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I. INTRODUCTION

Understanding energy relaxation processes of fast dissipa-
tive systems at the nanoscale is of paramount importance for
the smart design and operation of ultrafast nanodevices. In
this respect, magnetic heterostructures have drawn increasing
enthusiasm in the past ten years with the subpicosecond optical
control of magnetic order [1,2] and the promises of ultrafast
domain-wall motion in asymmetric metallic multilayers [3].
In fact, the observation of ultrahigh current-driven velocity
in ultrathin multilayers has come as a surprise and triggered
intense investigations on the physics emerging from sym-
metry breaking in strong spin-orbit coupled magnets [4,5].
These studies have unravelled the essential role played by
Dzyaloshinskii-Moriya interaction [6,7] (DMI), an antisym-
metric exchange interaction that emerges in magnets lacking
spatial inversion symmetry. This interaction forces neighbor-
ing spin to align perpendicular to each other and competes
with the ferromagnetic exchange, resulting in distorted textures
such as spin spirals or Skyrmions, as observed in bulk inversion
asymmetric magnets [8] as well as at the interface of transition
metals [9,10]. In perpendicularly magnetized domain walls,
this interaction favors a Néel over Bloch configuration [11–13],
a key ingredient explaining most of the thought-provoking
observations reported to date [14]. The dynamics of spin
waves can also be modified by DMI, which distorts the energy
dispersion [15] and results in a relaxation that depends on the
propagation direction [16,17].

A crucial aspect of fast dynamical processes is the nature of
the energy relaxation. In the hydrodynamic limit of magnetic
systems, this dissipation is written in the form of a nonlocal
tensor [see Eq. (1)] whose complex physics is associated
with a wide variety of mechanisms such as many-magnon
scattering [18] and itinerant electron spin relaxation [19]. Since
the energy relaxation rate of spin waves depends on their
wave vector (the higher the spin wave energy, the stronger
its dissipation), the magnetic damping of smooth magnetic
textures (i.e., in the long wavelength limit q) depends on
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the inverse of the exchange length, q ∼ 1/λdw. In inversion
symmetric systems, this results in a correction to the magnetic
damping of the order of 1/λ2

dw [20–22]. However, in magnetic
systems lacking inversion symmetry, such as the systems
in which DMI is observed, the energy dissipation becomes
chiral: a component linear in the magnetization gradient
emerges, thereby fulfilling Neumann’s principle stating that
“any physical properties of a system possess the symmetry of
that system.”

In the present work, we explore the nature of the mag-
netic damping in noncentrosymmetric magnets and propose
different physical mechanisms resulting in the emergence of
a chiral damping. This chiral damping significantly impacts
the motion of magnetic domain walls in both flow and creep
regimes, opening appealing avenues to solve recent puzzling
observations [23].

II. SYMMETRY CONSIDERATIONS

The equation of motion governing the dynamics of continu-
ous magnetic textures is given by the Landau-Lifshitz-Gilbert
(LLG) equation,

∂tm =−γ m × Heff + m(r) ×
∫

dr′α(r,r′)∂tm(r′), (1)

where m(r,t) = M(r,t)/Ms is a unit vector in the direction
of the magnetization M(r,t), γ is the gyromagnetic ratio,
Heff is the effective field incorporating the external applied,
anisotropy, exchange, DMI, and demagnetizing fields, and
α(r,r′) is the magnetic damping expressed as a nonlocal
second-rank tensor. In the limit of smooth textures, the
tensorial components of the damping is a function of the
magnetization direction and of its spatial gradients, αij =
αij (m,∇m). Performing an expansion up to the first order
in the magnetization gradient yields [24]

αij = α
ij

0 +
∑
lm

K
ij

lmmlmm +
∑
klm

L
ij

klmmk∂lmm. (2)

The first term is the isotropic damping, the second term
amounts for the magnetocrystalline anisotropy, and the
third term is the chiral damping. Only terms bilinear in
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magnetization direction mi , i.e., even under time-reversal
symmetry, are retained in the expansion. Spatial inversion
symmetry breaking imposes the third term of Eq. (2) to reduce
to a sum of Lifshitz antisymmetric invariants, ∝mk∂lmm −
mm∂lmk (i.e., L

ij

klm = −L
ij

mlk). In the case of a cubic three-
dimensional system with bulk spatial inversion symmetry
breaking (e.g., B20 or ZnS crystals), all three crystallographic
directions (x, y, and z) are equivalent and the chiral damping
adopts the general form

αij = α
ij

0 + α
ij

3dλdwm · (∇ × m), (3)

where λdw defines the characteristic exchange length. In a two-
dimensional system with interfacial symmetry breaking along
z, i.e., invariant under C∞z rotation symmetry, the damping
takes the form

αij = α
ij

0 + αij
z λdwm · (∇z × m), (4)

where ∇z = z × ∇.
As dictated by Neumann’s principle, the chiral damping

possesses the same symmetry as DMI for these systems (e.g.,
see Refs. [8] and [14]). In addition, Onsager reciprocity
imposes αij = αji , and hence, one can construct a chiral
damping up to linear order in the magnetization gradient
based on symmetry arguments. These considerations suggest
that such a damping is present in noncentrosymmetric (ferro-,
ferri-, and antiferro-)magnets in general, not limited to metals.
However, this phenomenology does not provide information
regarding the strength of the chiral damping itself, the relative
values of the off-diagonal tensor elements (∼αi �=j ) compared
to the diagonal ones (∼αii), nor does it indicate the underlying
physical mechanisms responsible for it. Let us now turn
our attention towards the microscopic origin of such chiral
damping.

III. MICROSCOPIC ORIGIN OF THE CHIRAL DAMPING

We focus our attention on magnetic metals where the damp-
ing is driven by the spin relaxation of itinerant electrons [19].
In ferromagnets with interfacial Rashba spin-orbit coupling,
it has been shown that the magnetic damping adopts the
form of a tensor, linear in both magnetization gradient and
Rashba strength [25–27]. Besides this effect, we here propose
two additional mechanisms that can contribute to the chiral
damping.

The first mechanism is illustrated in Fig. 1(a) and arises
from the interplay between spin motive force and anomalous
Hall effect. Indeed, it has been shown recently that time-
dependent spin textures generate a local spin current Js

i =
gμB�G0

4e2 ∂tm × ∂im [28], where G0 is the electrical conductivity.
This spin current flows along ei direction and is spin polarized
along ∂tm × ∂im ∝ m. It induces magnetic dissipation at
the second order of the spatial gradient [20]. Now, when
anomalous Hall effect is present in the ferromagnet, a charge
current Je can be converted into a charge Hall current of the
form JH = θHP m × Je, where θH is the spin Hall angle and
P is the spin polarization in the ferromagnet. Following the
same mechanism, the primary spin current Js

i can be converted
into a secondary spin current with the same polarization ∼m
but that flows along m × ei (≡Js

i × ei). This secondary spin

FIG. 1. Illustration of different microscopic mechanisms at the
origin of chiral damping. In (a), the spin current induced by
the moving magnetization is dissipated in the adjacent metal via
anomalous Hall effect. Panel (b) illustrates the chiral damping
process due to s-d DMI. The itinerant electron spins (black arrows)
feel three competing effective fields: the isotropic exchange field
Bex

sd ∼ m in the direction of the local moments (red), the constant
Rashba field BR

sd ∼ y (purple), and the spatially inhomogeneous DM
field BDMI

sd ∼ (z × ∇) × m (blue). This field, which varies in both
magnitude and direction, results in a damped precession that depends
on the chirality of the wall.

current reads Js
j = θHP [Js

i · (ei × ej )]ei × ej . The secondary
spin current, which flows along ej and is spin polarized along
ei × ej , can be injected into an adjacent spin sink with strong
spin relaxation, thereby inducing a dissipative torque on the
magnetization. The latter is very similar to the well-known
spin pumping mechanism [29]. Considering a one-dimensional
domain wall along x deposited on a heavy metal with an
interface normal to z, we obtain a damping torque of the
form [30]

τ = AθHgμB�PG0

4e2Msd
[(∂tm × ∂im) · y]m × (y × m), (5)

A being a renormalization factor arising from the spin current
backflow (A → 1 for strong spin relaxation [29]), Ms the
saturation magnetization, and d the thickness of the ferro-
magnet. Assuming G0 = 2×107 S m−1, P = 0.7, θH = 5%,
d = 1 nm, and Ms = 800 emu/cc, we find a chiral damping
of the order of 0.015 for a domain-wall thickness λdw = 1 nm.
This damping torque is proportional to ∼sin 2ϕ, ϕ being the
azimuthal angle of the magnetization, and vanishes when
the wall is either in Bloch (ϕ = π/2) or Néel configuration
(ϕ = 0).

The second mechanism is related to DMI. As demonstrated
in Ref. [31], in transition metal ferromagnets both localized
(pd hybridized) and delocalized electrons (spd hybridized)
contribute to DMI and therefore one can parse the total
spin moment Si into localized (d-dominated) and delocalized
(s-dominated) contributions Si = Sd

i + ŝs
i . The resulting DMI

between sites i and j can be phenomenologically rewritten
up to the linear order in ŝs as Dij · Si × Sj = Ddd

ij · Sd
i × Sd

j +
Dsd

ij · Sd
i × ŝs

j (neglecting a higher-order term ∼ŝs
i × ŝs

j ). The
first term involves orbital overlap between localized states,
while the second term describes the chiral exchange between
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the local and itinerant spins. In the continuous limit, the
Hamiltonian of the itinerant electrons can be written as

Ĥsd = p̂2

2m
+ Jexm · σ̂ + αR

�
p̂z · σ̂ + αD

�
(p̂z × m) · σ̂ , (6)

where p̂z = z × p̂, σ̂ is the vector of Pauli spin matrices, Jex,
αR, and αD = Dsda (a is the lattice parameter) are the strength
of the exchange, Rashba spin-orbit, and s-d DM interactions,
respectively. Equation (6) suggests that itinerant spins flowing
through the magnetic texture illustrated in Fig. 1(b) experience
three types of effective magnetic fields (see also Ref. [32]):
the inhomogeneous exchange field ∼m, the constant Rashba
field ∼y, and the inhomogeneous, texture-dependent s-d DM
field ∼(z × ∇) × m. Due to the cooperation of the second and
third terms in Eq. (6), the Fermi surface becomes dependent
on the magnetization direction, a phenomenon known as
Fermi surface breathing [19] and responsible for conventional
(possibly anisotropic) magnetic damping. The last term, s-d
DMI, introduces a breathing that depends on the magnetization
gradient and therefore promotes chiral damping.

To derive the equation of motion of the itinerant electron
spin density s = 〈σ̂ 〉 from Eq. (6), we follow a standard
procedure [30] and obtain

∂ts + ∇ · J + 1
τex

s × m = ∇z[bR + ×bDm] × s − 
re, (7)

where τex = �/2Jsd is the spin precession time, bR = 2αR/�,
and bD = 2αD/�. J = −D∇ ⊗ s is the spin current density
tensor, D being the diffusion constant. The solution of Eq. (7)
for the spin density and torque is nontrivial. Therefore,
we proceed with the gradient expansion method within the
relaxation time approximation (see Ref. [30] for details) to
obtain the torque τ generated by a precessing magnetization
∼∂tm:

τ/ñs ≈ (1 + ξχ − βm×)[−∂tm

+ λR[∇z × (m × ∂tm + ξ∂tm)]⊥
+ λD[(∇z × m) × (m × ∂tm + ξ∂tm)]⊥]. (8)

In this expression, β = τex/τsf , χ = τex/τϕ , ξ = χ + β, ñs =
ns/(1 + ξ 2), and the subscript ⊥ indicates that the torque is
defined perpendicular to the magnetization m. The first term
has been derived previously [33], the second term (λR = τexbR)
arises from Rashba spin-orbit coupling [25,26], and the third
term (λD = τexbD) arises from the s-d DMI exchange. The
total torque τ contributes both to the renormalization of the
gyromatic ratio (terms that preserve time-reversal symmetry)
and to dissipation (terms that break time-reversal symmetry).
This form is more general than Eq. (2). In fact, the expansion
given in Eq. (2) assumes a damping torque of the form τ ∼
m × α · ∂tm, where α is a space-dependent tensor. In contrast,
Eq. (8) is the explicit form of the damping torque calculated
microscopically and involving terms, such as ∼∇∂tm, that are
absent from Eq. (2).

Assuming αR ≈ 10−11 eV m [3], αD ≈Dsda=10−11 eV m
[31], and τex ≈ 10−14 s, we obtain λR = λD = 0.3 nm. Consid-
ering that ñs = 0.1 and τϕ ≈ τsf ≈ 10−13 s, the chiral damping
is of the order of ñsλR/λdw ≈ 0.03 and ñsξλD/λdw ≈ 0.003
for λdw = 1 nm. Notice that the chiral damping arising from
s-d DMI (∝Dsd) does not necessarily scale with the DMI

itself (∝Ddd), as both effects, chiral damping and asymmetric
exchange, involve different electron orbitals.

IV. DOMAIN-WALL MOTION

To illustrate the effect of this chiral damping on the
dynamics of magnetic textures, we first derive the equa-
tion of motion of a one-dimensional perpendicular do-
main wall, commonly observed in heavy metal/ferromagnet
asymmetric multilayers [3–5]. The magnetization is defined
m = (cos ϕ sin θ, sin ϕ sin θ, cos θ ), where ϕ = ϕ(t) is the
azimuthal angle and θ (x) = 2 tan−1 (exp[s(x − X)/λdw]), X

being the domain-wall center, and s = ±1 defining the
domain-wall chirality (↑↓ or ↓↑, respectively). The magnetic
domain wall is submitted to a magnetic anisotropy field
Hk = Hk sin θ sin ϕy which favors a Bloch configuration and
an applied magnetic field H = Hxx which favors a Néel
configuration. The damping torque is given by Eq. (8), and
the rigid domain-wall dynamics is described by the coupled
equations

∂τϕ = Hz + s
π

2
(α − sμ cos ϕ)

(
Hx sin ϕ − Hk

2
sin 2ϕ

)
,

s∂τX

λdw
= (α − sν cos ϕ)Hz − π

2

(
Hx sin ϕ − Hk

2
sin 2ϕ

)
,

(9)

where we defined τ = γ t , μ = (λD − ξλS)(πñs/4λdw), and
ν = (βλD + λS)(πñs/4λdw) (α,ν,μ � 1). In Eq. (9), we ne-
glected renormalization of the gyromagnetic ratio and only
considered the dissipative components. The damping due
to s-d DMI and Rashba spin-orbit coupling both produce
a contribution ∝s cos ϕ that depends on the domain-wall
chirality s and on the azimuthal angle ϕ. Notice that the DM
field does not explicitly enter these equations since it can be
simply modeled by a chiral in-plane field ∼sHx [14].

Let us now investigate the influence of this damping on
the field-driven motion of a domain wall submitted to both
perpendicular (Hz) and in-plane (Hx) magnetic fields. In this
example, we chose μ = ν = αc for simplicity. Figure 2(a)
shows the steady-state velocity of the domain wall as a function
of Hz for different chiral damping strengths and Hx = 0.
These velocity curves display the usual Walker breakdown
around Hz ≈ 12–19 mT. Below Walker breakdown and in the
absence of in-plane field Hx , the domain-wall azimuthal angle
ϕ obeys Hz = s π

4 Hk(α − sαc cos ϕ) sin 2ϕ, which produces a
kink around Hz ≈ sαcHWB/α where HWB = απHk/4, which
is associated with a jump in the effective damping, αeff = α −
αc cos ϕ [see Fig. 2(c)]. When the in-plane field Hx is applied
and exceeds the anisotropy field Hk , a Néel configuration is
stabilized (ϕ ≈ 0,π ) and the damping becomes constant αeff =
α ± αc. Hence, the kink disappears as shown in Fig. 2(b). The
dependence of the velocity as a function of Hx at fixed Hz

is even more revealing. By sweeping Hx , the domain wall is
tuned from a Bloch to Néel configuration by the in-plane field
[see Figs. 2(d)–2(f)]. Hence, the effective damping is strongly
modified [Fig. 2(f)] and the domain-wall velocity becomes
asymmetric, as reported in Fig. 2(d). Notice that the kink is
still observable at a small negative in-plane field.
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FIG. 2. (a,b) Domain-wall velocity as a function of perpendicular
magnetic field for different chiral damping strengths at Hx = 0 mT
and Hx = 25 mT, respectively; (c) corresponding effective damping.
(d) Domain-wall velocity as a function of in-plane magnetic field
for different chiral damping strengths, and for Hz = 5 mT; (e,f)
corresponding azimuthal angle and effective damping, respectively.
The parameters are α = 0.5, HWB = 12.5 mT. In all simulations, we
start with a Bloch configuration (ϕ = π/2) and allow the system to
relax to steady-state condition.

We now turn our attention towards the creep regime, which
is of most importance for field-driven domain-wall motion in
ultrathin disordered multilayers [23]. In this case, the creep
law predicts [34]

vcreep = v0 exp[−(Tc/T )(Hc/Hz)
1/4], (10)

where Tc is the critical temperature (close to the depinning
temperature in fact), T is the sample temperature, Hz is
the applied field, and Hc is the critical field needed to
overcome the disorder pinning potential. This expression
assumes Hz � Hc, and Tc � T . The exponent gathers only
terms accounting for the disordered energy landscape of the
system and does not include any dissipative contributions in
principle. In contrast, the coefficient v0 depends on both the
energy landscape as well as on the viscosity of the elastic
wall. In the limit of an overdamped membrane (α∂tm � ∂tm),
v0 ≈ γ λdwHc/α [34]. It is mostly probable that even for
strongly disordered ferromagnets, the creeping domain wall
is not in the overdamped regime, although very large damping
(up to α ≈ 0.5) has been reported in Pt/Co/AlOx and Pt/Co/Pt
systems [3]. However, since the theoretical description of the
creep motion of intermediate damped systems is not fully
understood, we propose to investigate the impact of chiral
damping in this limit.

To evaluate the impact of the chiral damping, we follow the
procedure proposed by Je et al. [35] and rewrite the creep law,

vcreep(H) = η0σdw(Hx)β

αeff(Hx)
exp

(
−χ0

σ
1/4
dw (Hx)

σ
1/4
dw (0)

H
− 1

4
z

)
. (11)

Here, σdw is the (chiral) energy of the domain wall, β is a
coefficient that describes the scaling law between the critical
force Hc and the domain-wall energy, and η0 and χ0 are

FIG. 3. Normalized domain-wall velocity as a function of in-
plane magnetic field Hx in the presence of a driving field Hz =
20 mT. The in-plane magnetic field pushes the domain from a Bloch
to a Néel configuration and hence increases the azimuthal angle ϕ,
thereby modifying the damping of the wall. A kink in the velocity is
observed at Hx=−Hk , when the domain wall saturates in the Néel
configuration when the damping becomes independent of the in-plane
field Hx .

normalization factors that can be chosen to fit experimental
data [23,35]. The domain-wall energy reads

σdw = σ0 + πλdwμ0Ms

[ 1
2
Hk cos ϕ − Hx

]
cos ϕ, (12)

where the first term σ0 accounts for the ϕ-independent
contribution to the magnetic energy, the second term is the
magnetic anisotropy field Hk favoring Bloch configuration,
and the last term Hx is the longitudinal field favoring Néel
configuration. The energy minimization ∂ϕσdw = 0 gives [35]

σdw

σ0
=

{
1 − (Hx)2/HdwHk : |Hx | � Hk

1 + (Hk − 2|Hx |)/Hdw : |Hx | > Hk,
(13)

where Hdw = π
2 λdwμ0Ms/σ0. The magnetic damping αeff is

written in the simplest form αeff = α + sαc cos ϕ. To inves-
tigate the impact of chiral damping on the creep motion, we
chose Hdw = 1 T, and Hk = 50 mT. The normalized velocity
v(Hx)/v(0) of the domain wall as a function of the in-plane
field and for different strengths of chiral damping αc is repre-
sented in Fig. 3. For |Hx | < Hk , the velocity varies smoothly
while the domain wall changes from one Néel chirality to
another. For |Hx | > Hk , the domain wall saturates in the Néel
configuration and the velocity follows the exponential law
given above. These results agree with Ref. [23]. Including
DMI in the calculation (i.e., Hx → Hx + sHDMI) only results
in a horizontal shift of the velocity curve in Fig. 3.

V. CONCLUSION

The symmetry principles discussed in this work are general
and ensure the existence of such a chiral damping in any
magnetic structure (ferromagnets, antiferromagnets, chiral
magnets, but also metals and insulators etc.) presenting spa-
tial inversion symmetry breaking. The physical mechanisms
responsible for this chiral damping can be spin-orbit coupling
but also dipolar coupling or magnetic frustrations, as in the
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case of DMI. However, because different orbital characters
are involved, chiral damping and DMI do not necessarily scale
with each other. The recent observation of a chiral signature in
the viscosity of creeping magnetic domain walls [23a] as well
as asymmetric damping of spin waves [16] are clear evidence
of such a chiral damping in noncentrosymmetric magnetic
systems. Finally, chiral damping is not limited to magnetic
systems and is expected to have significant impact on the
transport properties of systems whose dynamics is dominated

by viscosity, such as vortex motion in type-II superconductors,
crystal growth, or percolation in porous media [36].
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Heide, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys.
Rev. Lett. 101, 027201 (2008); S. Heinze et al., Nat. Phys. 7,
713 (2011).

[10] W. Jiang et al., Science 349, 283 (2015); S. Woo et al.,
Nat. Mater. 15, 501 (2016); C. Moreau-Eluchaire et al., Nat.
Nanotechnol 11, 444 (2016); O. Boulle et al., ibid. 11, 449
(2016).

[11] M. Heide, G. Bihlmayer, and S. Blügel, Phys. Rev. B 78,
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Europhys. Lett. 100, 57002 (2012).
[15] K. Zakeri, Y. Zhang, J. Prokop, T. H. Chuang, N. Sakr, W. X.

Tang, and J. Kirschner, Phys. Rev. Lett. 104, 137203 (2010).
[16] Kh. Zakeri, Y. Zhang, T.-H. Chuang, and J. Kirschner,

Phys. Rev. Lett. 108, 197205 (2012).
[17] J.-H. Moon, S. M. Seo, K. J. Lee, K. W. Kim, J. Ryu, H. W. Lee,

R. D. McMichael, and M. D. Stiles, Phys. Rev. B 88, 184404
(2013); A. Manchon, P. B. Ndiaye, J. H. Moon, H. W. Lee, and
K. J. Lee, ibid. 90, 224403 (2014).

[18] D. L. Mills and S. M. Rezende, Top. Appl. Phys. 87, 27
(2003).

[19] V. Kambersky, Czech. J. Phys. B 26, 1366 (1976); Phys. Rev. B
76, 134416 (2007); K. Gilmore, Y. U. Idzerda, and M. D. Stiles,
J. Appl. Phys. 103, 07D303 (2008).

[20] S. Zhang and Steven S.-L. Zhang, Phys. Rev. Lett. 102, 086601
(2009); J. Foros, A. Brataas, Y. Tserkovnyak, and G. E. W.
Bauer, Phys. Rev. B 78, 140402 (2008).

[21] H. T. Nembach, J. M. Shaw, C. T. Boone, and T. J. Silva,
Phys. Rev. Lett. 110, 117201 (2013); Y. Li and W. E. Bailey,
ibid. 116, 117602 (2016).

[22] Z. Yuan, K. M. D. Hals, Y. Liu, A. A. Starikov, A. Brataas, and
P. J. Kelly, Phys. Rev. Lett. 113, 266603 (2014).
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