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Quantum criticality and inhomogeneous magnetic order in Fe-doped α-YbAlB4
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The intermediate-valent polymorphs α- and β-YbAlB4 exhibit quantum criticality and other novel properties
not usually associated with intermediate valence. Iron doping induces quantum criticality in α-YbAlB4

and magnetic order in both compounds. We report results of muon spin relaxation (μSR) experiments in
α-YbAl1−xFexB4, x = 0.014 and 0.25. For x = 0.014 we find no evidence for magnetic order down to 25 mK.
The dynamic muon spin relaxation rate λd exhibits a power-law temperature dependence λd ∝ T −a , a = 0.40(4),
in the temperature range 100 mK–2 K, in disagreement with predictions by theories of antiferromagnetic (AFM)
or valence quantum critical behavior. For x = 0.25, where AFM order develops in the temperature range 7.5–10
K, we find coexistence of meso- or macroscopically segregated paramagnetic and AFM phases, with considerable
disorder in the latter down to 2 K.
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I. INTRODUCTION

In certain compounds containing f ions, atomiclike f

levels and a wide s-d band coexist at the Fermi level. This
permits strong admixture of ionic states with differing valence
due to hybridization with conduction electrons. Such materials
are referred to as intermediate-valence (IV), mixed-valence,
or valence-fluctuating compounds. They have a variety of
unique thermal and magnetic properties, usually including the
ability of even a small admixture of a nonmagnetic valent state
to prevent local-moment formation in the ground state [1].
For nearly integral valence IV crosses over into Kondo and
heavy-fermion behavior [2].

The 4f ions Ce3+ and Yb3+, with one 4f electron and
one hole, respectively, exhibit IV or heavy-fermion behavior
(admixture of nonmagnetic Ce4+ and Yb2+ components, re-
spectively) in many intermetallic compounds. Their properties
in Ce- and Yb-based metals are not very symmetric, however;
superconductivity, weak-moment magnetism, and quantum
criticality are often found in Ce-based compounds but seldom
in Yb-based ones. Perhaps more fundamentally, in metals the
Ce valence is usually close to 3, whereas Yb ions are more
often found in an IV state relatively far from integral valence.

The term quantum criticality refers to phenomena involving
quantum fluctuations at transitions between phases at T = 0.
Such effects have been extensively studied in numerous
rare-earth-based heavy-fermion metals [3–5]. They include
unconventional superconductivity, non-Fermi-liquid behavior
in the neighborhood of the quantum critical point (QCP),
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weak-moment antiferromagnetism, quasiordered phases such
as “spin nematics,” and even more exotic phases involving
modification of the fundamental nature of the electrons
involved. Such phenomena are associated with the interplay
between magnetic interactions and local-moment screening by
the Kondo effect and its heavy-fermion cousin, both of which
are found near integral valence; quantum criticality has seldom
been searched for in IV materials.

The polymorphs α-YbAlB4 and β-YbAlB4 [6–9] and their
alloys with iron [10–13] display a rich variety of unexpected
properties, and promise to shed light on a number of interesting
phenomena. They are both substantially intermediate valent
(Ybz+, z = 2.73 and 2.75 for α-YbAlB4 and β-YbAlB4,
respectively) [14] but, very surprisingly, retain local-moment
behavior to low temperatures [9,15]. β-YbAlB4 is one of
the few pure rare-earth-based materials to exhibit quantum
criticality without tuning, i.e., without doping, pressure, or
magnetic field, as evidenced by the scaling of the temper-
ature and magnetic field dependence of magnetization [16].
Applied magnetic fields rapidly restore Fermi-liquid behavior.
β-YbAlB4 is also the only known Yb-based heavy-fermion su-
perconductor: high-purity crystals are superconducting below
Tc ≈ 0.08 K [7,8]. The superconductivity evolves from the
quantum-critical state and is very fragile, appearing only for
samples with low residual resistivities. This strong sensitivity
of Tc to sample purity suggests that the superconductivity is
of an unconventional, non-s-wave type [8].

Undoped α-YbAlB4 is not a quantum-critical system (no
divergence of Cp/T ), but the solid solution α-YbAl1−xFexB4

can be tuned to quantum criticality at a critical concen-
tration xcr = 0.014 [10,13]. Kuga et al. [13] have found
evidence from thermodynamic and photoemission data that
valence fluctuations are involved in the quantum-critical
behavior. More heavily Fe-doped samples exhibit a transition
to a canted antiferromagnetic (AFM) phase. In particular,

2469-9950/2016/93(21)/214421(8) 214421-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.214421


D. E. MACLAUGHLIN et al. PHYSICAL REVIEW B 93, 214421 (2016)

magnetization and Mössbauer-effect measurements on
α-YbAl0.75Fe0.25B4 [12,17] show evidence for a complex
phase transition; the magnetization exhibits anomalies at 9.4,
8.0, and 6.9 K [17] that have been attributed to magnetic
ordering. 57Fe Mössbauer experiments [12] and the absence of
magnetism in Fe-doped LuAlB4 [10] confirm that the doped
Fe is itself nonmagnetic; the static magnetism is due to Yb
moments only.

We have used the muon spin relaxation (μSR)
technique [18–20] to study polycrystalline samples of
α-YbAl1−xFexB4, x = 0.014 and 0.25. Our goals were to
examine the muon spin dynamic (spin-lattice) relaxation in the
x = 0.014 sample for evidence of the putative quantum critical
point, and to search for magnetic transitions in both samples
via the onset of a static field or distribution of static fields.
Experiments were carried out in zero applied field (ZF) over the
temperature range 0.025–15 K, and in weak longitudinal fields
(LFs) (i.e., field parallel to the initial muon spin direction) at
selected temperatures in this range.

For x = 0.014 no evidence was found for static magnetism
�10−2μB/Yb ion down to 25 mK. In this sample the dynamic
muon spin relaxation rate λd is found to obey a power-law
temperature dependence: λd (T ) ∝ T −a above 100 mK, with
a = 0.40(4) and a maximum in the neighborhood of 50 mK.
This indicates a divergent density of magnetic excitations
(with a possible cutoff near the zero of energy), apparently
associated with the QCP at x = xcr. Such a divergence does
not agree with theoretical results based on either AFM or
valence quantum criticality [21], both of which yield negative
values of a. The divergence is consistent with a ferromagnetic
(FM) instability [22], which, however, would not account for
the results of other experiments noted above. More work is
necessary to resolve this discrepancy.

In α-YbAl0.75Fe0.25B4 the onset of static magnetism over a
transition region from 7.5 to 10 K is clearly seen in ZF-μSR
relaxation as a wide distribution of local magnetic fields. The
data are consistent with an inhomogeneous distribution of two
phases, AFM and paramagnetic (PM), in the transition region,
and there are indications of multiple transitions. The fraction
of PM phase decreases to zero below ∼8 K. In the AFM phase
the local field is widely distributed, with no signature of a well-
defined nonzero average. In this sample λd exhibits a broad
maximum at ∼8.5 K suggestive of dynamic critical slowing
down of Yb moment fluctuations, and becomes constant below
∼6 K.

II. EXPERIMENT

Flux-grown small crystals of α-YbAl1−xFexB4, x = 0.014
and 0.25, were prepared as described previously [6]. They
were characterized using powder x-ray diffraction and magne-
tization measurements.

μSR experiments were carried out at TRIUMF, Vancouver,
Canada, using the μSR dilution refrigerator at the M15
muon beam line for the temperature range 25 mK–2.5 K.
The LAMPF μSR spectrometer at the M20C beam line
was used for temperatures between 2 and 300 K. Data
were analyzed using the Paul Scherrer Institute MUSRFIT

fitting program [23] and the TRIUMF PHYSICA programming
environment [24].

For time-differential μSR in solids positive muons (μ+) are
normally used [25]. The time evolution of the decay positron
count rate asymmetry A(t) is proportional to the total (sample
plus background) μ+ spin polarization Ptot(t):

A(t) = A0Ptot(t), (1)

where the initial asymmetry A0 is spectrometer dependent
but is usually ∼0.2. The observed asymmetry often contains
a component due to muons that miss the sample and stop
elsewhere in the spectrometer. In the following this signal is
subtracted, and the data are normalized by A0 to yield the
ensemble spin polarization P (t) in the sample.

Two categories of processes contribute to the relaxation of
P (t): static relaxation, due to an inhomogeneous distribution
of time-average local fields 〈Bloc〉 at μ+ sites, and dynamic
relaxation, due to thermal fluctuations δBloc(t) of the μ+ local
fields around their time averages. Static relaxation is due to
(quasistatic) nuclear dipolar fields in dia- and paramagnets,
and to coupling to static magnetism if present.

Dynamic relaxation usually arises from coupling to elec-
tronic spin fluctuations [26]. If the fluctuation rate 1/τc is
in the so-called motional narrowing limit γμ〈δB2

loc〉1/2τc �
1 [27,28], the resulting μ+ spin polarization can be modeled
by

P (t) = e−λd tGs(t), λd ≈ γ 2
μ

〈
δB2

loc

〉
τc, (2)

where Gs(t) is the appropriate static relaxation function. We
expect situations of this kind in the present study, and are thus
motivated to fit forms of Eq. (2) to the data.

III. RESULTS AND DISCUSSION

A. α-YbAl1−xFexB4, x = 0.014

1. Zero-field μSR

Figure 1 shows P (t) for α-YbAl0.986Fe0.014B4 at 2.5 K and
50 mK in ZF. The curves are fits to the data of the exponentially
damped relaxation function

P (t) = e−λd tGG(t), (3)
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FIG. 1. ZF μ+ spin relaxation in α-YbAl0.986Fe0.014B4, T =
2.5 mK (circles) and 50 mK (squares). Curves: fits of exponentially
damped ZF Gaussian Kubo-Toyabe function [Eq. (3)] to the data.

214421-2



QUANTUM CRITICALITY AND INHOMOGENEOUS . . . PHYSICAL REVIEW B 93, 214421 (2016)

where

GG(t) = 1
3 + 2

3 (1 − �2t2) exp
(− 1

2�2t2
)

(4)

is the ZF Gaussian Kubo-Toyabe (KT) function [29] appropri-
ate to relaxation by a randomly oriented Gaussian distribution
of static local fields. The relaxation rate � is the rms width
�/γμ of the local field distribution in “frequency units.” The
data exhibit the minimum in P (t) and recovery at late times
associated with Eq. (4) [29]. It can be seen that there is a small
but measurable increase in relaxation rate at low temperature,
together with a change in shape of P (t) associated with an
increase of λd relative to �.

In the filled skutterudite compound PrPt4Ge12, combined
Gaussian and exponential relaxation has been reported [30] for
which a Lorentzian component of the static field distribution
rather than dynamic spin fluctuations is mainly responsible.
We therefore consider a generalization of the ZF Gaussian KT
relaxation function to the case of a combined Gaussian and
Lorentzian static field distribution, the so-called ZF Voigtian
static KT function [30]:

GV (t) = 1
3 + 2

3 (1 − λt − �2t2) exp
(−λt − 1

2�2t2
)
. (5)

The shape of the relaxation function is controlled by the
ratio �/λ: the limit λ → 0 yields Eq. (4), whereas the limit
� → 0 yields the ZF exponential KT function appropriate
to dilute local-moment systems with 1/r3 interactions with
the muon [31]. Equation (5) should be considered an em-
pirical interpolation between the Gaussian and exponential
limits.

Fits of the exponentially damped ZF Voigtian KT function

P (t) = e−λd tGV (t) (6)

to the data for x = 0.014 (not shown) yield λ ≈ 0 (and λd 	=
0); there is no evidence for static exponential relaxation in
this sample. We shall see in Sec. III B, however, that in the
high-temperature PM phase of α-YbAl0.75Fe0.25B4 fits to ZF
data using Eq. (6) yield nonzero λ (and λd ≈ 0).

Figure 2 gives the ZF temperature dependences of the
t=0 asymmetry A0 [Eq. (1)], the static KT relaxation rate
�, and the dynamic rate λd for temperature T between 25 mK
and 2.5 K. Over this range A0 and � are constant to within a
few percent of their averages [Figs. 2(a) and 2(b), respectively].
There is no sign of oscillations that would indicate a well-
defined static field, and there is no “missing asymmetry” from
very rapid relaxation due to a strong magnetic transition. The
near constancy of � [average value 0.345(9) μs−1] indicates
no static magnetism at the level of ∼0.01μB per unit cell. These
results rule out the onset of static magnetism above 25 mK.
The value of �/γμ is roughly consistent with 171Yb, 27Al, and
11B nuclear dipolar fields. A quantitative comparison would
require knowledge of the μ+ stopping site, which is not known
at present.

In contrast, there is a significant increase of λd with
decreasing temperature, followed by a broad maximum at
∼50 mK. Above 100 mK the data follow a power law
λd ∝ T −a , with a = 0.40(4). This divergence followed by a
maximum suggests the onset of quantum (T = 0) critical spin
fluctuations with a cutoff at low frequencies.

However, a divergent λd (T ) is not predicted by theories
of either AFM or valence criticality [21]. The latter has been
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FIG. 2. Temperature dependences of ZF μ+ initial count rate
asymmetry and spin relaxation rates in α-YbAl0.986Fe0.014B4. (a)
Initial asymmetry A0. (b) Static Gaussian KT rate �. (c) Dynamic
relaxation rate λd . Solid line: fit of the power law λd ∝ T −α to the
data for T � 100 mK. The dashed and dash-dotted lines represent
the range of slopes predicted by the theory of Ref. [21].

proposed as a mechanism for quantum critical phenomena
in a number of Ce- and Yb-based heavy-fermion compounds
including α- and β-YbAlB4 [13]. The dynamic relaxation rate
(1/T1 in NMR terminology) of a spin probe (nuclear or muon
spin) has been calculated within this theory, and vanishing
of 1/T1(T ) as T → 0 is obtained: 1/T1 = λd ∝ T 0.3–0.5, in
marked disagreement with the data above 100 mK (Fig. 2).
AFM spin fluctuations also result in a < 0, i.e., vanishing
1/T1 as T → 0 [21,22,32].

It is possible that the comparison should be made at lower
temperatures, below the maximum in Fig. 2(c). The available
temperature range down to the cryostat base temperature
of 25 mK is too limited for a quantitative comparison, but
the data are consistent with the theoretically expected [21]
range of slopes (dashed and dash-dotted lines in Fig. 2). This
would restore agreement with the valence criticality scenario.
It would, however, leave the origin of the power law above
100 mK unexplained.

Power-law temperature dependences of the μ+ dynamic
relaxation rate have been observed in a number of systems
that exhibit the non-Fermi-liquid behavior often associated
with quantum criticality. These include CeP0.15Rh0.85 [33],
YbCu5−xAux , x = 0.6 [34], and YbNi4P2 [35]. In these cases
the exponent a varies between 0.3 and 0.8. The divergence has
been taken as a sign of a FM QCP, primarily on the basis of the
qualitative agreement with predictions of the self-consistent
renormalization (SCR) theory [22] for FM criticality. For AFM
criticality SCR theory predicts a negative value of a, as does
a later proposal of quantum tricriticality [32]. Magnetization
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FIG. 3. LF μ+ spin relaxation in α-YbAl0.986Fe0.014B4, T =
25 mK. Curves: fits to the data of exponentially damped static LF
Gaussian Kubo-Toyabe function [29].

measurements [10] exhibit hysteresis along the c axis, and
suggest a FM component of the ordered magnetization in the
ab plane of α-YbAl1−xFexB4, x > xcr. Fluctuations associated
with this component could dominate the μ+ dynamic relax-
ation for x = xcr. However, Ref. [22] predicts a maximum in
1/T1 at low temperatures, associated with coupling between
spin fluctuation modes around the critical wave vector. This
is consistent with the data [Fig. 2(c)], but parameter values
necessary for quantitative comparison are not known. In any
case, bulk properties of α-YbAl0.986Fe0.014B4 [13] are not
consistent with the FM QCP scenario [36].

2. Longitudinal-field μSR

The dependence of P (t) on LF in α-YbAl0.986Fe0.014B4

at 25 mK is shown in Fig. 3. As in ZF, the data are well
fit by an exponentially damped static relaxation function
[Eq. (2)], where in this case Gs(t) is the static Gaussian KT
relaxation function in nonzero LF [29]. The majority of the
field dependence is due to “decoupling” of the muon spin
from random static internal fields by the longitudinal field HL

for HL � �/γμ. For HL = 31.8 Oe (Fig. 3) the decoupling
is nearly complete and the relaxation is mainly dynamic
[29].

The relaxation rate λd varies considerably with field, as
shown in Fig. 4 for T = 25 mK and 2.5 K. At both temperatures
λd goes through a maximum at ∼4 Oe, followed by a shallow
minimum at somewhat higher fields. It is hard to see how
such weak fields could modify the electronic spin system
significantly.

This field dependence is reminiscent of that observed in Cu
metal, which was attributed to avoided level crossing (ALC)
of muon Zeeman and nuclear quadrupolar energy levels [37].
In ALC the maximum in λd occurs at roughly ωQ/γμ, where
ωQ is the nuclear quadrupolar splitting frequency. However,
ωQ/2π obtained from the peak field is ∼0.05 MHz, which
is an order of magnitude smaller than values obtained from
quadrupole-split 11B NMR in α- and β-YbAlB4 [38]. It seems
unlikely that either (1) the muon spin couples predominantly
to 27Al or 173Yb (NMR has not yet been reported for either of
these nuclei, and 173Yb is only 16% abundant), or (2) the small
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FIG. 4. Dependence of dynamic μ+ spin relaxation rate λd on
longitudinal field in α-YbAl0.986Fe0.014B4 at 25 mK (squares) and
2.5 K (circles).

concentration of iron dopant or the additional contribution
of the muon electric field gradient [37] cancels the intrinsic
crystalline contribution to ωQ(11B) to this degree. Thus the
origin of the observed field dependence remains uncertain.

B. α-YbAl1−xFexB4, x = 0.25

For convenience we refer to magnetic order in this system
as “antiferromagnetic” or “AFM,” in spite of the evidence for
FM criticality discussed in Sec. III A 1.

The behavior of the μ+ relaxation for x = 0.25 can be
divided into three temperature regions: (1) a fully PM region
T � 10 K, (2) a fully AFM region T � 7.5 K, and (3) a
transition region between these temperatures. In all three
regions the damped ZF Gaussian KT function [Eq. (3)]
gives poor fits to ZF data, whereas for the PM and AFM
regions damped ZF Voigtian KT fits [Eq. (6)] are statistically
satisfactory. This is evidence for a local field distribution
function with a Lorentzian component, i.e., with more weight
in the “wings” or “shoulders” than for a purely Gaussian
distribution.

In the transition region neither Gaussian nor Voigtian KT
functions give satisfactory fits, but good fits were obtained to
a sum of PM and AFM relaxation functions, with an AFM
fraction fAFM that decreases monotonically from fAFM = 1 at
∼8 K to 0 at ∼10 K. This indicates that the transition region
is macroscopically inhomogeneous.

We first consider data from the PM and AFM temperature
regions.

1. Voigtian and power-exponential relaxation functions

An alternative to the Voigtian KT relaxation function for
interpolation between Gaussian and exponential KT relaxation
functions is provided by the ZF power exponential (PE) [39]

GPE(t) = 1
3 + 2

3 [1 − (σ t)β] exp[−(σ t)β/β]. (7)

The exponential and Gaussian KT relaxation functions are
limits for β = 1 and 2, respectively. The shape of the PE
relaxation function is controlled by β, in a manner analogous
to the ratio �/λ for the Voigtian (Sec. III A 1).

Both Voigtian and PE functions have been used when a
more exact model of the field distribution is unavailable or
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FIG. 5. Voigtian [Eq. (6), dashed curves] and power-exponential
[Eq. (7), dash-dotted curves] Kubo-Toyabe relaxation functions from
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phase, T = 15.0 K. (b) AFM phase, T = 1.99 K.

cumbersome [20]. Thus it is useful to examine whether or not
for some intermediate distributions the data would be better
fit by one or the other interpolating function. This is done by
comparing Voigtian and PE fits to data from YbAl0.75Fe0.25B4

at temperatures well above and well below the AFM transition.
Figure 5 shows the comparison [40]. For clarity only the fits
are shown; the data are discussed below. By eye the curves
of Fig. 5 seem more nearly Gaussian in the PM phase and
more nearly exponential in the AFM phase. The fit values of
the parameters β (PE fits) and �/λ (Voigtian fits) confirm
this qualitative impression: for the PE fits βPM is significantly
larger than βAFM, and for the Voigtian fits �PM > λPM and
�AFM < λAFM in the PM and AFM states, respectively.

It can be seen that the Voigtian and PE functions are very
similar, and there is no significant difference between them
in goodness of fit. There is, however, one situation in which
the PE fit is more flexible, viz., if there is even more weight
in the shoulders than for a Lorentzian field distribution. A
PE fit can accommodate this with a value of β less than
1 (a “stretched exponential”), whereas a Voigtian fit only
interpolates between the exponential and Gaussian limits. We
shall see in Sec. III B 4 that exponentially damped PE fits in
the transition region near 10 K yield β < 1, and we therefore
use this function for fits in the AFM phase. For fits in the PM
phase we have arbitrarily chosen the exponentially damped
Voigtian KT function [Eq. (6)].

2. Paramagnetic phase

Figure 6 shows the time evolution of the μ+ spin po-
larization P (t) in α-YbAl0.75Fe0.25B4, T = 15.0 K. The μ+
data are similar to those for the x = 0.014 sample at high
temperatures (cf. Fig. 1). The solid curve is a fit to the
exponentially damped Voigtian KT relaxation function given
by Eq. (6). This fit yields PM-phase static relaxation rates
�PM = 0.291(3) μs−1 and λPM = 0.087(4) μs−1 [Eq. (5)],
and dynamic rate λd � 0.01 μs−1 [Eq. (6)]. For comparison,
the dashed curve (which is not a fit) gives the exponentially
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FIG. 6. α-YbAl0.75Fe0.25B4 μSR ZF asymmetry time spectrum,
T = 15.0 K. Solid curve: exponentially damped Voigtian KT relax-
ation [Eq. (6), λd ≈ 0]. Dash-dotted curve: exponentially damped
Gaussian KT relaxation [Eq. (3)].

damped Gaussian KT function of Eq. (3) with the same value
of �PM and λd = 0.087 μs−1.

The latter curve agrees with the former and with the data
only at early times (�3 μs). At late times the Voigtian
function without damping returns to the value 1/3 as generally
expected [18,20] for static relaxation only and randomly
oriented local fields. This return is in better agreement with
the data than the overall damping imposed by Eq. (3).

The temperature dependences of the ZF rates �PM, λPM,
and λd in α-YbAl0.75Fe0.25B4 are shown in Fig. 7. At 10 K
and above all three quantities are essentially temperature
independent. The average value �

(av)
PM = 0.290(2) μs−1 is

somewhat smaller than in α-YbAl0.986Fe0.014B4. This and the
substantial value of λ

(av)
PM [0.091(5) μs−1] can be attributed to

the dilution of the 27Al nuclear spins by Fe substitution, which
reduces the nuclear dipolar fields at μ+ sites and renders their
distribution less Gaussian with more weight in the wings.

0.28

0.29

0.30

Δ P
M

 (
μs

−1
)

10 11 12 13 14 15
Temperature (K)

0.00

0.05

0.10

λ P
M

, λ
d
 (

μs
−1

)

λPM

λd

α-YbAl0.75Fe0.25B4 H = 0(a)

(b)

FIG. 7. Temperature dependences of ZF μ+ spin relaxation rates
in the paramagnetic phase of α-YbAl0.75Fe0.25B4. (a) Static Voigtian
KT Gaussian rate �PM. (b) Static Voitgtian KT exponential rate λPM

and dynamic rate λd .
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T = 1.99 K. Preferential crystallite orientation reduces the amplitude
of the slowly relaxing polarization at late times from the value 1/3
expected for randomly oriented local fields.

The dynamic rate λd is essentially zero over the en-
tire temperature range, in contrast to the nonzero rate in
α-YbAl0.986Fe0.014B4. This indicates that the spin fluctuation
rate is significantly faster in α-YbAl0.75Fe0.25B4. In particular,
above 10 K λd does not exhibit the increase with decreasing
temperature characteristic of critical slowing down. An in-
crease is observed below ∼9 K, however (Sec. III B 4; Fig. 10).

3. Antiferromagnetic phase

The local field due to magnetic order in a crystal is expected
to point in a well-defined crystalline direction, and thus may
not be randomly oriented in a polycrystal if the latter is
preferentially oriented [41]. The α-YbAl0.75Fe0.25B4 sample
is a mosaic of flat millimeter-sized single crystals glued to a
silver plate. The crystalline c axes are normal to the flat faces,
and are therefore oriented preferentially along the initial μ+
spin direction. Preferential orientation changes ZF static KT
relaxation functions in polycrystalline samples for μ+ sites
with lower than cubic symmetry, principally by modifying the
late-time constant μ+ spin polarization from the value 1/3
found for random orientation [20,42].

Figure 8 gives the ZF μ+ spin polarization at 1.99 K. The
data have been fit using an exponentially damped “offset-PE”
KT function

PAFM(t) = e−λd tG′
PE(t), (8)

where

G′
PE(t) = (1 − flate)[3GPE(t) − 1]/2 + flate, (9)

with GPE(t) given by Eq. (7). Equation (9) simply replaces the
constants 2/3 and 1/3 in Eq. (7), appropriate to randomly
oriented fields, by 1 − flate and flate, respectively. It is a
rough approximation for small |flate − 1/3| to the exact result
for preferential orientation assuming a uniaxial orientation
distribution [20,42]. The fit value of flate is 0.22 < 1/3, which
indicates that the static μ+ internal fields are preferentially
oriented perpendicular to the crystalline c axes [42].

Parameters from damped offset-PE KT function fits to data
in the 2–8 K temperature range are shown in Fig. 10 and
discussed in the next section.

4. Transition region

Magnetization measurements indicate multiple phase tran-
sitions in α-YbAl0.75Fe0.25B4 over the temperature range
6.9–9.4 K [17], but the data do not determine whether or
not the various phases are macroscopically segregated. μSR
is an ideal technique to probe inhomogeneous magnetism due
to its sensitivity to static electronic magnetism, ordered or
disordered.

As previously noted, fits of either the Voigtian or the PE
function to the data over the entire temperature range give very
poor fits in the transition region, suggesting an inhomogeneous
distribution of transition temperatures. Magnetic resonance
probes are sensitive to spatial distributions of local magnetism,
ordered or disordered, if the correlation length ξM that
describes this distribution is long enough so that each muon or
nucleus is coupled to only one “domain” of the distribution.
This usually means ξM must be longer than a few lattice
parameters.

The simplest assumption for such meso- or macroscopic
inhomogeneity is a two-component (AFM and PM) form

P (t) = fAFMPAFM(t) + (1 − fAFM)PPM(t), (10)

where fAFM is the fraction of AFM phase. This scenario
provides good fits over the entire temperature range, as shown
in Fig. 9. The temperature dependences of fAFM and the
AFM-phase component parameters σAFM, β, and λd from fits
of Eqs. (8) and (10) to the data below ∼10 K are given
in Fig. 10. In the fits flate in Eq. (9) has been fixed at
its low-temperature value. The parameters of the PM-phase
component PPM(t) in Eq. (10) have been assumed temperature
independent, and are fixed at their averages from data for
T � 10 K (Fig. 7).

It can be seen that fAFM decreases monotonically over
the transition region, suggesting a distribution of transition
temperatures. There is, however, considerable structure in the
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FIG. 9. ZF μ+ spin polarization relaxation in α-YbAl0.75Fe0.25B4

at representative temperatures over the temperature range 2–15 K.
The data exhibit temperature-dependent AFM and PM fractions in
the AFM-PM transition region 7.5–10 K. Curves: fits to Eq. (10).
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magnetic fraction fAFM. (b) Power-exponential relaxation rate σAFM.
(c) Exponent β. (d) Dynamic relaxation rate λd .

temperature dependences of all the parameters, which we com-
pare with the previously reported transition temperatures [17]
TN1 = 9.4(2) K, TN2 = 8.0(2) K, and TN3 = 6.9(1) K.

(1) From Fig. 10(a), with decreasing temperature fAFM

becomes nonzero below 10 K rather than TN1. There are
inflection points in fAFM(T ) near 9 and 8 K and saturation
at fAFM = 1 below 7.5 K, i.e., no structure at 7 K.

(2) Recalling that the AFM-phase PE relaxation rate σAFM

[Fig. 10(b)] measures the strength of static fields (in frequency
units), the decrease of σAFM(T ) with increasing temperature
from 2 to 8 K is expected; it is the temperature dependence of
the order parameter in this region. The minimum at ∼8 K and
maximum at ∼8.3 K suggest structural transitions in the spin
order. They might be associated with an increase in magnetic
volume fraction, since fAFM exhibits small additional increases
with decreasing temperature at these temperatures [Fig. 10(a)].
Above 9 K σAFM becomes small but remains nonzero as long
as fAFM > 0.

(3) The exponent β [Fig. 10(c)] decreases from its low-
temperature value above ∼7 K, goes through a minimum near
8 K and a maximum near 8.5 K, and decreases to less than
1 above ∼8.8 K. As noted above, a decrease of β indicates
broadening of the wings of the field distribution, i.e., increasing
probability of field values far from the median. Not only
is the volume fraction of the AFM phase decreasing with
increasing temperature, but the disorder within this volume is
increasing.

(4) The dynamic rate λd [Fig. 10(d)] increases rapidly
with decreasing temperature below ∼9 K to a poorly defined
maximum at 8–8.5 K, and then decreases to a constant
value ∼0.06 μs−1 from ∼6 K down to 2 K. The maximum
in the transition region suggests critical slowing down of

spin fluctuations associated with the AFM transition. Of the
parameters shown in Fig. 7 only λd exhibits structure near TN3

(∼7 K) [17], below which it drops suddenly with decreasing
temperature.

IV. CONCLUSIONS

We have carried out μSR experiments on Fe-doped YbAlB4

as a probe of quantum criticality and magnetic order in
this alloy series. The principal results of this study are as
follows.

For x = 0.014 there is no evidence of static magnetism,
ordered or disordered. The dynamic muon spin relaxation rate
λd exhibits a power-law temperature dependence λd ∝ T −a ,
a = 0.40(4), in the temperature range 100 mK–2 K. This
divergence is similar to that found in materials with a putative
FM QCP, and is in strong disagreement with predictions by
theories of quantum critical behavior due to either AFM or
valence fluctuations. With decreasing temperature λd passes
through a broad maximum at ∼50 mK, which might restore
agreement with predicted valence critical behavior at lower
temperatures, but the divergence above 100 mK would then
remain unexplained. Further studies are necessary to clarify
this situation.

For x = 0.25 the AFM state is inhomogeneous, with a broad
distribution of local fields at μ+ sites and no indication of a
well-defined average field. The inhomogeneity increases in the
temperature region 7.5–10 K, where the μSR data indicate the
coexistence of magnetically ordered and paramagnetic phases.
This is evidence that the scale of the inhomogeneity is meso-
or macroscopic, since otherwise each muon would sample
both phases and the relaxation function would not exhibit the
two-component behavior described in Sec. III B 4. It is possible
that Fe substitution is not random, so that clustering leads to a
distribution of phase transition temperatures. There is evidence
for a number of phase transitions from magnetization and μSR
experiments, with rough but not perfect agreement between the
transition temperatures.
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W. Rüegg, A. Schenck, and H. Schilling, Phys. Rev. Lett. 39,
836 (1977).

[42] G. Solt, Hyperfine Interact. 96, 167 (1995).

214421-8

http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1038/nature03279
http://dx.doi.org/10.1038/nature03279
http://dx.doi.org/10.1038/nature03279
http://dx.doi.org/10.1038/nature03279
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1021/cm062244+
http://dx.doi.org/10.1021/cm062244+
http://dx.doi.org/10.1021/cm062244+
http://dx.doi.org/10.1021/cm062244+
http://dx.doi.org/10.1038/nphys1002
http://dx.doi.org/10.1038/nphys1002
http://dx.doi.org/10.1038/nphys1002
http://dx.doi.org/10.1038/nphys1002
http://dx.doi.org/10.1103/PhysRevLett.101.137004
http://dx.doi.org/10.1103/PhysRevLett.101.137004
http://dx.doi.org/10.1103/PhysRevLett.101.137004
http://dx.doi.org/10.1103/PhysRevLett.101.137004
http://dx.doi.org/10.1103/PhysRevB.84.125126
http://dx.doi.org/10.1103/PhysRevB.84.125126
http://dx.doi.org/10.1103/PhysRevB.84.125126
http://dx.doi.org/10.1103/PhysRevB.84.125126
http://dx.doi.org/10.1103/PhysRevB.86.224413
http://dx.doi.org/10.1103/PhysRevB.86.224413
http://dx.doi.org/10.1103/PhysRevB.86.224413
http://dx.doi.org/10.1103/PhysRevB.86.224413
http://dx.doi.org/10.3938/jkps.63.549
http://dx.doi.org/10.3938/jkps.63.549
http://dx.doi.org/10.3938/jkps.63.549
http://dx.doi.org/10.3938/jkps.63.549
http://dx.doi.org/10.3938/jkps.62.2146
http://dx.doi.org/10.3938/jkps.62.2146
http://dx.doi.org/10.3938/jkps.62.2146
http://dx.doi.org/10.3938/jkps.62.2146
http://dx.doi.org/10.1103/PhysRevLett.104.247201
http://dx.doi.org/10.1103/PhysRevLett.104.247201
http://dx.doi.org/10.1103/PhysRevLett.104.247201
http://dx.doi.org/10.1103/PhysRevLett.104.247201
http://dx.doi.org/10.1002/pssb.200983080
http://dx.doi.org/10.1002/pssb.200983080
http://dx.doi.org/10.1002/pssb.200983080
http://dx.doi.org/10.1002/pssb.200983080
http://dx.doi.org/10.1126/science.1197531
http://dx.doi.org/10.1126/science.1197531
http://dx.doi.org/10.1126/science.1197531
http://dx.doi.org/10.1126/science.1197531
http://dx.doi.org/10.1126/science.1262054
http://dx.doi.org/10.1126/science.1262054
http://dx.doi.org/10.1126/science.1262054
http://dx.doi.org/10.1126/science.1262054
http://dx.doi.org/10.7566/JPSCP.3.011059
http://dx.doi.org/10.7566/JPSCP.3.011059
http://dx.doi.org/10.7566/JPSCP.3.011059
http://dx.doi.org/10.7566/JPSCP.3.011059
http://dx.doi.org/10.7566/JPSJ.83.061006
http://dx.doi.org/10.7566/JPSJ.83.061006
http://dx.doi.org/10.7566/JPSJ.83.061006
http://dx.doi.org/10.7566/JPSJ.83.061006
http://dx.doi.org/10.1143/JPSJ.65.3402
http://dx.doi.org/10.1143/JPSJ.65.3402
http://dx.doi.org/10.1143/JPSJ.65.3402
http://dx.doi.org/10.1143/JPSJ.65.3402
http://dx.doi.org/10.1016/j.phpro.2012.04.042
http://dx.doi.org/10.1016/j.phpro.2012.04.042
http://dx.doi.org/10.1016/j.phpro.2012.04.042
http://dx.doi.org/10.1016/j.phpro.2012.04.042
http://computing.triumf.ca/legacy/physica/
http://dx.doi.org/10.1103/PhysRevB.20.850
http://dx.doi.org/10.1103/PhysRevB.20.850
http://dx.doi.org/10.1103/PhysRevB.20.850
http://dx.doi.org/10.1103/PhysRevB.20.850
http://dx.doi.org/10.1103/PhysRevB.82.024524
http://dx.doi.org/10.1103/PhysRevB.82.024524
http://dx.doi.org/10.1103/PhysRevB.82.024524
http://dx.doi.org/10.1103/PhysRevB.82.024524
http://dx.doi.org/10.1103/PhysRevB.31.546
http://dx.doi.org/10.1103/PhysRevB.31.546
http://dx.doi.org/10.1103/PhysRevB.31.546
http://dx.doi.org/10.1103/PhysRevB.31.546
http://dx.doi.org/10.1143/JPSJ.78.084707
http://dx.doi.org/10.1143/JPSJ.78.084707
http://dx.doi.org/10.1143/JPSJ.78.084707
http://dx.doi.org/10.1143/JPSJ.78.084707
http://dx.doi.org/10.1103/PhysRevB.78.014412
http://dx.doi.org/10.1103/PhysRevB.78.014412
http://dx.doi.org/10.1103/PhysRevB.78.014412
http://dx.doi.org/10.1103/PhysRevB.78.014412
http://dx.doi.org/10.1103/PhysRevB.79.020401
http://dx.doi.org/10.1103/PhysRevB.79.020401
http://dx.doi.org/10.1103/PhysRevB.79.020401
http://dx.doi.org/10.1103/PhysRevB.79.020401
http://dx.doi.org/10.1103/PhysRevB.85.140406
http://dx.doi.org/10.1103/PhysRevB.85.140406
http://dx.doi.org/10.1103/PhysRevB.85.140406
http://dx.doi.org/10.1103/PhysRevB.85.140406
http://dx.doi.org/10.1103/RevModPhys.73.797
http://dx.doi.org/10.1103/RevModPhys.73.797
http://dx.doi.org/10.1103/RevModPhys.73.797
http://dx.doi.org/10.1103/RevModPhys.73.797
http://dx.doi.org/10.1103/PhysRevLett.56.181
http://dx.doi.org/10.1103/PhysRevLett.56.181
http://dx.doi.org/10.1103/PhysRevLett.56.181
http://dx.doi.org/10.1103/PhysRevLett.56.181
http://dx.doi.org/10.1088/1742-6596/683/1/012008
http://dx.doi.org/10.1088/1742-6596/683/1/012008
http://dx.doi.org/10.1088/1742-6596/683/1/012008
http://dx.doi.org/10.1088/1742-6596/683/1/012008
http://dx.doi.org/10.1088/0953-8984/9/5/018
http://dx.doi.org/10.1088/0953-8984/9/5/018
http://dx.doi.org/10.1088/0953-8984/9/5/018
http://dx.doi.org/10.1088/0953-8984/9/5/018
http://dx.doi.org/10.1103/PhysRevLett.39.836
http://dx.doi.org/10.1103/PhysRevLett.39.836
http://dx.doi.org/10.1103/PhysRevLett.39.836
http://dx.doi.org/10.1103/PhysRevLett.39.836
http://dx.doi.org/10.1007/BF02066280
http://dx.doi.org/10.1007/BF02066280
http://dx.doi.org/10.1007/BF02066280
http://dx.doi.org/10.1007/BF02066280



