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Influence of the critical Fe atomic volume on the magnetism of Fe-rich metallic glasses evidenced by
pressure-dependent measurements
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Despite the intensive studies for decades, it is still not well understood how qualitatively different magnetic
behaviors can occur in a narrow composition range for the Fe-rich Fe-transition metal (TM) amorphous alloys.
In this study of amorphous Fe100−xZrx (x = 7, 9, 12) metallic glasses, normal ferromagnetism (FM) is found at
12 % Zr where only the FM-paramagnetic (PM) transition is observed at the Curie temperature, TC . In contrast,
spin-glass (SG)-PM transition at a temperature, Tg , called SG temperature, is only observed at 7 % Zr, while
in the transient re-entrant composition range (x = 8−11), an SG-FM transition at a temperature, Tf , called
spin-freezing temperature, is also observed at low temperature besides the normal FM-PM transition at TC . In
order to understand this unusual behavior, a detailed characterization of pressure (atomic volume), composition,
and temperature dependence of the magnetic properties is coupled with high pressure synchrotron x-ray diffraction
determination of the pressure dependence of the atomic volume. The results on Fe100−xZrx (x = 7, 9, 12) are
compared to those obtained for the FM Co91Zr9 metallic glass not showing any kind of anomalous magnetic
properties. It is confirmed that the unusual behavior is caused by a granularlike magnetic structure where weakly
coupled magnetic clusters are embedded into a FM bulk matrix. Since the mechanism of the magnetization
reversal was found to be of the curling type rather than homogeneous rotation, the energy barrier determining the
blocking temperature of the clusters is calculated as AR, where A is the exchange constant and R is the cluster
size, in contrast to the usual characterization of the energy barrier by KV where K is the anisotropy energy and
V is the cluster volume. The volume fraction of the FM part is a fast changing function of the bulk composition:
Almost 100% FM fraction is found at 12 % of Zr while no trace of real FM is observed at 7 at % Zr. The driving
force of this surprising magnetic character is the atomic volume: The lower the Zr content, the higher is the
fraction of Fe atoms with compressed atomic volume having low magnetic moment. The percolation of their
network separates the clusters from the FM bulk. The complex magnetic behavior of the Fe-rich Fe-Zr amorphous
system at low temperatures can thus be interpreted with the only assumption of a cluster-size distribution and a
weak coupling of the clusters to the FM matrix. The introduction of this coupling is able to explain the opposite
pressure dependence of Tg and Tf . The threshold atomic volume in the low magnetic moment regions is found
to be comparable to the atomic volume characteristic to the low-spin limit of the face-centered-cubic Fe alloys.
The extensive literature results on the anomalous magnetism for various Fe-rich Fe-TM amorphous alloys and
especially for the Fe-rich Fe-Zr glassy system are also found to be in agreement with this granular magnetic
behavior.
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I. INTRODUCTION

The origin of the peculiar magnetic properties [1–5] of
Fe-rich Fe-transition metal (TM) (T M = Zr, Ti, Hf, Nd,
Sc, La, Ce) metallic glasses at low temperatures has been
a challenge for decades. Perhaps the most studied of these
glasses are the amorphous Fe-Zr alloys because in a very
narrow composition range (Fe100−xZrx,7 � x � 12), three
different types of magnetic behavior can be observed. (1)
Fe88Zr12 shows a paramagnetic (PM) to FM transition at the
Curie temperature (TC) and remains in the FM state down to
4.2 K. (2) Between x = 8 to 11, the behavior changes to a
re-entrant spin-glass (RSG) type: Decreasing the temperature,
the PM to FM transition is followed by an FM to SG transition
at the spin-freezing temperature (Tf ). (3) Fe93Zr7 transforms
directly from the FM into the SG state at the SG temperature
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(Tg). Another magnetic anomaly in these systems is the very
rapidly increasing magnetic hardness on cooling as well as
on decreasing Zr content [4], as deduced from coercivity
measurements. Also, irreversible magnetization changes are
observed below Tf and Tg .

Although several explanations for this complex magnetic
behavior have already been proposed, no consensus has been
reached. One group of the models assumes the simultaneous
presence of FM and antiferromagnetic (AF) exchange interac-
tions in the Fe-rich amorphous Fe-Zr alloys, causing exchange
frustration [6]. The reason for this assumption is that the Fe-Fe
separation in these alloys is known to fluctuate around a value
close to a critical Fe-Fe separation (dFe = 2.55 Å), where
the direct exchange integral between the Fe atoms changes
sign, strongly decreasing with decreasing Fe-Fe separation
[7–10]. In this so-called wandering-axis ferromagnet model,
the existence of a collinear FM matrix is questioned [5,11], and
it is assumed that the spin structure is locally FM with small
variation in neighboring spin directions; however, the local FM
axis changes direction over distances of the order of 25 Å. The
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transition at the spin-freezing temperature, Tf (called here
as Txy), is imagined as a homogeneous phase transition to
an asperomagnetic state in which the fluctuating transverse
spin components freeze at Txy (transverse spin freezing) on
cooling, similar to that in the theoretical model of Gabay and
Toulouse [12].

In another group of models, a magnetic structure inhomo-
geneous on an atomic scale is assumed. Here, AF [2,13–15]
or nonmagnetic [16] or FM [17] clusters embedded in the
FM matrix are responsible for the magnetic anomalies. Two
subgroups might even be recognized in this way of thinking.
In the first one, the existence of AF exchange interactions is
also postulated similarly to the above mentioned homogeneous
model; however, here the AF interactions play a role in the
separation of the clusters from the FM matrix. In the model
of Saito et al. [13], it is assumed that the SG state below
Tf is due to the freezing of frustrated spin clusters of AF Fe
spins distributed in an FM matrix. Kaul et al. suggest that
the amorphous Fe100−xZrx (x = 8 to 10) alloys consist of an
FM matrix (infinite cluster) plus finite FM clusters separated
and magnetically isolated by frustration zones [17–20]. This
picture is supported by bulk magnetic [17] and FM resonance
(FMR) data [18] and is further strengthened by measuring the
effect of isothermal annealing on the magnetic behavior of
amorphous Fe-Zr alloys using the FMR technique [19,20].

In the other subgroup of the inhomogeneous models, the
anomalous low-temperature magnetic properties of Fe-rich
amorphous Fe-Zr alloys have nothing to do with spin freezing.
In the model of Read et al. and Moyo [4,14–16], the main
effort is put on, explaining quantitatively the sharp temperature
and composition dependence of the magnetic hardness. In the
early form of the model [4,14,15], the presence of AF clusters
dispersed in an FM matrix was assumed, and the magnetic
hardness was attributed to pinning to these clusters, considered
as nonmagnetic inclusions below their Néel temperatures.
Thus, the coercivity will be proportional to the volume fraction
of the AF clusters. In this model, the transition at Tf is
simply caused by the breakdown of the kink-point relation
(χint = M/Hint � 1/N , where N is the demagnetization factor
of the sample and Hint is the internal magnetic field) due to the
rapid decrease in χint with decreasing temperature, caused by
the increasing magnetic hardness. In this picture, Tf depends
on N (i.e., on the sample geometry), and, consequently, it does
not reflect a real physical transition.

In a revised version of this model [16], the regions having
greater Fe density than a critical value (Fe-rich clusters) are
assumed to contain Fe atoms in low-spin (LS) state with a
moment of about 0.5 μB . The remaining FM matrix having a
smaller Fe density is assumed to contain Fe atoms in high-spin
(HS) state with a moment of about 2.8 μB . The domain wall
pinning is then assumed to be caused by the high-density
Fe-rich clusters, which can be considered as nonmagnetic in-
clusions because of their low moments. In order to explain the
temperature dependence of coercivity in the new version, a new
concept had to be introduced: the lattice parameter increases
with increasing temperature because of thermal expansion,
decreasing the size of the Fe-rich clusters. Hydrogen doping
of Fe-rich amorphous Fe-Zr alloys decreases very rapidly the
coercive field, which are similarly explained by the introduced

lattice distortions [21]. Both versions of the model result in
an exponential increase of the coercivity, Hc, with decreasing
temperature, which is related to the upper tail of the assumed
Gaussian distribution for the Fe concentration [4].

Though several theoretical works [22–24] assume the
existence of competing FM and AF interactions in amorphous
Fe-Zr systems, some experiments cast serious doubts on the
existence of AF ordered moments in Fe-rich amorphous Fe-Zr
alloys [25,26]. There is, however, a common point in almost
all of the models mentioned above: They assume that the
average atomic distances between Fe atoms fluctuate around
a critical Fe-Fe separation. Decreasing the distance between
two Fe atoms across the critical Fe-Fe separation reduces
drastically the atomic magnetic moment of Fe. A recent paper
[27] relates this critical Fe-Fe separation to the critical volume,

Vfcc∗ ≈ 11.7 Å
3
, separating the so-called LS and HS state of

face-centered-cubic (fcc) Fe and concludes that the average Fe
atomic volume of Fe-rich Fe-Zr metallic glasses is fairly close
to it. This conclusion is based on a thorough analysis of density
measurements for various Fe-rich Fe-TM metallic glasses [28].
Based on a careful study [29] of the composition dependence of
the hyperfine parameters of Fe-rich Fe-Zr metallic glasses, the
existence of two different Fe local environments is confirmed,
and they are identified with the exclusively Fe coordinated
compressed and with the partially Zr coordinated Fe atoms
of average volume, respectively. Taking into account these
experimental results, a cluster-glass model was proposed [30]
for the Fe100−xZrx system (7 � x � 12) in which Fe93Zr7

is assumed to be an assembly of magnetic clusters with a
blocking temperature distribution. The magnetic clusters in
the alloys with higher Zr content are assumed to be weakly
coupled to an infinite cluster (FM matrix). Using this model,
on the base of systematic magnetic viscosity measurements,
a curling-type reversal mechanism was proposed [31] for the
description of the temperature and composition dependence of
coercivity. The magnetic inhomogeneities could be associated
with regions containing Fe atoms in HS state, surrounded by
regions with Fe atoms in LS state. Polarized neutron scattering
measurements showed [32–34] that in Fe92Zr8 and Fe90Zr10,
the vast majority of the magnetic moments are found in some
form of noncollinear order, and the noncollinear magnetic
structure consists of regions that are spatially correlated with
additional randomly correlated noncollinear moments. This
picture is compatible with the cluster-type models and some
form of the wandering-axis FM model. Since the noncollinear
moments are spatially correlated in the whole temperature
range below room temperature (RT) with no drastic change
in the randomly correlated noncollinear moments below and
above Txy , the transverse spin freezing at Txy is not reflected
in the polarized neutron scattering results.

Some open questions still remain concerning the cluster-
glass model applied for the Fe-rich amorphous Fe-Zr alloys.
The temperature and composition dependence of coercivity
could be unambiguously interpreted by a curling-type reversal
mechanism [31]. It is not clear, however, what determines the
blocking temperature (TB) in this model where TB corresponds
to Tg and Tf observed in the experiment. The shape anisotropy
of the magnetic clusters earlier thought to determine TB is
less probable, and it is difficult to explain its composition
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dependence [31]. It is obvious that TB should be related to the
curling-type reversal mechanism, and one of the aims of this
paper is to establish this relation. The second aim is to probe
one of the most important prerequisites of the model (and
practically of all models mentioned above), i.e., the existence
of a critical Fe atomic volume separating the LS state (for
smaller volumes) and the HS state (for larger volumes) by
pressure-dependent magnetic measurements.

There is an early work [35,36] on the pressure dependence
of TC for the amorphous Fe100−xZrx (x = 7, 10, 12, 15, 20,
25, and 40) alloy system, analyzing the observed decreasing
TC with increasing pressure. It focuses only on the discussion
of the magnetic behavior of the FM matrix, concluding that
this alloy system is magnetically inhomogeneous. These data
were included into a more comprehensive high-pressure study
of magnetism on amorphous Fe-based alloys [37]. Though the
alloy at the critical concentration (Fe93Zr7) was also inves-
tigated by Shirakawa et al. [35], its low-field magnetization
as a function of temperature was misinterpreted as showing a
TC (i.e., as being a ferromagnet). Using the same data, Moyo
interprets the pressure dependence of coercivity for the Fe-rich
Fe-Zr glasses in the framework of his revised model [16], in
which the volume of the Fe-rich clusters increases by applying
pressure.

Besides applying hydrostatic pressure, doping of Fe-rich
Fe-Zr amorphous alloys with a third element is another method
to indicate that changes of the magnetic properties (e.g., TC)
are connected to a dominant volume effect. Zamani et al.
[38,39] and Moubah et al. [40,41] studied the effect of light
ion implantation (H, He, B, C, and N) on the Curie tem-
perature of amorphous Fe93Zr7 films, together with extended
x-ray absorption fine structure (EXAFS) measurements. They
observed that the increase of TC is proportional to the increase
in the average Fe-Fe distance, which allowed them to conclude
that the dominant cause of the TC enhancement of amorphous
Fe93Zr7 upon doping is a volume effect. Similar effects
were found for amorphous Fe89−xBxZr11 (x = 0−10) alloys
prepared by melt spinning where the Curie temperature and
RT saturation magnetization increase almost linearly with B
addition [42]. Also, an enhancement of FM was observed in
Fe-rich amorphous Fe-Zr ribbons by hydrogen absorption [43].

Similar anomalous magnetic behavior was observed at
low temperatures under pressure for amorphous Fe-TM alloys
where T M = Ti [44], Hf [45], Nd [46], Sc [47], La [48], and
Ce [49]. The concentration range where the abovementioned
three types of magnetic state exist (FM, RSG, SG) depends on
the type of the transition metal.

As we will show in this paper, the pressure dependence of
the magnetic properties for the Fe-rich Fe-Zr metallic glasses
can be well explained by the curling-type model. In this model,
the energy barrier determining the blocking temperature turns
out to be proportional to AR, where A is the exchange constant
and R is the cluster size, in contrast to the usual characterization
of the energy barrier by KV, where K is the anisotropy energy
and V is the cluster volume. While the anisotropy-type model
can explain several experimental features, our interpretation
offers a simpler and more comprehensive understanding of the
experimental findings. The introduction of a weak coupling of
the clusters to the FM matrix enables us to explain the exper-
imentally found opposite pressure dependence of Tg and Tf .

The paper is organized as follows. Section II briefly
describes the details of the sample preparation and measure-
ments. The experimental results will be presented in Sec. III.
The energy barrier determining the blocking temperature in the
curling model will be calculated in Sec. IV, and the obtained
formulas and the experimental results will be discussed in
Sec. V. Finally, the conclusion of the present study will be
summarized in Sec. VI.

II. EXPERIMENT

Amorphous Fe100−xZrx (x = 7, 9, 12) and Co91Zr9 alloys
were prepared by melt spinning in vacuum (x = 7, 12)
and in He of 1 mbar pressure (x = 9, Co91Zr9) [50]. The
amorphous nature of the ribbons with a cross section of
1 × 0.013 mm2 was verified by Mössbauer spectroscopy. The
magnetic properties were measured using the MPMS-5S
superconducting interference device (SQUID) magnetometer
up to 5 T (50 kOe) in the temperature range of 1.8 K
� T � 300 K. The thermomagnetic curves were recorded for
the samples showing any magnetic transitions below RT. First,
the samples were cooled down from RT to 5 K in zero magnetic
field and were measured in a field of 10 Oe with increasing
temperature up to RT [zero field cooling (ZFC) mode]. Then,
the samples were cooled down again from RT to 5 K in the
measuring field of 10 Oe, and the measurement was repeated
like before [field cooling (FC) mode]. Because of the remanent
field of the superconducting magnet (about −1 Oe), the cooling
field in the ZFC mode is not exactly zero, causing the negative
magnetization observed at the lowest temperatures in some
curves.

Samples were compressed under hydrostatic pressure up to
1.2 GPa in a miniature piston-cylinder CuBe pressure cell [51]
using a mineral oil as the pressure-transmitting medium, and
the cell with the sample was put into the SQUID magnetometer.
The pressure is measured by detecting the shift with pressure
of the superconducting transition temperature of Pb (at around
7 K) put in the pressure cell together with the sample. The
labels in all figures in this paper refer to these pressures
measured at low temperatures. With increasing temperature,
the pressure increases due to the different thermal expansion of
the cell and the pressure-transmitting medium. To determine
the rate of change of the various transition temperatures
exactly, the values of pressure at temperatures close to them
were used (pcorr in some figures), correcting for the thermal
expansion effect described above [51].

In situ high-pressure x-ray diffraction (XRD) experiments
were performed at the Extreme Condition Beamline P02.2 of
PETRA III (Hamburg, Germany). The RT pressure depen-
dence of compressibility of the as-prepared metallic glasses
was continuously monitored using a diamond anvil cell (DAC).
The principal diffuse peak was detected in transmission mode
to determine the volume changes under high pressure. The
energy of the synchrotron radiation was set to 42.85 keV, which
corresponds to the wavelength of λ = 0.28934 Å. Kirkpatrick–
Baez (KB) mirrors were used to focus the photon beam
down to 2 × 2 μm2 [52]. Two-dimensional XRD patterns were
collected using a fast flat panel detector XRD1621 from
PerkinElmer (2048 pixels × 2048 pixels, 200 × 200 μm2

pixel size, intensity resolution of 16 bit) carefully mounted
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orthogonally to the x-ray beam. CeO2 standard from National
Institute of Standards and Technology (NIST) was used to
calibrate the sample-to-detector distance and tilt of the imaging
plate relative to the beam path. Neon was used as a pressure
transmitting medium inserted into the sample chamber using
a gas loader from Sanchez Technology. The pressure acting
on the sample was determined using a ruby fluorescence scale
from Mao et al. [53]. The pressure was increased in small
steps using a pressure membrane attached to the back of the
DAC and controlled by a pressure controller from Sanchez
Technology. Two-dimensional XRD patterns were integrated
in q space using the software package FIT2D [54].

Using in situ high-pressure XRD measurements, we deter-
mined the pressure dependence of the relative volume change
dV/V0 for Fe91Zr9 and Co91Zr9 glasses at ambient temperature
up to pressures of 40 GPa. It should be noted here that
compressibility data were obtained by tracing the position
of the principal diffuse peak: −�V/V0 = −[(q0/q)3 − 1],
where q0 and q are positions of the principal diffuse peak at
a reference (p = 0.1 GPa) and given pressure, p, respectively
[55]. It is worth noting that the ratio between the position of the
second and the first diffuse peak does not change with pressure
and is almost the same for both alloys, i.e., 1.66. This may
suggest that both alloys are compressed elastically. Bridgman
[56] has presented the equation of state for compressed solids
as follows: −�V/V0 = a1p + a2p

2 + . . ., where a1(>0) and
a2(<0) are constants. The bulk modulus at zero pressure
B0 = −V0(dp/dV )p=0 can be calculated as B0 = 1/a1, where
a1 = κ is called compressibility.

III. RESULTS

The thermomagnetic curves for Fe93Zr7 are shown in Fig. 1,
measured at different hydrostatic pressures. The ZFC and FC
curves are denoted by solid and open symbols, respectively.
The inset shows the curves for the lowest two pressures (0
means atmospheric pressure = 0.0001 GPa; the other pressure
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FIG. 1. Magnetization as a function of temperature for Fe93Zr7

measured after zero-field cooling (ZFC, solid symbols) and field
cooling (FC, open symbols) in 10 Oe for different pressures. The
pressure values are denoted as labels in GPa (0 means atmospheric
pressure = 0.0001 GPa).
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FIG. 2. Spin-glass temperature, Tg , as a function of pressure
for Fe93Zr7. Tg decreases with a rate of −75.3 K GPa−1 at lower
pressures.

values are given in GPa as labels). Having a cusplike M-T
curve, this amorphous alloy behaves as a SG characterized by
the temperature of the maximum called as SG temperature,
Tg . The Tg decreases with increasing pressure at a rate of
−75.3 K GPa−1 up to about 0.4 GPa, tending to a saturation
beyond this pressure, as displayed in Fig. 2 and listed in
Table I. The low-field magnetization decreases substantially
with increasing pressure. Similar pressure dependence of the
low-field magnetization vs temperature curve was obtained
by Shirakawa et al. [35] for a nominally same composition
of the amorphous Fe-Zr system. However, they do not identify
the cusp temperature as a SG temperature, Tg; instead,
they interpret the decreasing magnetization with increasing
temperature as an FM-PM transition with a Curie temperature,
TC . A similar decreasing trend of Tg with increasing pressure
was observed for amorphous Fe-La [48] and Fe-Ce [49]
alloys. Figure 3 shows the field dependence of magnetization
measured at 5 K at different pressures denoted as labels.
Here it is also worth noting that the magnetization decreases
remarkably with increasing pressure at any magnetic fields.
Because of the significant high-field susceptibility found in
all Fe-rich Fe-Zr alloys, real saturation of the magnetization
cannot be achieved. The most simple and model-independent
way is to take the magnetization value measured at 5 T (50 kOe)
and 5 K as the measure of the saturation magnetization
(M5K, 5T). Both M5K, 5T and lnM5K, 5T decrease linearly with
increasing pressure with the rate listed in Table I.

Pressure and temperature dependence of coercive field
(Hc) for Fe93Zr7 was measured between 10 and 30 K at
selected pressures, as shown in Fig. 4. Hc slightly increases
with increasing pressure at 10 K with a saturating character.
However, at higher temperatures, the pressure dependence is
much weaker (see inset of Fig. 4). For both pressures, the
coercivity decreases rapidly with temperature, as expected.

The existence of exchange anisotropy in these alloys is
a delicate question since it is considered as a proof of the
presence of AF interactions. Exchange anisotropy is claimed
to exist in Fe92Zr8 [1]; however, a careful measurement for
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TABLE I. Pressure dependence of Curie temperature, TC ; saturation magnetization, M5K; 5T, M0; and bulk modulus B0. [Note: TC measured
in 10 Oe (see text), M5K; 5T, M0 saturation magnetization: former measured at 5 K, 5 T, latter determined from extrapolation to zero field
(see text), κ compressibility, B0 bulk modulus at zero pressure, � = dlnM5K; 5T/dlnV = −(1/κ) dlnM5K; 5T/dp Grüneisen parameter and a2

coefficient of quadratic term in the Bridgman equation of state (see text).]

Fe93Zr7 Fe91Zr9 Fe88Zr12 Co91Zr9

TC(K) — 205 ± 3a 261 ± 3a 1200b

dTC/dp(K GPa−1) — −100 ± 5 −58.7 ± 3.1 n.a.c

dlnTC/dp(GPa−1) — −0.60 ± 0.05 −0.26 ± 0.02 n.a.c

Tg, Tf (K) 110 ± 3a 16 ± 1a — —
dTg, f/dp(K GPa−1) −75.3 ± 4.0 45.5 ± 0.4 — —
dlnTg, f/dp(GPa−1) −0.769 ± 0.015 1.85 ± 0.06 — —
M5K, 5T(emu g−1) 125.5 ± 1a 138.3 ± 1a 136.5 ± 1a 125.6 ± 1a

M5K, 5T(μB/Fe) 1.41a 1.61a 1.67a 1.53a

M0(emu g−1) 103.4 ± 1a 127.9 ± 1a 132.9 ± 1a 125.6 ± 1a

dlnM5T, 5K/dp(GPa−1) −0.49 ± 0.03 −0.34 ± 0.01 −0.23 ± 0.01 −0.0078 ± 0.0007
κ(10−3 GPa−1) n.a.c 6.64 ± 0.12 n.a.c 6.57 ± 0.08
B0(GPa) n.a.c 151 ± 2.6 n.a.c 152 ± 2
� 74d 51.1 34d 1.18
a2(10−5 GPa−2) n.a.c −6.26 ± 0.46 n.a.c −8.72 ± 0.3

ap = 1 bar.
bExtrapolated from M(T) curve since onset temperature of crystallization (Ref. [85]) Tx is Tx = 800 K; literature data for Co90Zr10 : TC ≈ 998 K
(Ref. [86]), 1615 K (Ref. [87]), and 1400 K (Ref. [61]).
cNot available.
dCalculated by the value of κ measured for Fe91Zr9 (this work): κ = 6.64 10−3 GPa−1

Fe93Zr7 could not prove it [57]. The latter measurement was
repeated in the present study since now the hysteresis loop
could be measured at a lower temperature than before (at 1.8 K
instead of 4.2 K). In Fig. 5, the hysteresis loop is shown for
Fe93Zr7 at 1.8 K, first after cooling the sample in zero field,
then after cooling in 5 T. No significant shift of the hysteresis
loop is observed upon FC, which does not support the existence
of AF ordered moments in Fe93Zr7.

Figure 6 shows the ZFC and FC thermomagnetic curves
for Fe91Zr9 measured at different hydrostatic pressures. This
alloy behaves as a typical reentrant SG characterized with a
spin-freezing temperature, Tf , defined here as the inflection
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FIG. 3. Magnetization as a function of magnetic field for Fe93Zr7,
measured at 5 K at different pressures denoted as labels in GPa (0
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point of the initial increasing portion of the magnetization
curve at low temperatures, and with a Curie temperature, TC ,
defined similarly for the rapidly decreasing part of the curve.
In contrast to the decrease of Tg with increasing pressure
observed for Fe93Zr7, Tf rises with increasing pressure for
Fe91Zr9 with an initial rate of 45.5 K GPa−1 up to 0.4 GPa.
An even larger rate can be observed beyond this pressure, as
displayed in Fig. 7 and listed in Table I. TC decreases linearly
with increasing pressure with a rate of −100 K GPa−1 (listed
in Table I). For Fe91Zr9, a dTC/dp value of −30 K GPa−1 was
reported from indirect Young’s modulus measurements [58],
while for Fe90Zr10, values of −38 [59–61], −60 [35], and −64
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for Fe93Zr7 measured at different pressures denoted as labels in GPa.
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[62] K/GPa were deduced from the observed change in TC

when pressure is applied. A dlnTC/dp value of −0.15 GPa−1

was determined for Fe91Zr9 indirectly from forced-volume
magnetostriction measurements [63]. The increase of Tf and
the decrease of TC with increasing pressure shift the shape of
the thermomagnetic curve of Fe91Zr9 in the direction of the
composition Fe92Zr8, i.e., as if the Zr content were decreased.
The low-field magnetization decreases with increasing pres-
sure. A similar trend of increasing Tf and decreasing TC with
increasing pressure was observed for amorphous Fe-La [48]
and Fe-Ce [49] alloys. The field dependence of magnetization
measured at 5 K is shown in Fig. 8 at different pressures. The
magnetization decreases remarkably (but at a lesser rate than
for Fe93Zr7) with increasing pressure at any magnetic fields.
Both M5K, 5T and lnM5K, 5T decrease linearly with increasing
pressure with the rate of the latter listed in Table I.

The change of the magnetic properties upon changing
the Fe atomic distances was already studied for the same
Fe91Zr9 ribbon by hydrogen doping [64]. It was found that
hydrogenation changed both TC and Tf in the same sense as
an increase of the Zr concentration, i.e., TC increases while
Tf decreases with increasing hydrogen content. It is the same
effect that we have observed in the case of applying hydrostatic
pressure (Fig. 6): The hydrogen atoms increase the Fe atomic
volume, i.e., they act as negative pressure.

Fe88Zr12 behaves as a ferromagnet with only one magnetic
transition temperature, i.e., the Curie temperature, TC , as the
pressure dependent ZFC and FC thermomagnetic curves show
in Fig. 9. With increasing pressure, traces of a very weak spin
freezing appear at low temperatures, but a quantitative eval-
uation is not possible. TC decreases linearly with increasing
pressure with a rate of −58.7 K GPa−1 (listed in Table I). The
low-field magnetization decreases with increasing pressure.
Figure 10 shows the field dependence of magnetization
measured at 5 K at different pressures denoted as labels.
The magnetization decreases (but at an even lesser rate than
for Fe91Zr9) with increasing pressure at any magnetic fields.
Both M5K, 5T and lnM5K, 5T decrease linearly with increasing
pressure, with the rate of the latter listed in Table I.
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FIG. 6. Magnetization as a function of temperature for Fe91Zr9,
measured after zero-field cooling (ZFC, solid symbols) and field
cooling (FC, open symbols) in 10 Oe for different pressures. The
pressure values are denoted as labels in GPa (0 means atmospheric
pressure = 0.0001 GPa).

Finally, the pressure dependence of the saturation magne-
tization for Co91Zr9 was measured (figure is not included).
This alloy has a high Curie temperature far above RT (see
Table I); below RT, it shows no magnetic transition. It behaves
as an ideal ferromagnet where the magnetization saturates even
for relatively small fields (about 2 kOe). Though M5K, 5T and
lnM5K, 5T decrease linearly with increasing pressure, the rates
are almost two orders of magnitude smaller than for Fe93Zr7

(the latter is listed in Table I). Though TC cannot be measured
directly under pressure (the onset temperature of crystalliza-
tion is lower than TC ; see Table I), an indirect measurement
indicated that the pressure effect on TC approaches nearly zero
in Co90Zr10 amorphous alloy [65].

The pressure dependence of the relative volume change
dV/V0 presented in Fig. 11 was fitted to the Bridgman [56]
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FIG. 7. Spin-freezing temperature, Tf , as a function of pressure
for Fe91Zr9. Tf increases with increasing pressure with a rate of
45.5 K GPa−1 at low pressures.
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FIG. 8. Magnetization as a function of magnetic field for Fe91Zr9,
measured at 5 K at different pressures denoted as labels in GPa (0
means atmospheric pressure = 0.0001 GPa).

equation of state, giving values of bulk moduli 151 and
152 GPa for Fe91Zr9 and Co91Zr9, respectively (see Table I).
The values of κ and a2 from the fit are also shown in Table I.
The values of B0, κ , and a2 are very close to those found
recently in Fe-Mn-B metallic glasses [66].

IV. MODEL

A. Without coupling

In the cluster-glass model for the Fe-rich amorphous Fe-Zr
alloys [30,31], the magnetic clusters are embedded in an FM
(infinite) matrix, and they are weakly coupled to it. At the
critical Zr concentration (Fe93Zr7), the coupling vanishes in
the absence of the infinite FM matrix. In this model for
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FIG. 9. Magnetization as a function of temperature for Fe88Zr12,
measured after zero-field cooling (ZFC, solid symbols) and field
cooling (FC, open symbols) in 10 Oe for different pressures. The
pressure values are denoted as labels in GPa (0 means atmospheric
pressure = 0.0001 GPa).
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FIG. 10. Magnetization as a function of magnetic field for
Fe88Zr12, measured at 5 K at different pressures denoted as labels
in GPa (0 means atmospheric pressure = 0.0001 GPa).

Fe93Zr7, the SG temperature, Tg , is determined entirely by
the blocking temperature, TB , of the clusters (TB has, in
fact, a distribution, but for simplicity now we examine one
cluster or a monodisperse system). In fact, the interactions
between the clusters cannot be neglected either in Fe93Zr7,
as indicated by the frequency dependence of Tg , which can
be well described by a Vogel-Fulcher-type expression with
T0 = 100 K [67]. For simplicity, we do neglect them in this
paper because we want to model the effect of the FM matrix
on the spin-freezing properties. This effect will be taken into
account by a mean-field model (see Sec. IV B). Since such
a model is inadequate to describe the interactions between
the clusters, we assume that the two types of interactions
should be treated separately. In the usual treatment found in
textbooks [68], TB is the temperature at which the thermal
energy (kTB where k is Boltzmann’s constant) overcomes
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FIG. 11. Pressure dependence of relative volume change �V/V0

for Fe91Zr9 and Co91Zr9 metallic glasses at ambient temperature. The
lines are fits to the Bridgman equation (see text).
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the energy barrier caused by the anisotropy of the cluster
(KV, where K is the anisotropy constant and V is the cluster
volume). The origin of anisotropy can be crystal, shape, or
stress anisotropy. As pointed out in the Introduction, it is
difficult to interpret the meaning of anisotropy in our case.
It is worth noting that the usual interpretation of blocking
outlined above assumes a homogeneous rotation as the reversal
mode of magnetization of the magnetic clusters. The magnetic-
viscosity measurements made for the Fe-rich Fe-Zr metallic
glasses [31], however, drew attention to the curling-type
reversal mode of magnetization with the help of which the
temperature and composition dependence of coercivity could
be explained. The task is to find an expression for the energy
barrier of the curling mode, which can replace KV valid for
homogeneous rotation.

In the curling mode, the spins are reversed at the expense of
the exchange energy instead of the anisotropy energy, i.e.,
the neighboring spins will make an angle with respect to
each other during reversal [69]. The ideal case is a cylinder
(a special case of prolate spheroid), where all the spins are
tangential to the lateral surface of the cylinder during reversal,
thereby eliminating the stray-field energy. In this case, the
reversal process is determined by the balance of the exchange
energy and the energy of interaction with the external field
(field energy). Based on this balance, the coercive field for the
curling mode was calculated long ago for a prolate spheroid to
be inversely proportional to the square of its size (characterized
by its radius or diameter perpendicular to the rotation axis)
[70,71]. The marked size dependence of coercivity for the
curling mode is quite different from the size-independent
coercivity obtained for homogeneous rotation.

The calculation of the energy barrier for curling is presented
in the Appendix. First, we get for the coercive field,

Hc = 2A

R2Ms

= 2Ms

(R/R0)2 , (1)

where A is the exchange constant, Ms is the saturation
magnetization, R is the radius of the particle (cylinder or
sphere), and the notation R0 = A1/2/Ms was introduced in
the second expression. It is the same formula for the size
dependence of coercive field for curling as calculated before
for a prolate spheroid [70,71]. Second, we determined the
energy barrier for a particle of radius R in the curling mode to
be proportional to �E � AR, which replaces the �E = KV

term valid for homogeneous rotation.

B. With coupling

The coupling between the clusters and the infinite (FM)
matrix is treated in the framework of a mean-field model. The
physical picture behind this model is that the thermal energy
(kT) is aided by the mean-field of the FM matrix (representing
its stray field) to facilitate the magnetization reversal of the
clusters. The details of the calculations are presented in the
Appendix. In the curling mode, we get for the energy barrier
of a particle of radius R without field,

�E = AR

(
1 − R2λM2

s

2A

)2

(2)

where λ is the coupling constant. The blocking temperature,
TB , is determined by the condition �E = 25kTB ,

TB = AR

25k

(
1 − R2λM2

s

2A

)2

= AR

25k

(
1 − msλMs

2AR

)2

= �E0

25k

(
1 − Ec

2�E0

)2

, (3)

where the cluster moment ms = R3Ms was introduced in the
second expression and the notations �E0 = AR and Ec =
msλMs were applied in the third expression. Here �E0 is
the energy barrier for curling without coupling, and Ec is the
coupling energy.

V. DISCUSSION

A. Cluster behavior

This simple model outlined above readily explains the
decreasing trend of the SG temperature, Tg , for Fe93Zr7 with
increasing pressure (Figs. 1 and 2). The hydrostatic pressure
applied in the pressure cell shortens the separation between the
Fe atoms, thereby increasing the number of Fe atoms carrying
a reduced moment. It leads both to the decrease of the cluster
size, R (since some clusters decouple along the newly created
lines of low-moment Fe atoms), and to the decrease of A
(since J decreases on the Bethe-Slater curve). According to our
assumption, Fe93Zr7 consists of only clusters without an FM
matrix (with no interaction between the clusters); therefore,
it is our model without coupling (Sec. IV A) that refers to it.
Thus, the energy barrier (and hence TB), which is proportional
to AR will decrease, decreasing Tg .

For Fe91Zr9, the spin-freezing temperature, Tf , changes
with pressure in the opposite direction as Fe93Zr7, i.e., Tf

increases with increasing pressure. According to our model,
above the critical Zr concentration (xc = 7), the clusters
become more and more coupled to the FM matrix; therefore, it
is our model with coupling that refers to Fe91Zr9. Of course, the
effect of pressure is the same for Fe91Zr9 as for Fe93Zr7: R and
A decrease with increasing pressure. This would decrease Tf

if there were no coupling between the clusters and the matrix.
However, the coupling characterized by λ also decreases
with increasing pressure, which leads to the increase of Tf

according to Eq. (3). The balance of these two opposite effects
is a net increase of the spin-freezing temperature.

The absence of coupling between the clusters and the
matrix makes a rough estimation of the exchange constant,
A, possible. Measuring the magnetic viscosity [31], the
magnetization change was recorded as a function of time
at a given temperature. In this case, only clusters having
TB equal to the measuring temperature contribute to the
magnetization change since smaller clusters reverse before
beginning the measurement and larger clusters remain blocked
within the time scale of the measurement. Therefore, from
these measurements the size dependence of the blocking
temperature can be obtained. The result was that the cluster
size varies linearly with TB for the amorphous Fe100−xZrx(7 �
x � 9) system [31]. Our current model predicts just the
same dependence, so the magnetic-viscosity measurements
experimentally support the validity of the model. According
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TABLE II. Parameters of the cluster-glass model for the
Fe100−xZrx (x = 7, 8, 9) metallic glasses. Tg is the spin-glass temper-
ature, TC is the Curie temperature, A is the exchange constant, �E0 is
the energy barrier for thermal blocking, and Ec is the coupling energy
between the clusters and the FM matrix, Ncl is the number of atoms
in a cluster, μ is the magnetic moment per Fe atom, and Hm is the
effective coupling field (for explanation see text).

Fe93Zr7 Fe92Zr8 Fe92Zr9

Tg , TC (K) 110 174 [30] 205
A(10−7 erg cm−1) 2.3 3.6 4.3
�E0(10−13 erg) 0.81 1.62 4.3
Ec(10−13 erg) 0 0.94 2.57
Ncl [30] 20000 30000 70000
μ(μB/Fe) 1.4 1.5 1.6
Hm(Oe) 0 225 247

to these measurements, for Fe93Zr7 a cluster with a radius
of R = 3.5 nm has a blocking temperature of TB = 24 K.
The exchange constant for Fe93Zr7 can be estimated to be
A = 25kTB/R = 2.3 10−7 erg cm−1. This method to estimate
A for Fe92Zr8, Fe91Zr9, and Fe88Zr12 cannot be used because
the coupling constant, λ, is not known. However, A is known
to be proportional to the exchange integral, J, and hence to
the Curie temperature, TC [72], which makes an estimation of
A for Fe92Zr8, Fe91Zr9, and Fe88Zr12 possible by scaling (see
Table II). Once A is known, the energy barrier, �E0, and the
coupling energy, Ec, can be estimated for Fe92Zr8, Fe91Zr9,
and Fe88Zr12 by the expression

Ec = 2�E0

(
1 −

√
25kTB

�E0

)
,

which is obtained by rearranging Eq. (3). The data for the alloys
(R, TB) are taken from viscosity measurements [31], and the
values of Ec are listed in Table II. The coupling energy, Ec, can
be written as Ec = msλMs = msHm, where Hm = λMs is the
effective coupling field. Estimating the values for the cluster
moment and saturation magnetization from magnetization
measurements, the effective coupling field is calculated to be
of the order of a few hundred Oe (see Table II).

We obtained plausible values for the exchange constant of
our studied alloys: A ≈ 2−4 10−7 erg cm−1. For α-Fe, A is
estimated to be of the order of 10−6 erg cm−1 [73]; therefore,
our alloys having about a tenth of the Curie point of α-Fe are
expected to have an A of one order of magnitude smaller. Only
limited data are found in the literature as to the spin-wave
stiffness constant, Dsc, for Fe-Zr metallic glasses (A is usually
calculated from Dsc). For Fe91Zr9 [74] and Fe90Zr10 [74,75],
the spin-wave stiffness constant takes the values of Dsc = 29

and 31 meVÅ2, respectively. A value of Dsc = 37 meVÅ
2

is
given elsewhere for Fe90Zr10 [76]. The values of Dsc for α-Fe
scatter around 280 to 311 meVÅ2 [77], reflecting the tenfold
difference in the Curie points.

To understand the complex magnetic behavior observed
in the Fe-rich amorphous Fe-Zr alloys at low temperatures,
it is necessary to explain the temperature and concentration
dependence of susceptibility (magnetization at constant fields)
and coercivity within the framework of the same model. The

bifurcation of the ZFC and FC magnetization curves with de-
creasing temperature due to spin freezing (Figs. 1, 6, and 9) can
easily be interpreted by only assuming a blocking-temperature
distribution, f (TB) [30]. The type of magnetization reversal is
indifferent in this case: The plausible assumption of a volume
distribution for the clusters is enough for the presence of f

(TB). The only difference is that TB is proportional to the
radius (or diameter) of the clusters for curling, TB ∝ AR (as
we showed in Sec. IV), while it is proportional to the cluster
volume, TB ∝ KV , for homogeneous rotation.

The second point to be explained is the composition
dependence of the spin-freezing temperature, Tf , i.e., why Tf

decreases with increasing Zr content, x. Here, the dominant
factor is the coupling between the clusters and the FM matrix:
λ increases with x going in the direction of the FM behavior,
and according to Eq. (3), it leads to the decrease of TB .
For curling, this decrease should compensate the increase of
TB originating from the increase of the cluster size, R, with
x deduced from magnetic viscosity measurements [31]. For
homogeneous rotation, the same explanation holds with the
exception that here TB increases with the cluster volume, V,
when increasing x. Consequently, the type of reversal cannot
be decided from the composition dependence of Tf .

The third point to be interpreted is the composition depen-
dence of coercivity, i.e., the increasing magnetic hardness with
decreasing Zr content. Our model offers a simple explanation
for this dependence: As deduced from magnetic-viscosity
measurements [31], the cluster size, R, decreases with decreas-
ing x, resulting in the increase of Hc according to Eq. (1). Since
both A and Ms in Eq. (1) decrease with decreasing x, their ratio
can be regarded as composition independent. In contrast, Hc is
independent of the cluster size for homogeneous rotation and
depends only on the anisotropy constant, K, and the saturation
magnetization, Ms , of the clusters (Hc = 2K/Ms). Assuming
this reversal mode, the increasing magnetic hardness with
decreasing x can be explained by the increase of K and/or the
decrease of Ms with decreasing x. The latter is an experimental
fact; however, this dependence is not so strong to account for
the almost exponential increase of Hc with decreasing x. The
dependence of K on x is not known; even the origin of an
anisotropy of a cluster in an amorphous system is questionable
(at most, shape anisotropy can be imagined but in that case it
is difficult to interpret its composition dependence). This argu-
ment, rather, supports the curling mode, but it is not decisive.

The fourth point is the explanation of the temperature
dependence of coercivity. As a starting point, let us first
examine the monodisperse model system where only one
blocking temperature exists. The temperature dependence of
Hc is determined by the balance of the energy barrier for
curling [Eq. (2)] and the thermal energy:

AR

(
1 − R2HcMs

2A

)2

= 25kT .

Expressing Hc, we get for curling,

Hc = 2A

R2Ms

[
1 −

(
25kT

AR

)1/2
]
, (4)

where the prefactor H 0
c = 2A/(R2Ms) is the coercive field at

T � TB , which we already obtained in Eq. (1). The analogous
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expression for homogeneous rotation is [78],

Hc = 2K

Ms

[
1 −

(
25kT

KV

)1/2
]
. (5)

Though this temperature dependence of Hc is seemingly
similar to the observed one, it is of questionable reality
since the presence of a TB distribution significantly modifies
it. At a given temperature, T, only clusters with TB > T

contribute to the coercivity since they are blocked. These
clusters can very roughly be characterized by an average
blocking temperature, T̄B = AR̄(>T ) for curling or T̄B = KV̄

for homogeneous rotation, thereby determining Hc. With
decreasing temperature, smaller and smaller clusters with
smaller and smaller TB contribute to Hc, resulting in T ∝ T̄B .
Therefore, the explicit temperature dependence of Hc, shown
inside the brackets in Eqs. (3) and (4), is almost eliminated,
and Hc will be determined dominantly by the prefactors. With
decreasing temperature, the decreasing R̄ causes the steep
increase of Hc due the inverse quadratic dependence of Hc on
R in the curling mode [see H 0

c in Eq. (4)]. Ms slightly increases
with decreasing temperature in the actual narrow temperature
range (5 to 60 K), probably together with A, thereby their ratio
can be regarded as temperature independent. For homogeneous
rotation, the only explanation for the steep increase of Hc

with decreasing temperature would be the assumption that
the cluster anisotropy, K, abruptly increases with decreasing
temperature [Eq. (5)]; however, it is difficult to justify such an
assumption. Therefore, the dependence of Hc on T is a decisive
support for the curling reversal mode.

It is remarkable that for Fe93Zr7, the coercivity depends
only weakly on the applied pressure, though Hc shows the
same abrupt increase with decreasing temperature at different
constant pressures as it behaves at 1 bar (Fig. 4). Applying
a pressure in the range of 0 to 1 GPa, the cluster size, R,
should decrease, but this effect should be much less than that
caused by decreasing the Zr content. According to Eq. (1),
Hc should increase moderately with pressure, as observed for
Fe93Zr7 at 10 K (main figure in Fig. 4). Since both A and
Ms in Eq. (1) are also expected to decrease with pressure,
their ratio remains only weakly pressure dependent, making
unpredictable the exact pressure dependence of Hc. Indeed, as
seen in the inset of Fig. 4, Hc can even decrease with pressure
at higher temperatures, but in any case its pressure dependence
remains weak.

B. Behavior of the FM matrix

Shirakawa et al. [35] analyzed the pressure dependence of
TC for the Fe-rich Fe-Zr metallic glasses using the theory
of Wagner and Wohlfarth, who discussed the magnetism
of inhomogeneous FM alloys on the basis of the Landau-
Ginzburg model [79,80]. This theory is developed within the
weak itinerant-electron model. According to the theory, the
pressure derivative of TC for inhomogeneous FM alloys is
given by

dTC/dp = −χ1TC + χ2T
2
C, (6)

where χ1(>0) and χ2(>0) are parameters. Shirakawa et al.
showed that the values of dTC/dp and TC measured for
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FIG. 12. (1/TC)(dTC/dp) as a function of TC for Fe100−xZrx . The
labels show the Zr concentrations. Squares are data of Shirakawa
et al. (see Ref. [35]); dots are taken from present work. The line is a
linear fit to all points.

Fe100−xZrx (x = 7, 10, 12, and 15) excellently satisfy Eq. (6).
They also showed that these data do not fit equally well the
relationship dTC/dp = −α/TC (α is a positive parameter and
is assumed to be constant within one alloy system) proposed by
Wohlfarth [81] for homogeneous FM alloys (Fe-Ni crystalline
Invar alloys) in terms of the weak itinerant model. The results
of our investigation confirm the conclusion of Shirakawa
et al. that the amorphous Fe-Zr alloys are magnetically
inhomogeneous. Figure 12 shows (1/TC)dTC/dp as a function
of TC for our Fe91Zr9 and Fe88Zr12 alloys, together with the
results of Shirakawa et al. for Fe100−xZrx (x = 7, 10, 12, and
15). The agreement is excellent for Fe88Zr12, which is the
only alloy with the same nominal composition measured by
the two groups. The point of Shirakawa et al. for Fe93Zr7

is excluded from the present analysis since this alloy is
not FM, as discussed before. As seen in Fig. 12, the data
are in line with Eq. (6), supporting the inhomogeneous
nature of these amorphous alloys (χ1 = 1.50 GPa−1 and
χ2 = 0.0050 K/GPa). However, it is to be noted that a linear
relationship between dTC/dp and 1/TC (which was predicted
for magnetically homogeneous alloys) might also not be
excluded. The reason of this uncertainty is probably the very
narrow concentration range available in our case (x = 7 to
15%). Since there are a lot of other indications pointing to an
inhomogeneous magnetic structure in these alloys, we can only
conclude that the pressure dependence of TC as a function of
composition does not contradict to the inhomogeneous model.

The theory predicts a relationship between the pressure
derivatives of saturation magnetization, Ms , and Curie tem-
perature, TC ,

d ln Ms

dp
= d ln TC

dp
− 5

6
κ − d ln B

dp
, (7)

where B is a second Landau coefficient in the expansion of
the thermodynamic potential and the last term is considered
to be small. While no data on pressure derivatives of Ms

can be found in the literature for this alloy system, the

214424-10



INFLUENCE OF THE CRITICAL Fe ATOMIC VOLUME ON . . . PHYSICAL REVIEW B 93, 214424 (2016)

validity of Eq. (7) can now be checked with our results.
As evident from Table I, the compressibility measured for
Fe91Zr9 is small (κ = 6.64 10−3 GPa−1); therefore, it is the
first term (dlnTC/dp = −0.60 GPa−1) that dominates on the
right side of Eq. (7) compared to the second term [−(5/6)κ =
−0.0053 GPa−1]. The same is true for Fe88Zr12 if we use the
compressibility value obtained for Fe91Zr9, which should be
a good approximation (see also Table I). Taking the values
of dlnMs/dp (Table I) measured for Fe88Zr12 and Fe91Zr9

(dlnM5 K, 5 T/dp = −0.23 and −0.34 GPa−1, respectively),
Eq. (7) is valid for Fe88Zr12 (−0.23 GPa−1 ≈ −0.26 GPa−1

−0.0053 GPa−1), while the discrepancy is greater for Fe91Zr9

(−0.34 GPa−1 compared to −0.60 GPa−1 − 0.0053 GPa−1).
This discrepancy might be associated with the increasing
deviation of the matrix from an ideal FM one upon decreasing
Zr content due to cluster formation. In a very recent paper
[82], electronic structure and magnetic properties for ZrFe2

with a cubic Laves phase were calculated based on the density
functional theory. According to the calculations, the magnetic
moment (m) decreases under pressure in the vicinity of the
experimental lattice constant with dlnm/dp = −0.038 GPa−1.
This value is about the tenth of those obtained for our Fe-rich
amorphous Fe-Zr alloys. The difference might be related to
the much greater Zr content of the crystalline ZrFe2 phase.
The amorphous or crystalline nature of the material may not
be the dominant factor to determine the Fe magnetic moment
in Fe-rich environments since it is mainly influenced by the
atomic volume.

Finally, we discuss how the critical Fe atomic volume
postulated on the basis of ambient-pressure density measure-
ments performed for Fe-rich Fe-TM metallic glasses [27,28]
is reflected in our pressure-dependent magnetic measurements
made for amorphous Fe100−xZrx (x = 7, 9, 12) alloys. For
comparison, the pressure dependence of saturation magneti-
zation for the Co91Zr9 metallic glass was also measured since
in this case no drastic change in the exchange integral, J, is
expected upon decreasing the interatomic distance by pressure.
Indeed, the logarithmic decrease of Ms with pressure is about
50 times smaller for Co91Zr9 than for the Fe-Zr glasses studied
in this work (Table I). The pressure coefficient of Ms for
the Fe-Zr glasses is even several times larger than that of
the Fe60Mn20B20 and Fe56Mn24B20 glasses (dlnM5K, 5T/dp =
−0.15 and −0.13 GPa−1, respectively) [66]. The same is
true (Table I) for the pressure coefficient of the Curie
temperature, TC , which is dTC/dp = −31 and −32 K GPa−1

for Fe60Mn20B20 and Fe56Mn24B20, respectively. The best
measure of the sensitivity of magnetization (magnetic mo-
ment) on volume changes is the Grüneisen parameter (� =
dlnMs/dlnV ). � is orders of magnitude larger for the Fe-rich
amorphous Fe-Zr glasses than for Co91Zr9 (� = 74, 51, and
34 for Fe93Zr7, Fe91Zr9, and Fe88Zr12, respectively, compared
to � = 1.18 for Co91Zr9; see Table I). These � values obtained
for the Fe-Zr glasses are even much larger than those found
for the Fe-Mn-B glasses (� � 20). The extreme sensitivity
of the magnetic properties to pressure for the Fe-rich Fe-Zr
glasses experimentally supports the widely accepted picture
(see references given in the Introduction), according to which
the average Fe atomic volume in these amorphous alloys is

fairly close to the critical volume, Vf cc∗ ≈ 11.7 Å
3
, separating

the so-called LS and HS state of fcc Fe [8].

VI. CONCLUSIONS

A cluster-glass model based on the curling-type reversal
mode of magnetization is proposed for the comprehensive ex-
planation of the low-temperature magnetic anomalies observed
in general for Fe-rich amorphous Fe-TM alloys and specifically
for Fe-rich Fe100−xZrx (x = 7 to 12) metallic glasses studied
in this work. The only assumption is that the clusters should
have a size distribution and that they are weakly coupled to
the FM matrix. This picture explains not only the temperature
and composition dependence of the coercivity, as suggested
earlier [31], but also those of the susceptibility. Moreover,
it is able to interpret the opposite pressure dependence of
the SG temperature, Tg (for Fe93Zr7), and the spin-freezing
temperature, Tf (for Fe91Zr9), which were systematically
measured in the present study. The pressure dependence of
the Curie temperature that is one of the characteristics of
the FM matrix is in line with literature results and points
to the inhomogeneous magnetic nature of the matrix. The
pressure dependence of the saturation magnetization, Ms , also
characteristic to the FM matrix, satisfies well the predictions
of the itinerant-electron model.

The main difference between this treatment and those using
the traditional cluster picture is that here the energy barrier for
thermal blocking of the clusters is not determined by any kind
of anisotropy (KV) rather by the resistance of neighboring spins
against misalignment due to the exchange interaction between
them. In this case, the energy barrier for curling is calculated
to be proportional to AR. This result is independent from our
concrete model for the Fe-rich Fe-Zr glasses: It generally gives
the value of the energy barrier for thermal blocking of a particle
of radius R reversing its magnetization by curling. As far as we
know, this expression has not been published so far; however,
the particle-size dependence of coercivity (which can also be
deduced from our result) was calculated before in the frame
work of a more general treatment [70,71].

A delicate point of the model is the origin of the clusters.
There is a lot of experimental and theoretical evidence
(see Introduction) that the average Fe-Fe distance in these
amorphous alloys is fairly close to a critical distance separating
the LS (for higher density) and HS (for lower density) state
of fcc Fe. Our pressure-dependent magnetic measurements,
together with a compressibility study on Fe91Zr9 and Co91Zr9,
revealed the extreme sensitivity of the magnetic properties
with volume change for Fe91Zr9, in contrast to the almost
pressure-independent magnetic behavior of Co91Zr9. Due
to the amorphous nature of these alloys, there is a wide
distribution of Fe-Fe atomic distances around the average
value. The clusters are imagined to be separated from the
FM matrix by Fe atoms with reduced magnetic moments
that form a percolating network. The less the Zr content, the
more are these Fe atoms with reduced moments, decreasing
the cluster size. At the critical concentration (Fe93Zr7), the
material consists of only clusters without an FM matrix.
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APPENDIX

1. Without coupling

To obtain the energy barrier for curling, we consider the
exchange energy per unit volume for an infinite cylinder
using a (r , φ, z) cylindrical coordinate system, where the
magnetization changes occur by spin rotation from the z axis
(direction of the external field) in a plane perpendicular to the
radius [70],

Eex = A[(dω/dr)2 + (1/r2)sin2ω], (A1)

where A is the exchange constant and ω is the angle between
the spin direction and the z axis. Let us take a look at the
second term of the exchange energy since it can also be derived
descriptively, and this will shed light on the underlying physics.
Let us consider the case when all spins are perpendicular to
the z axis (rotation axis) of a cylinder of radius R (ω = 90◦)
and tangential to its lateral surface, as shown in Fig. 13(a). The
exchange energy of two neighboring spins with an angle φ be-
tween them is given by Eex = JS2φ2, where J is the exchange
integral and S is the spin quantum number. φ can be written
as φ = 2π/N since the total change in angle of the spins in
going around the ring is 2π and the number of atoms in such a
ring is N = 2πR/a, where a is the distance between nearest
neighbors. Thus φ = a/R, giving for the exchange energy of
neighboring spins Eex = JS2a2/R2. For other ω values, tak-
ing intuitively the projection of spins onto a plane perpendic-
ular to the z axis, we get Eex = (JS2a2/R2) sin2 ω. Dividing
by a3, the exchange energy per unit volume is given by

Eex = JS2

a

sin2ω

R2
∝ A

sin2ω

R2
,

where A = n JS2/a by definition, with n denoting the number
of atoms in the unit cell [83] (n = 2 and 4 for body-centered-
cubic (bcc) and fcc crystal structures, respectively). This
expression is the same as the second term in Eq. (A1).

y

xa R

S

(a)

z

xR

S

(b)

FIG. 13. Schematic view of spins S during curling: (a) cross
section normal to the z axis after ω = 90◦ rotation from the +z

direction (ϕ is the angle between neighboring spins and a is their
distance); (b) a sphere of radius R reversing magnetization by curling
where the spins at the surface in the equatorial plane are shown.

To calculate the energy barrier for curling, we have to
minimize the total energy per unit volume (Etot) consisting
of exchange energy (Eex) and field energy (EH ) terms:

Etot = Eex + EH = A
sin2ω

R2
+ HMs cos ω, (A2)

where H is the external field and Ms is the saturation
magnetization. The energy difference per unit volume (�E)
between the two minima (i.e., the energy barrier per unit
volume) is given by

�E = A

R2

(
1 − R2HMs

2A

)2

= A

R2

(
1 − H

2A
R2Ms

)2

. (A3)

From Eq. (A3), we get for the coercive field,

Hc = 2A

R2Ms

= 2Ms

(R/R0)2 , (A4)

where the notation R0 = A1/2/Ms was introduced in the
second expression. Thus, we obtained the same formula for
the size dependence of coercive field for curling as calculated
before for a prolate spheroid [70,71].

Our calculation leads to another important result not
published before, viz. it gives the energy barrier per unit
volume without field for the curling mode: �E = A/R2.
The quantity we are really interested in is the energy barrier
for a particle of volume V, which determines the blocking
temperature, TB , for curling.

Multiplying with the volume, which is, as a first approxima-
tion, proportional to R3, we get for a particle of volume V in the
curling mode: �E � AR. To obtain a more precise result, the
exchange energy per unit volume has to be integrated for the
volume of the prolate spheroid. This calculation was already
done [84] in order to obtain the critical size for a single-domain
particle. Applying this result for our case, the energy barrier
of a sphere of radius R will be [Fig. 13(b)],

�E = 8πJS2

a
R

[
ln

(
2R

a

)
− 1

]
∝ AR

[
ln

(
2R

a

)
− 1

]

For the Fe-rich Fe-Zr metallic glasses, the cluster sizes
deduced from magnetic-viscosity measurements [31] are in the
range of R = 3 to 10 nm, while a ≈ 0.25 nm. Consequently,
2R/a takes values in the range of 24 to 80, giving a positive
value for �E. The energy barrier for the cluster varies almost
linearly with R in the interested R range since the logarithmic
term changes little in the same R range. To conclude this sec-
tion, we determined the energy barrier for a particle of radius
R in the curling mode to be proportional to �E � AR, which
replaces the �E = KV term valid for homogeneous rotation.

2. With coupling

The coupling between the clusters and the infinite (FM)
matrix is treated in the framework of a mean-field model. The
magnetic field, H, is replaced by H + λM in Eq. (A2), where
λ is the coupling constant,

Etot = A
sin2ω

R2
+ (H + λM)Ms cos ω.
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The matrix is assumed to be an ideal FM having M = Ms

for H > 0 and M = −Ms for H < 0, where the saturation
magnetization, Ms , of the clusters is equal with that of the FM
matrix. A similar calculation as above gives for the energy
barrier of a particle of radius R without field,

�E = AR

(
1 − R2λM2

s

2A

)2

. (A5)

The physical picture behind this mean-field model is that
the thermal energy (kT) is aided by the mean-field of the FM
matrix to facilitate the magnetization reversal of the clusters.
The blocking temperature, TB , is determined by the condition

�E = 25kTB :

TB = AR

25k

(
1 − R2λM2

s

2A

)2

= AR

25k

(
1 − msλMs

2AR

)2

= �E0

25k

(
1 − Ec

2�E0

)2

, (A6)

where the cluster moment ms = R3Ms was introduced in the
second expression and the notations �E0 = AR and Ec =
msλMs were applied in the third expression. Here �E0 is
the energy barrier for curling without coupling, and Ec is the
coupling energy. Equation (3) has a physical meaning only if
Ec/(2�E0) � 1, which is fulfilled (see the Discussion).
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Hjövarsson, and P. E. Jönsson, J. Magn. Magn. Mater. 346,
138 (2013).

[39] A. Zamani, R. Moubah, M. Ahlberg, H. Stopfel, U. B. Arnalds,
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[51] J. Kamarád, Z. Machátová, and Z. Arnold, Rev. Sci. Instrum.
75, 5022 (2004).
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[62] J. Kamarád, J. Schneider, and Z. Arnold, Phys. Stat. Sol. (a) 67,
K85 (1981).

[63] H. Tange, T. Matsuyama, A. Chikazawa, K. Konishi, and T.
Kamimori, J. Magn. Magn. Mater. 177–181, 125 (1998).

[64] I. Bakonyi, V. Skumryev, R. Reisser, G. Hilscher, L. K. Varga,
L. F. Kiss, H. Kronmüller, and R. Kirchheim, Z. Metallkd. 88,
117 (1997).

[65] H. Tange, K. Inoue, and K. Shirakawa, J. Magn. Magn. Mater.
68, 102 (1987).
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