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Quantum phase transitions in a generalized compass chain with three-site interactions
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We consider a class of one-dimensional compass models with an XYZ-YZX type of three-site exchange
interaction in an external magnetic field. We present the exact solution derived by means of Jordan-Wigner
transformation, and study the excitation gap, spin correlations, and establish the phase diagram. Besides the canted
antiferromagnetic and polarized phases, the three-site interactions induce two distinct chiral phases, corresponding
to gapless spinless-fermion systems having two or four Fermi points. We find that the z component of the scalar
chirality operator can act as an order parameter for these chiral phases. We also find that the thermodynamic
quantities including the Wilson ratio can characterize the liquid phases. Finally, a nontrivial magnetoelectric
effect is explored, and we show that the polarization can be manipulated by the magnetic field in the absence of
electric field.
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I. INTRODUCTION

The rapid development of spin-orbital physics and quantum
information in recent years motivates the search for the
realizations of intrinsically frustrated orbital (or pseudospin)
interactions. Such interactions lead to radically different
behavior from Heisenberg SU(2) isotropic exchange, and have
been in the focus of very active research in recent years. It was
realized that the quantum nature of orbital degrees of freedom,
which may be released by emerging spin-orbital coupling
and spin-orbital entanglement, is interdisciplinary and plays a
crucial role in the fields of strongly correlated electrons [1–10]
and cold atoms [11–15].

The strong frustration of spin-orbital interactions can be
best understood by considering generic orbital models, in
which the bond-directional interactions provide the building
blocks. Among them, the two-dimensional (2D) compass
model defined on a square lattice [16] and the Kitaev model on
a honeycomb lattice [17] can be treated as two quintessential
pseudospin models, where the effective moments cannot
simultaneously align to satisfy interactions with all neighbors
as they favor the quantum states with distinct quantization
axes. In fact, the latter model is a rare example of an interacting
2D spin model that can be rigorously solved, and was found
to support gapped and gapless quantum spin liquids with
emergent fractional excitations obeying non-Abelian statistics.
Otherwise, exact solutions for 2D models with frustrated
exchange exist only for classical Ising interactions where a
phase transition at finite temperature is found [18]. Recent
studies show that also for the 2D compass model a phase
transition to nematic order occurs at finite but much lower
temperature [19].

In low-dimensional magnetic systems collective quantum
phenomena are particularly strong since the reduced dimen-
sionality amplifies the consequences of frustrated interactions
between individual spins. To probe the exotic phases resulting
from bond-directional interactions, we introduced a one-
dimensional (1D) generalized compass model (GCM) with
antiferromagnetic exchange alternating between even and
odd bonds [20]. Such a model may be realized in layered

structures of transition metal oxides, with alternating exchange
interactions along the bonds parallel to a and b axes along a
zigzag chain in an (a,b) plane [21], optical lattices [22,23],
trapped ions [24,25], and coupled photonic cavities [26,27].

On the other hand, the community focuses on two-body
interactions in most systems studied, as they contribute to
superexchange and are readily accessible experimentally.
However, the range of the hybridization of the electron wave
function will be finite in some realistic bonding geometries,
and the effect of such long-range interactions must be
addressed.

Recently three-site interactions received considerable atten-
tion in a somewhat diverse context [28–41]. They also occur
in an effective spin model in a magnetic field obtained from
a 1D plaquette orbital model by an exact transformation, with
spin dimers that replace plaquettes. Indeed, they are coupled
along the chain by three-spin interactions in the Hilbert space
reduced by a factor of 2 per plaquette [42]. Such complex
interactions between three subsequent sites essentially enrich
the ground state phase diagram of the spin model and open
new opportunities for underlying physics. Experimentally, it
can be realized in NMR quantum simulators [43,44] or optical
lattices [45]. Three-site spin interactions have been exhibited
in multiferroics [46] and the magnetoelectric effect [33,39].

The purpose of this paper is to focus on a 1D GCM
with three-site interactions. We show that this model is
exactly solvable and explore the consequences of three-site
interactions. By investigating spin correlations we identify
two chiral phases and demonstrate the existence of a nontrivial
magnetoelectric effect.

The organization of the paper is as follows. In Sec. II we
introduce the Hamiltonian of the 1D GCM with three-site
interactions in Eq. (4) and then present the procedure to solve
it exactly by employing the Jordan-Wigner transformation in
Sec. II B. The ground state and energy gap are retrieved. In
Sec. III we use spin correlations to characterize each phase and
quantum phase transitions (QPTs). The model in the magnetic
field is analyzed in Sec. IV, and the complete phase diagram is
obtained when the three-site interactions and magnetic fields
are varied. The obtained exact solution allows us to present
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the thermodynamic properties including the Wilson ratio in
Sec. V. We also point out that the three-site interactions play a
role in the magnetoelectric effect in Sec. VI. A final discussion
and conclusions are given in Sec. VII.

II. GENERALIZED 1D COMPASS MODEL

A. The model with three-site exchange

We consider below a 1D chain of N sites with periodic
boundary conditions, with GCM interactions given by

HGCM(θ ) =
N ′∑
i=1

Joσ̃2i−1(θ )σ̃2i(θ ) + Jeσ̃2i(−θ )σ̃2i+1(−θ ). (1)

Here N ′ = N/2 is the number of two-site unit cells, while
Jo and Je denote the coupling strengths on odd and even
bonds, respectively (below we take Jo as the unit of exchange
interaction). The operator σ̃i(θ ) (with a tilde) is defined as a
linear combination of {σx

i ,σ
y

i } pseudospin components (Pauli
matrices),

σ̃i(θ ) ≡ cos(θ/2)σx
i + sin(θ/2)σy

i . (2)

These linear combinations imply that Ising-like interactions
on an odd/even bond in Eq. (1) are characterized by the
preferential easy axes selected by an arbitrary angle ±θ/2.
With increasing angle θ , frustration gradually increases when
the model Eq. (1) interpolates between the Ising model at
θ = 0 and the quantum compass model (QCM) at θ = π/2, in
analogy to the 2D compass model [47]. The model was solved
exactly and the ground state is found to have order along the
easy axis as long as θ �= π/2, whereas it becomes a highly
disordered spin-liquid ground state at θ = π/2 [48,49]. Here
we introduce the XZY-YZX type of three-site interaction in
addition,

H3-site = J ∗
N∑

i=1

(
σx

i−1σ
z
i σ

y

i+1 − σ
y

i−1σ
z
i σ x

i+1

)
, (3)

where J ∗ is its strength. Such interactions between three
adjacent sites emerge as an energy current of a compass
chain in the nonequilibrium steady states, as discussed in the
Appendix.

The complete Hamiltonian of the 1D GCM with the three-
site XZY-YZX interaction is

H = HGCM + H3-site. (4)

B. Exact solution

We employ the Jordan-Wigner transformation which maps
explicitly between quasispin operators and spinless fermion
operators through the following relations [50]:

σ z
j = 1 − 2c

†
j cj , σ

y

j = iσ x
j σ z

j ,
(5)

σx
j =

∏
i<j

(1 − 2c
†
i ci)(cj + c

†
j ),

where cj and c
†
j are annihilation and creation operators

of spinless fermions at site j which obey the standard
anticommutation relations, {ci,cj } = 0 and {c†i ,cj } = δij . By

substituting Eqs. (5) into Eq. (4), we arrive at a simple bilinear
form of the Hamiltonian (4) in terms of spinless fermions:

H =
N ′∑
i=1

[Joe
iθ c

†
2i−1c

†
2i + Joc

†
2i−1c2i

+ Jee
−iθ c

†
2ic

†
2i+1 + Jec

†
2ic2i+1

− 2iJ ∗(c†2i−1c2i+1 + c
†
2ic2i+2) + H.c.]. (6)

Next discrete Fourier transformation for plural spin sites is
introduced by

c2j−1 = 1√
N ′

∑
k

e−ikj ak, c2j = 1√
N ′

∑
k

e−ikj bk,

with discrete momenta as

k = nπ

N ′ , n = −(N ′ − 1), − (N ′ − 3), . . . ,(N ′ − 1). (7)

The Hamiltonian takes the following form, which is suitable
to introduce the Bogoliubov transformation:

H =
∑

k

[Bka
†
kb

†
−k + Aka

†
kbk − A∗

kakb
†
k − B∗

k akb−k

− 4J ∗ sin k(a†
kak + b

†
kbk)], (8)

where

Ak = Jo + Je + eik, Bk = Joe
iθ − Jee

i(k−θ). (9)

To diagonalize the Hamiltonian Eq. (8), we rewrite it in the
Bogoliubov–de Gennes form,

H =
∑

k

�
†
kM̂k�k, (10)

where

M̂k = 1

2

⎛
⎜⎜⎜⎝

−Gk 0 Sk Pk + Qk

0 −Gk Pk − Qk −Sk

S∗
k P ∗

k − Q∗
k −Gk 0

P ∗
k + Q∗

k −S∗
k 0 −Gk

⎞
⎟⎟⎟⎠,

(11)

and �
†
k = (a†

k,a−k,b
†
k,b−k). In Eq. (11) the compact notation is

introduced:

Pk = −i(Jee
ik + Jo) sin θ, Qk = (Jee

ik − Jo) cos θ,

Sk = Jo + Jee
ik, Gk = 2J ∗ sin k. (12)

The diagonalization of Hamiltonian (11) is achieved by a
four-dimensional Bogoliubov transformation which connects
the operators {a†

k,a−k,b
†
k,b−k} with four kinds of quasiparti-

cles, {γ †
k,1,γ

†
k,2,γ

†
k,3,γ

†
k,4},⎛

⎜⎜⎜⎜⎝

γ
†
k,1

γ
†
k,2

γ
†
k,3

γ
†
k,4

⎞
⎟⎟⎟⎟⎠ = Ûk

⎛
⎜⎜⎜⎝

a
†
k

a−k

b
†
k

b−k

⎞
⎟⎟⎟⎠, (13)

where the rows of Ûk are eigenvectors of the Bogoliubov–de
Gennes equations. The diagonalization is readily performed to
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FIG. 1. The energy spectra εk,j (j = 1, . . . ,4) for increasing J ∗:
(a) J ∗ = 0, (b) J ∗ = 0.239, (c) J ∗ = 2, and (d) J ∗ = 5. Parameters
are as follows: Jo = 1, Je = 4, θ = π/3.

yield the eigenspectra εk,j (j = 1, . . . ,4):

εk,1(2) = −1

2

(√
ξk ±

√
ξ 2
k − τ 2

k + Gk

)
,

(14)

εk,3(4) = 1

2

(√
ξk ∓

√
ξ 2
k − τ 2

k − Gk

)
,

where

ξk = |Pk|2 + |Qk|2 + |Sk|2, τk = ∣∣P 2
k − Q2

k + S2
k

∣∣. (15)

The eigenenergies for various J ∗ are labeled sequentially
from the bottom to the top as εk,1, . . . ,εk,4 in Fig. 1. One
finds that finite J ∗ removes the symmetry of the spectra
with respect to ε = 0 energy and they are not invariant with
respect to the k → − k transformation, in contrast to the case
of the GCM with J ∗ = 0 shown in Fig. 1(a). The three-site
interactions break both parity (P) symmetry and time-reversal
(T) symmetry. Note that modes k = 0, ± π are time-reversal
invariant and their excitations are independent of J ∗ as a
consequence of vanishing Gk . Instantly, we obtain the diagonal
form of the Hamiltonian,

H =
∑

k

4∑
j=1

εk,j γ
†
k,j γk,j . (16)

The most important properties of the 1D quantum system
can be explored in the ground state. The ground state of any
fermion system follows the Fermi-Dirac statistics, and the
lowest energy is obtained when all the quasiparticle states
with negative energies are filled by fermions. More precisely,
in the thermodynamic limit (N → ∞) the ground state of the
system, |�0〉, corresponds to the configuration with chemical
potential μ = 0, where all the states with εk,j < 0 are occupied
and the ones with εk,j � 0 are empty. This state is realized by
means of the corresponding occupation numbers,

nk,j = 〈�0|γ †
k,j γk,j |�0〉 =

{
0 for εk,j � 0,

1 for εk,j < 0.
(17)

One recognizes that the Bogoliubov–de Gennes Hamilto-
nian (11) actually acts in an artificially enlarged Nambu-spinor
space and it respects an emergent particle-hole symmetry
(PHS) C, i.e., CM̂kC = M̂−k , with C2 = 1. Here in the so-called
particle-hole space, the extra degree of freedom C2 leads to
two copies of the actual excitation spectrum; a particle and a
hole copy emerge simultaneously. The PHS implies here that
γ
†
k,4 = γ−k,1, γ †

k,3 = γ−k,2, as is evidenced in Fig. 1. The bands
with positive energies correspond to the electron excitations
while the negative ones are the corresponding hole excitations.
When all quasiparticles above the Fermi surface are absent the
ground state energy may be expressed as

E0 = −1

2

∑
k

4∑
j=1

|εk,j |. (18)

Accordingly, the gap is determined by the absolute value of
the difference between the second and third energy branches,

� = min
k

|εk,2 − ε−k,3|. (19)

One finds that with the increase of J ∗, the minimum of
εk,3 bends down until it touches ε = 0 when J ∗ reaches a
threshold value J ∗

c,1, i.e., � = 0; cf. Fig. 1(b). A gapless mode
shows up at some incommensurate mode kic and the spectrum
vanishes quadratically. Further increase of J ∗ leads to the
bands’ inversion between portions of εk,2 and εk,3. There is a
negative-energy region of εk,3 in k space shown in Fig. 1(c),
and there are two Fermi points across the Fermi surface. When
J ∗ exceeds another threshold value J ∗

c,2 the energy spectrum
of spinless fermions may also have two additional Fermi
points [31], as observed in Fig. 1(d). A Lifshitz transition
occurs following the topological change of the Fermi surface
in the Brillouin zone.

III. CORRELATIONS AND QUANTUM PHASE
TRANSITIONS

In order to characterize the QPTs, we studied the nearest-
neighbor spin correlation function defined by

Cα
l = − 2

N

N ′∑
i=1

〈
σα

i σ α
i+l

〉
, (20)

where l = 1 (−1) and the superscript α = x,y,z denotes the
Cartesian component, and the z component of scalar chirality
operator [51]

χz = − 1

N

N∑
i=1

〈
σ z

i �z · [�σi−1 × �σi+1]
〉
. (21)

The scalar chirality operator can act as a local order parameter
for states without PT symmetry. As shown in Fig. 2, the
ground state has finite nearest-neighbor correlation functions
for J ∗ = 0, among which x components {Cx

l } dominate for
θ = π/3, implying that the adjacent spins are antiparallel and
aligned with a canted angle with respect to the x axis. Indeed,
the ground state of the GCM is a canted Néel (CN) phase for
θ < π/2.

With the increase of J ∗, the nearest-neighbor correlation
functions remain constant. After J ∗ surpasses J ∗

c,1, the system
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0 2 4 6
0.0

0.5

1.0

J*

C
or

re
la

tio
n 

fu
nc

tio
n

Cx
e

Cy
e

Cz
e χz

Chiral−I Chiral−II 

FIG. 2. The nearest-neighbor correlations Cα on even bonds and
chirality χα by increasing J ∗ for h = 0. Parameters are as follows:
Jo = 1, Je = 4, θ = π/3.

stays in a chiral-I phase without finite energy gap, character-
ized by a nonzero χz. In such a chiral-I phase, x components
Cx

l decrease while C
y

l and Cz
l grow as J ∗ increases, but

they become saturated quickly. When J ∗ > J ∗
c,2, the system

enters the chiral-II phase, where χz grows rapidly and {Cα
l }

(α = x, y, and z) decreases simultaneously.
In the fermionic picture different phases correspond to

different Fermi-surface topology (different number of Fermi
points) for fermions. In particular, the two Fermi-point spinless
fermions (chiral-I phase) is distinct from the four-Fermi-point
spinless fermions (chiral-II phase) [31]. Both spin-liquid
phases have gapless excitations; however, the appearance of
new points kF in the Fermi surface when the controlling
parameter crosses a critical value will witness a general feature
of the discontinuities in the correlation functions. We remark
that the number of gapless modes determine the effective
central charge and the coefficients of the area-law violating
term of bipartite entanglement entropy [52,53]. Notably, the
chiral-II phase is a dedicated phase of the critical XX model
with three-site XZY-YZX interactions added [29–34], while
this phase is absent for the anisotropic XY model [38]. Here we
observe that the three-site XZY-YZX interaction in the GCM
surprisingly triggers both chiral states for arbitrary θ , and two
different Tomonaga-Luttinger liquids reflect the importance of
Fermi surface topology.

The determination of critical values of J ∗
c,1,J

∗
c,2 and the

corresponding incommensurate momentum kic can be given
by

εkic,3(4) = 0, ∂εkic,3(4)/∂k = 0. (22)

This leads to the following quartic equation for xic = cos kic:

x4
ic + c3x

3
ic + c2x

2
ic + c0 = 0, (23)

where

c3 = 4
(
J 2

o + J 2
e

)
/(3JoJe sin2 θ ),

c2 = (
J 2

o + J 2
e

)2
/
(
3J 2

o J 2
e sin4 θ

) − 4 cot4 θ/3 + 2/3,

c0 = −1/3.

This quartic equation can be solved analytically but the form
is rather contrived. We plot the critical lines with respect to θ

in Fig. 3. One finds that in the Ising limit, i.e., for θ → 0, it

FIG. 3. The critical value of J ∗ as a function of θ . Parameters are
as follows: Jo = 1, Je = 4.

yields

J ∗
c,1 → min(Jo,Je) and J ∗

c,2 → max(Jo,Je). (24)

While in the compass limit, i.e., for θ → π/2, we have

J ∗
c,1 → 0 and J ∗

c,2 → max(Jo,Je). (25)

In other words, the system for θ = π/2 has an emergent
Z2 symmetry and the ground state cannot be ordered.
Any infinitesimal perturbation of J ∗ will induce the system
into gapless chiral-I state. For the parameters we choose
mostly in this paper, i.e., Jo = 1, Je = 4, θ = π/3, one finds
J ∗

c,1 = 0.239 and J ∗
c,2 = 4.048.

IV. EFFECT OF TRANSVERSE FIELD

We now consider the case where the magnetic field h is
perpendicular to the easy plane of the spins, i.e., �h = hẑ. In
this case, the Zeeman term is given by

Hh = hẑ ·
N ′∑
i=1

(�σ2i−1 + �σ2i), (26)

where h is the magnitude of the transverse external field.
Subsequently, in the Nambu representation, the Hamiltonian
matrix M̂k (11) is modified in the following way:

M̂k → M̂
′
k = M̂k − hI2 ⊗ σ z, (27)

where I2 is a (2 × 2) unity matrix. It is obvious that the external
magnetic field plays the role of a chemical potential for spinless
fermions.

After diagonalization four branches of energies εk,j , with
j = 1, . . . ,4, are given by the following expressions:

εk,1(2) = −1

2
(
√

ζk ± √
ηk − Gk),

(28)

εk,3(4) = 1

2
(
√

ζk ∓ √
ηk − Gk),

where

ζk = |Pk|2 + |Qk|2 + |Sk|2 + h2,

ηk = (S∗
k Qk + SkQ

∗
k)2 − (S∗

k Pk − SkP
∗
k )2

+ (P ∗
k Qk + PkQ

∗
k)2 + 4|Sk|2h2. (29)
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FIG. 4. The energy spectra εk,j (j = 1, . . . ,4) for increasing
electric field h: (a) h = 1, (b) h = 2, and (c) h = 3. The inset in (b)
is an amplification of the level crossing at the Fermi energy marked
by dashed circle below. Parameters are as follows: Jo = 1, Je = 4,
θ = π/3, and J ∗ = 0.1.

The magnetic field further breaks the T symmetry and polarizes
spins along the z direction. The analytical solution for J ∗ = 0
had been scrutinized recently. One finds that increasing
transverse field induces finite transverse polarization 〈σ z

i 〉 and
drives the system into a saturated polarized phase above the
critical field [20]. The field-induced QPT is of second order
for arbitrary angle θ and occurs at at the critical value,

hc = 2
√

JoJe cos θ. (30)

The field-induced criticality is suited at momentum k = 0,
where Gk does not play a role; see Eq. (12). Figure 4 shows the
energy spectra obtained for three typical values of h and fixed
weak J ∗ = 0.1. We find that a finite gap separates occupied
from empty bands except when h = hc; see Eq. (30). A small
value of J ∗ does not modify the critical field and the gap
vanishes linearly for θ �= π/2; see inset in Fig. 4(b). When
h = hc the gap opens and grows with increasing (h − hc); see
Fig. 4(c).

The nearest-neighbor correlation functions {Cα
l } (α = x, y,

and z) and the z component of scalar chirality operator χz for
increasing J ∗ at h = 3 are shown in Fig. 5. Finite magnetic
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FIG. 5. The nearest-neighbor correlations Cα on even bonds and
chirality χα by increasing J ∗ for h = 3. Parameters are as follows:
Jo = 1, Je = 4, θ = π/3.
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FIG. 6. The gap � as a function of h and J ∗. Parameters are as
follows: Jo = 1, Je = 4, θ = π/3.

field expands the range of CN phase and increases both J ∗
c,1

and J ∗
c,2; see Fig. 5. The z components {Cz

l } dominate over
x components {Cx

l } for small J ∗ and θ = π/3, suggesting
that the spins are aligned along the z axis according to
the sign of {Cz

l }. The correlation functions are found to be
almost independent of J ∗ as long as the system is within the
polarized state, but they change in a discontinuous way at
phase transitions. As J ∗ rises above the critical value J ∗

c,1, a
nonzero chirality χz starts to grow and saturates. One finds that
C

y

l and Cz
l decrease and change sign from negative to positive

values upon increasing J ∗, which is in contrast to the trend
observed for Cx

l . A sharp upturn of χz occurs for J > J ∗
c,2,

and it continues to increase with J ∗. Simultaneously, all
the correlation functions {Cα

l } (α = x,y,z) decrease strongly
towards zero when the system enters the chiral-II phase.

To present a three-dimensional panorama of the excitation
gap, we display � for varying h and J ∗ in Fig. 6. The gap �

diminishes for large value of J ∗.
Similarly, we can discriminate the critical lines J ∗

c,1(2) and
zero-gap modes kic using the relations in Eq. (22). The phase
diagram is shown in Fig. 7. The phase diagram at finite
three-site XZY-YZX interaction and magnetic field consists
of four phases: (i) canted antiferromagnetic, (ii) polarized,
(iii) chiral-I, and (iv) chiral-II. A tricritical point is determined
by the intersection of both critical lines which can be obtained
analytically:

hc = 2
√

JoJe cos θ, J ∗
c = JoJe cos2 θ/(Jo + Je). (31)

In the special case of θ = π/2, the CN phase is never stable.

V. THERMODYNAMIC PROPERTIES

Since the exact solution of the GCM with three-site
interaction and the external field is at hand, it is straightforward
to obtain its complete thermodynamic properties at finite
temperature. All quantum phase transitions of the present
1D GCM are of second order. Among many thermodynamic
quantities, the specific heat and magnetic susceptibility are
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FIG. 7. Magnetic phase diagram of the 1D GCM as a function of
transverse field h and three-site XZY-YXZ interaction J ∗. Parameters
are as follows: Jo = 1, Je = 4, θ = π/3.

easy to to be measured, and both of them are proportional
to the electronic density of states at Fermi energy. For the
particle-hole excitation spectrum (28), the free energy of the
quantum spin chain at temperature T reads

F = −kBT
∑

k

4∑
j=1

ln

(
2 cosh

εk,j

2kBT

)
. (32)

The low-temperature behavior of the heat capacity

CV (T )=−T

(
∂2F
∂T 2

)
h

= kB

∑
k

4∑
j=1

(εk,j /2kBT )2

cosh2(εk,j /2kBT )
. (33)

The magnetic susceptibility is defined as follows,

χ (T ) = −
(

∂2F
∂h2

)
T

− 1

2

∑
k

4∑
j=1

{
∂2εk,j

∂h2
tanh

(
εk,j

2kBT

)

+
(

∂εk,j

∂h

)2[
2kBT cosh2

(
εk,j

2kBT

)]−1}
. (34)

At low temperatures the specific heat has a linear depen-
dence on T in liquid metals due to the contribution from
the electrons within the energy interval kBT near the Fermi
surface, while the magnetic susceptibility is independent
of temperature owing to the fact that only the electrons
within the energy μBgH near the Fermi surface contribute
to magnetization. The Sommerfeld-Wilson ratio (Wilson ratio
in short) is a parameter which characterizes strongly correlated
Fermi liquids. It is defined as a dimensionless ratio of the zero-
temperature magnetic susceptibility χ and the coefficient of
the linear term ∝ T in the electronic specific heat CV (T ) [54],

RW = 1

3

(
2πkB

μBgLande

)2
T χ (T )

CV (T )
, (35)

where kB is Boltzmann’s constant, μB ≡ �e/(2mc) is the Bohr
magneton, and gLande � 2 is the Lande factor. Such quantity

0.00
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0.06
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v
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h=3

0 2 4 6
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0.2

0.4

0.6

J*

χ

0 4
0

1

J*

R
W

(b)

(a)

FIG. 8. The thermodynamic properties for two values of h = 1
and h = 3 at fixed temperature T = 0.01: (a) the specific heat CV ,
(b) the magnetic susceptibility χ . The inset shows the Wilson ratio
RW (35) as a function of three-site XZY-YXZ interaction J ∗ for h = 1
and h = 3. Parameters are as follows: Jo = 1, Je = 4, θ = π/3.

measures the strength of magnetic fluctuations versus thermal
fluctuations.

Figure 8 shows the specific heat CV (T ) and the magnetic
susceptibility χ (T ) for increasing J ∗, in the range which cov-
ers all phases. In a 1D antiferromagnet, the zero-temperature
magnetic susceptibility exhibits a square-root divergence
across critical fields. The Wilson ratio (35) undergoes an
increase due to sudden changes in the density of states near
the critical fields [55]. RW = 1 in the free-electron limit
when J ∗ → ∞. However, we notice that RW deviates from
1 in the chiral-I phase. In particular, RW is larger here
than in the chiral-II phase. Furthermore, RW is enhanced by
increasing magnetic field; see inset in Fig. 8. The Wilson ratio
can be measured experimentally as for instance in a recent
experiment on a gapped spin-1/2 Heisenberg ladder compound
(C7H10N)2CuBr2 [56].

VI. MAGNETOELECTRIC EFFECT

Next we consider the magnetoelectric effect (MEE), where
the roles of magnetization and polarization can be inter-
changed. A key quantity to characterize the MEE is the linear
magnetoelectric susceptibility which defines the dependence
of magnetization on the electric field, or the polarization
dependence on the magnetic field.

The three-spin interaction was naturally claimed to con-
tribute to the ferroelectricity in the Katsura-Nagaosa-Balatsky
(KNB) formula for its particular form [57], in which the
local spins (magnetic moments) and the local polarization are
coupled,

�P = γ êij × (�σi × �σj ), (36)

where êij is the unit vector connecting the neighboring spins �σi

and �σj with a material-dependent coupling coefficient γ . Here
we place the chain along the x direction in the real space, i.e.,
êij = (1,0,0). Considering a particular component (z here, to
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FIG. 9. Electric polarizations (see legend) as functions of external
field h for (a) J ∗ = 0, (b) J ∗ = 0.5, and (c) J ∗ = 4.5. Parameters are
as follows: Jo = 1, Je = 4, θ = π/3.

be specific) of the spin current,

dσ z
l

dt
= i

[
H,σ z

l

] = −divjz
l , (37)

which defines the current jz
l and the corresponding P

y

l by
Eq. (36).

The electric polarization has two sources [39]. The first
term originates from the spin-current model, given by

P
y

1 ∝ 〈
σx

l σ
y

l+1 − σ
y

l σ x
l+1

〉
, (38)

which couples with the y component of the electric field �E
induced by the Dzyaloshinskii-Moriya interaction. Through
the relation �P1 = (∂H/∂ �E), the absence of external electric
field �E in Hamiltonian H suggests that it has little contribution
to the electric polarization P

y

1 . However, as shown in Fig. 9,
P

y

1 is induced in the presence of magnetic field h as long as
the phases are chiral, and it is larger in the chiral-II phase than
in the chiral-I phase.

Another contribution of electric polarization may come
from the spin current triggered by the three-site interactions in
the following way [39]:

P
y

2 ∝ −〈
σx

l σ z
l+1σ

x
l+2 + σ

y

l σ z
l+1σ

y

l+1

〉
. (39)
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0.0
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FIG. 10. The evolution of electric polarization contributions P y
n

with increasing h at different temperature T for (a) P
y

1 (38), and
(b) P

y

2 (39). Parameters are as follows: Jo = 1, Je = 4, θ = π/3,
J ∗ = 0.5.
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FIG. 11. The evolution of P
y

1 and P
y

2 by reversing the magnetic
field h. Parameters are as follows: Jo = 1, Je = 4, θ = π/3, J ∗ = 0.5,
T = 0.01.

The general form of the current operator is given in the
Appendix. The form of P

y

2 is the well-known XZX + YZY
type of three-site interaction and remains solvable in the frame
of Jordan-Wigner fermionization [29,30]. A little algebra will
yield that the three-site XZX + YZY interaction acts here as a
renormalization (momentum-dependent) of the magnetic field
h in the Hamiltonian Eq. (27).

The manipulation of h will affect finite P
y

2 in an indirect
way, as is displayed in Fig. 9. We find that P

y

2 is also induced
by h, regardless of their phases. It has an opposite sign to P

y

1
and almost complements its increase. Both P

y

1 and P
y

2 scale
linearly with small h, indicating that they are triggered by the
external magnetic field. This is in contrast to some models with
two-spin interactions only, where the electric polarization can
emerge only for finite electric field. The compass model with
three-site interactions verifies the proposal in Ref. [58], and
indeed exhibits a nontrivial magnetism-driven ferroelectricity.
We can observe in Fig. 10 that the ferroelectricity phenomena
are quite stable for moderate temperature. An essential feature
of the ferroelectric behavior is that the electric polarization can
be reversed by the reversal of the magnetic field, as is verified
in Fig. 11.

VII. SUMMARY AND CONCLUSIONS

In this paper we have considered the 1D generalized
compass model Eq. (4) which interpolates between the Ising
model (at θ = 0) and the maximally frustrated quantum com-
pass model (at θ = π/2) and includes three-site XZY-YZX
interactions. We also investigated this model in the presence
of external magnetic field. Although the system is quantum and
highly frustrated, we have shown that exact solutions of the
corresponding model may be obtained through Jordan-Wigner
transformation.

The XZY-YZX type of three-site interactions break both
the parity symmetry and the time-reversal symmetry, and then
drastically modify the energy spectra, leading to two kinds of
Tomonaga-Luttinger liquids. We find that moderate three-site
XZY-YZX interactions will lead to a chiral-I state with two
Fermi points in the representation of spinless fermions, and
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large three-site XZY-YZX interactions transform the system
into the four Fermi point spinless fermions. Accordingly,
this modification of the Fermi surface topology follows some
noticeable changes in the central charges, and then affects the
ground state properties, such as nearest-neighbor correlation
functions. We find that the z component of the scalar chirality
operator can well distinguish gapped and gapless phases, and
we also witness an abrupt change from the chiral-I to chiral-II
phase. In both spin-liquid phases, not only is the magnetization
influenced by the magnetic field, but the polarization emerges
even for �E = 0 and is also affected by the magnetic field.

To conclude, we emphasize that the advantage of the
model considered here is its exact solvability that implies
in particular the possibility to calculate accurately various
dynamic quantities. The reported results may serve to test other
approximate techniques used to study more realistic models.
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APPENDIX: CURRENT OPERATOR FOR
THE COMPASS MODEL

For a 1D compass chain, the only conserved quantity is the
energy. We can decompose Eq. (1) into

HGCM(θ ) =
N ′∑
i=1

hi(θ ), (A1)

where

hi(θ ) = Joσ̃2i−1(θ )σ̃2i(θ ) + Jeσ̃2i(−θ )σ̃2i+1(−θ ), (A2)

and σ̃i(θ ) in defined by Eq. (2). A unit cell contains two bonds.
Furthermore, one finds the commutation relations:

[σ̃i(θ ),σ̃j (θ )] = 0, [σ̃i(θ ),σ̃j (−θ )] = −2i sin θσ z
i δij ,

[σ̃i(−θ ),σ̃j (θ )] = 2i sin θσ z
i δij , [σ̃i(−θ ),σ̃j (−θ )] = 0.

(A3)

The energy current Ĵl of a compass chain in the nonequi-
librium steady states is calculated by taking a time derivative
of the energy density and follows from the continuity equa-
tion [59,60]:

dhl

dt
= i[H,hl]

= 2JoJe sin θ
[
σ̃2l(−θ )σ z

2l+1σ̃2l+2(θ )

− σ̃2l−2(−θ )σ z
2l−1σ̃2l(θ )

]
= −(Ĵl+1 − Ĵl) = −divĴl , (A4)

Ĵl = −2JoJe sin θσ̃2l−2(−θ )σ z
2l−1σ̃2l(θ ). (A5)

This energy current operator acts on three adjacent sites and
has the z component of spin-1/2 operators between two odd
sites. It depends on θ in general. For θ = 0, it will present an
XZX type, while it exhibits an XZY type for θ = π/2 [61]. For
simplicity we choose θ = π/2 in this term while still keeping
θ as an arbitrary variable in the compass chain.

Of course the odd choice of operators is artificial and
follows from construction. If one defines,

hl(θ ) = Jeσ̃2l(−θ )σ̃2l+1(−θ ) + Joσ̃2l+1(θ )σ̃2l+2(θ ), (A6)

to replace Eq. (A2), one finds

Ĵl = 2JoJe sin θσ̃2l−1(θ )σ z
2l σ̃2l+1(−θ ). (A7)

The above dependence proves that the “macroscopic” current,
Ĵ = ∑

i Ĵi , will manifest itself in the presence of an effective
field J ∗,

H = HGCM(θ ) − J ∗ ∑
i

Ĵi . (A8)

[1] L. F. Feiner, A. M. Oleś, and J. Zaanen, Phys. Rev.
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(2014).
[43] C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme,

T. F. Havel, and D. G. Cory, Phys. Rev. A 61, 012302 (1999).
[44] X. Peng, J. Zhang, J. Du, and D. Suter, Phys. Rev. Lett. 103,

140501 (2009).
[45] J. K. Pachos and M. B. Plenio, Phys. Rev. Lett. 93, 056402

(2004).
[46] M. Suzuki, Prog. Theor. Phys. 46, 1337 (1971); Phys. Lett. 34,

338 (1971).
[47] L. Cincio, J. Dziarmaga, and A. M. Oleś, Phys. Rev. B 82,
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