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Exploring metamagnetism of single crystalline EuNiGe3 by neutron scattering
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We present here a neutron diffraction study, both in zero field and as a function of magnetic field, of the
magnetic structure of the tetragonal intermetallic EuNiGe3 on a single crystalline sample. This material is known
to undergo a cascade of transitions, first at 13.2 K towards an incommensurate modulated magnetic structure,
then at 10.5 K to an antiferromagnetic structure. We show here that the low-temperature phase presents a spiral
moment arrangement with wave vector k = ( 1

4 ,δ,0). For a magnetic field applied along the tetragonal c axis,
the square root of the scattering intensity of the (1 0 1) reflection matches very well the complex metamagnetic
behavior of the magnetization along c measured previously. For the magnetic field applied along the b axis, two
magnetic transitions are observed below the transition to a fully polarized state.
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I. INTRODUCTION

Neutron diffraction on Eu materials is inherently difficult
because of the very strong absorption cross section of natural
europium. Nevertheless, magnetic structure determinations
were carried out a few decades ago in single crystalline EuAs3

[1,2] and in EuCo2P2 [3]. Interestingly, antiferromagnetic
EuAs3 presents a feature which was to be found in many
Eu intermetallics studied later: a first transition to a modulated
incommensurate phase, extending only over a few K, followed
by a transition to an equal moment phase [4–9]. But most of
the information about the magnetic structure of Eu compounds
has been quite often inferred only through single crystal
magnetization measurements or Mössbauer spectroscopy on
the isotope 151Eu, like in EuPdSb [4]. In the last few
years, however, neutron diffraction with thermal neutrons was
successfully employed to unravel the magnetic structure of
some intermetallic divalent Eu materials [10–13]. Of the two
valences Eu3+ and Eu2+, only the divalent, with a half-filled
4f shell with L = 0 and S = 7/2, has an intrinsic magnetic
moment of 7μB. Due to its zero orbital moment in the ground
spin-orbit state, the crystalline anisotropy of Eu2+ vanishes at
first order, but it is nonzero at second order, due to mixing with
excited states by the crystal field interaction. Despite this weak
anisotropy, a variety of structures was found, ranging from
ferromagnetic in EuFe2P2 [10] and Eu4PdMg [12], collinear
antiferromagnetic (AF) in EuCu2Sb2 [13] to incommensurate
spiral in EuCo2P2 [3] and EuCu2Ge2 [11]. This indicates
that the interionic interactions are quite complex in Eu
intermetallics, most probably due to the oscillating character of
the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange and
also to the relative importance of the dipole-dipole interactions
between rather large Eu2+ moments of 7μB. As a result, the
deduction of their magnetic structure from solely macroscopic
measurements is often impossible.

In this work, we present a neutron diffraction study of
single crystalline EuNiGe3. EuNiGe3 was the subject of two
previous studies, on a polycrystalline sample [14] and on a
single crystal [15]. It crystallizes in a body-centered tetragonal
structure (space group I4mm) and presents two magnetic

transitions, at TN1 = 13.2 K from the paramagnetic phase
to an incommensurate moment modulated phase, then at
TN2 = 10.5 K to an equal moment AF phase. The single crystal
magnetization curve with field applied along the tetragonal c

axis shows a particularly complex behavior at 1.8 K [15], with
two spin-flop-like magnetization jumps at 2 and 3 T followed
by a saturation in the field induced ferromagnetic phase at 4 T
(see Fig. 1). When the field is applied along the a (b) axis,
the magnetization curve shows no such anomaly and reaches
saturation at 6 T. However, a small deviation from linearity is
observed for this direction at low field, as shown in the insert
of Fig. 1, and the linear behavior is recovered above 1.3 T.

Assuming simple AF structures with propagation vectors
k = (0 0 1) or ( 1

2
1
2 0), it was not possible to reproduce the

magnetization curve along c using a molecular field model
involving two nearest neighbor exchange constants (along
a and along c), the dipolar field, and a weak crystal field
interaction [15]. Clearly, an experimental determination of the
zero-field magnetic structure is needed in order to go further in
the understanding of EuNiGe3. This was the original aim of the
present work, but while exploring the in-field metamagnetic
behavior of EuNiGe3, we have found a number of magnetic
phase transitions which were not detected by magnetization
measurements. Here we give a detailed description of these
transitions with the field oriented along the b (a) and c

directions and present a molecular field model with four
exchange integrals which partially succeeds in reproducing
both the zero-field structure and the magnetization curves.

II. EXPERIMENTAL DETAILS

Details of the preparation method of the EuNiGe3 single
crystals, grown with In flux, can be found in Ref. [15]. For the
neutron diffraction study, a 3 × 3.7 × 1 mm3 single crystal
was mounted with the c axis or the b axis vertical in the
variable temperature insert of a 7.5 T split-coil cryomagnet.
Experiments were performed on the neutron diffractometer
Super-6T2 (Orphée-LLB) [16]. Scattering intensity maps
were measured at λ = 0.902 Å (Cu monochromator and
Er filter) by rotating the sample around the vertical axis
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FIG. 1. Magnetization curves at 1.8 K in EuNiGe3 with the field
along b and c taken from Ref. [15]. The inset shows the low field part
of the curve for H‖ b, where a dip is clearly seen.

with 0.1◦ steps and recording the diffraction patterns with
a position-sensitive detector (PSD). This allowed one to detect
all transformations of the magnetic structure under magnetic
field by direct inspection of the three-dimensional crystal
reciprocal space obtained by transformation of the measured
sets of PSD images. For quantitative refinements and studies of
the magnetic field dependence, a single (lifting) counter mode
was used. The results were analyzed using the Cambridge
Crystallography Subroutine Library (CCSL) [17].

Prior to magnetic structure studies, the nuclear structure was
verified in zero field at 15 K. A total of 213 reflections were
measured and 94 unique ones (74 > 3σ ) were obtained by
merging equivalents, using space group I4mm. Since Eu is a
strongly absorbing neutron material, the absorption corrections
are of major importance in the merging procedure. They were
made using the ABSMSF program of the CCSL which properly
accounts for the crystal shape. The absorption correction
was found very important, yielding an absorption coefficient
μ = 1.05 mm−1, which resulted in up to 80% reduction in the
intensity of some measured reflections. Absorption correction
yielded an improvement of the internal factors of nuclear
reflections from Rint = 0.32 (without corrections) to Rint =
0.07 and it was applied to all measured magnetic datasets.
The nuclear structure parameters obtained in the refinement
were found in agreement with those published earlier [15],
with lattice parameters a = b = 4.34(5) Å and c = 9.90(5) Å.
Extinction corrections were applied using the EXTCAL program
of the CCSL, which takes into account the crystal shape.
The extinction parameters and the scale factor obtained in
the refinement of the nuclear structure were used as input in
further magnetic structure refinements.

III. THE MAGNETIC STRUCTURE IN ZERO FIELD

The zero-field magnetic structure of EuNiGe3 was first
studied using a PSD. Figure 2 shows a bidimensional (h k 0)
intensity cut in the reciprocal space at 1.6 K. Apart from
the nuclear reflections being located at integer positions,
there are additional satellites which can be assigned to
an antiferromagnetic contribution. Eight magnetic satellites

FIG. 2. Nuclear reflections and magnetic satellites at 1.6 K in
EuNiGe3 in the (h k 0) plane. Satellites observed around (1 1 0) can
be indexed with a k = ( 1

4 δ 0) propagation vector.

can be distinguished around (1 1 0) and indexed using a
k = (± 1

4 ± δ 0) propagation vector, with δ = 0.05, and its
tetragonal permutations. In the following, the four possible
k domains are labeled k1 = ±( 1

4 δ 0), k2 = ±( 1
4 −δ 0),

k3 = ±(δ 1
4 0), and k4 = ±(−δ 1

4 0). These satellites form
a star of the I4mm space group and correspond to a rather
complex antiferromagnetic structure with a very large unit cell,
whose details are discussed below. For instance, k1 = 1

4 δ 0)
corresponds to a magnetic cell four times larger than the
crystallographic one along a and 20 times along b. Actually,
it is not possible to decide whether k is incommensurate with
the lattice spacing or not, although generally, such a small δ

value points to an incommensurate structure.
The temperature evolution of k3 = (δ 1

4 0) magnetic
reflections were followed to monitor the transitions from
the antiferromagnetic to the paramagnetic state. The value
δ � 0.050(2) remains unchanged up to about 11 K, and
undergoes a small shift to 0.066(2) at 12 K, as clearly seen
in Fig. 3. Figure 4 (top) shows that, up to 12 K, the thermal
variation of the scattering intensity can be well fitted to the
S = 7/2 mean-field function adequate for Eu2+ ions, with a
molecular field constant |λ| � 5.95 T/μB. Such a fit gives
excellent agreement between calculated and experimental
data, with a transition temperature Tt � 12.0 K. Above 11 K,
the (1 + δ 1

4 1) satellite intensity deviates from the mean-field
function, and vanishes above 13.5 K. In this temperature range,
the observed small shift of the δ value corresponds to the
intermediate phase reported in the Mössbauer investigation
[15], which shows an incommensurate modulation of Eu
moments. Therefore, the value δ′ = 0.066(2) does correspond
to an incommensurate modulation, but the weakness of the
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FIG. 3. Position of the magnetic satellite at 5, 10, and 12 K. Inset:
fitted δ value versus temperature. A clear shift is observed above 10 K.

magnetic signal in this phase prevented us from determining
its detailed structure.

IV. THE FIELD VARIATION
OF MAGNETIC STRUCTURE

With the magnetic field applied along c, the behavior of
the magnetization is quite peculiar (see Fig. 1). We monitored
the scattering intensity of the (1 0 1) reflection for H‖c as a
function of the field. This reflection contains both nuclear and
magnetic contributions, the magnetic one being proportional
to the square of the induced magnetization. Figure 4 bottom
shows the field evolution of the square root of the (1 0 1)
magnetic scattered intensity (after subtraction of the nuclear
component) compared with the magnetization data. Very good
agreement between the two probes is observed, with two
well-defined jumps at, respectively, 2 and 3 T, followed by
the spin-flip transition at H � 4 T with the fully saturated
Eu2+ moment of 7μB. The top panel of Fig. 5 shows the
scattering intensity along the ( 1

4 δ 0) direction at 1.6 K for
H = 0, 2, and 2.5 T. In zero field, two well-defined peaks are
observed at δ = ±0.050(2) confirming the splitting along b∗.
At 2 T, the field of the first magnetization jump, a first order
transition occurs with the appearance of two new satellites
with δ∗ = 0.072(2) coexisting with those at δ = 0.050(2).
The new satellites correspond to a smaller magnetic unit cell
in the b∗ direction with a magnetic cell approximately 14
times bigger than the nuclear one. At 2.5 T, the zero-field
δ = 0.050(2) satellites completely vanish. In turn, the δ∗ =
0.072(2) satellites disappear at H = 3 T, corresponding to the
field of the second magnetization jump.

This evolution with the field is best evidenced by plotting
the normalized intensity of the two magnetic reflections
corresponding to the propagation vector ( 1

4 δ 0), with δ = 0.05
and δ∗ = 0.072 [Fig. 5 (bottom)]. The intensity of the δ = 0.05
reflection disappears above 2 T, while that with δ∗ = 0.072
shows up. This one in turn vanishes at the second critical field
of 3 T, above which only ferromagnetic (FM) contributions
remain. Finally, the intensity of (FM) reflections reaches
saturation at 4 T corresponding to the spin-flip field.

FIG. 4. Top: (1 + δ 1
4 1) scattering intensity vs temperature (red

circles) and fit to a (squared) S = 7/2 mean-field law (black line).
Bottom: magnetization at 1.8 K (black line) and square root of the
(1 0 1) magnetic scattered intensity at 1.6 K (red circles) vs the
field applied along c. The magnetic scattered intensity is obtained by
subtracting the zero-field intensity.

With the magnetic field applied along b, we monitored the
scattering intensities corresponding to the k1 = ( 1

4 δ 0) and
k3 = (δ 1

4 0) domains between 2 and 14 K in fields up to 6 T.
Figure 6 (top) presents the evolution of k1 and k3 intensities
at 8 K. Below μ0H = 0.4 T both reflections are observed
with similar intensities as expected from the tetragonal space
group. Above 0.4 T, the intensity of k1 vanishes at the benefit of
k3. This first anomaly corresponds to a spin-flop-like process
selecting the (a,c) magnetic domains in which moments are
orthogonal to the applied magnetic field. Above 2.5 T the
reverse process occurs with the sudden extinction of the
k3 signal at the benefit of k1. Finally, no antiferromagnetic
contribution is observed above 4.3 T, the sample being fully
polarized. The corresponding phase diagram extracted from
neutron diffraction data is presented in Fig. 6 (bottom).
Comparing with the phase diagram for H‖[100] in Ref. [15],
extracted from macroscopic measurements, one sees that the
latter could not catch the change in domain population at
low field. Besides this, the overall agreement is good below
TN2 � 10.5 K. Above TN2, Maurya et al. observed a continuity
of the high field phase. Based on the limited dataset obtained
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FIG. 5. At 1.6 K for H‖c. Top: normalized ( 1
4 δ 0) scans at 0,

2, and 2.5 T. Bottom: ( 1
4 δ 0) normalized scattered intensities vs the

field for δ = 0.05 (open circles) and δ = 0.072 (closed circles).

in this temperature range, it was not possible to refine and
conclude on the microscopic nature of this phase.

V. MAGNETIC STRUCTURES REFINEMENT

For the zero-field and in-field magnetic structure determina-
tion, integrated intensity measurements were performed using
a single counter.

In zero field, and for each k domain, 46 satellites were
collected at 1.6 K, of which about 25 (0 T) were statistically
relevant (I > 3σ ) and used in the refinement. The magnetic
structure was analyzed by using the propagation vector
formalism. Tetragonal symmetry and the highly symmetrical
(0 0 z) Wykoff position occupied by the Eu2+ ion limits
possible magnetic structures to amplitude modulated and
helicoidal ones. First, models of a circular helix with mo-
ments constrained in the planes perpendicular to the highest
symmetry axes (a,b,c) were tested. For all four propagation
vectors the best fit was obtained for the helix envelope with
the major axes of 7.6(3)μB lying in the plane perpendicular
to the largest component of the propagation vector, namely,
the (b,c) plane for k1 and k2, and the (a,c) plane for k3 and
k4. In this case, the moment rotates by φ = 90◦ along the
main component of the propagation vector. The corresponding

FIG. 6. For H‖b. Top: normalized scattered intensity of k1 =
( 1

4 δ 0) and k3 = (δ 1
4 0) satellites vs magnetic field at 8 K. Three

anomalies are observed at 0.4, 2.5, and 4.3 T. Bottom: corresponding
(H,T ) phase diagram. The shaded area corresponds to the transition
observed in Ref. [15] above TN2.

magnetic structure is presented in Fig. 7 (left). The refinement
yielded the following populations of domains in zero field:
k1 = 35(5)%, k2 = 30(1)%, k3 = 15(2)%, and k4 = 20(5)%
with 5.7% < Rw < 18.9%. This is close to the expected
random value of 25% for all domains. Adding “ellipticity”
to the helix (while maintaining a common modulus for the
moment) yields a similar agreement factor. In this case, the
angular increment along k is alternatively φ and π − φ. Thus,
the incremental angle φ cannot be determined from the neutron
data and both the circular and elliptic solutions are valid
candidates.

With a field of 2.5 T along the c axis (i.e., between the two
metamagnetic transitions), for each k vector, 46 satellites were
collected at 1.6 K, of which about 12 were statistically relevant
and used in the refinement. In this case the antiferromagnetic
contribution is well described by a similar circular structure
with reduced ordered magnetic moment of m = 5.5(5)μB.
We note that the associated error bars are bigger, with Rw =
26.9%. This is due to a strong decrease of the antiferromagnetic
signal after the first metamagnetic transition which resulted
in the limited number of observed reflections. Finally, above
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FIG. 7. (a) k1 refined magnetic structure in zero field, with φ =
90◦. Note that other structures allowing for an “elliptical” envelope,
i.e., with φ < 90◦, are also possible. (b) Calculated magnetic structure
from the model with four exchange integrals, dipolar interactions, and
anisotropy described in Sec. VI. The labels 1–4 indices indicate the
spin positions along the a axis, with φ = 65◦.

3 T, a simple ferromagnetic contribution is observed reaching
saturation at 4 T.

With the field along b, integrated intensities of k1 related
reflections were collected at 5 K and 4.5 T. A total of 111 re-
flections were collected, of which 12 were statistically relevant
(I > 3σ ) and used in the refinement. The antiferromagnetic
contribution could not be refined with such a small set of
reflections. However, neutrons are only sensitive to magnetic
contributions orthogonal to the probed Q vector. In our dataset,
the ( 1

4 δ L) reflections are not observed indicating the lack of
an ordered magnetic moment in the orthogonal (a,b) plane.
Therefore, one can describe the ordered moments as being
antiferromagnetically coupled and collinear along the c axis.

VI. MODELING THE MAGNETIC PROPERTIES

A. The mean-field self-consistent calculation

We have searched for a set of exchange integrals that would
reproduce the zero-field magnetic structure and the behavior
of the magnetization, using a self-consistent calculation of the
moment arrangement in the presence of exchange and dipole-
dipole interactions among Eu2+ ions. Since this calculation
cannot involve a large number of magnetic sites, it cannot
integrate the δ components of the propagation vector evidenced
by neutron diffraction in both zero-field and in-field structures.
Based on the neutron diffraction results, we chose a propa-
gation vector k = ( 1

4 0 0) and hence a magnetic lattice cell
with dimensions (4a,a,c) containing four ions with z = 0 and
four ions with z = 1

2 , i.e., eight ions. The calculated structure
consists of ferromagnetic (b,c) planes. The calculation does
not consider the twinning when computing the magnetization.
Consequently, it cannot be expected to reproduce all of the
experimental features and must be considered as approximate.

Ja

J2a

J2
Jc

b
a

c

FIG. 8. Definitions of the four exchange integrals involved in
the mean-field calculations of the magnetic structure of EuNiGe3.
The two simple tetragonal sublattices are sketched by blue and red
hexagons.

We consider four isotropic exchange integrals (see Fig. 8).
Three of them are the classical integrals introduced in the
study of body-centered tetragonal magnetic lattices [18]:
the intrasublattice first neighbor Ja (bond 4.3 Å) and third
neighbor J2 (bond 9.9 Å), and the intersublattice Jc (bond
5.8 Å). The sublattices in question are the simple tetragonal
lattice and that obtained by the body-centering translation
with vector ( 1

2
1
2

1
2 ). The second neighbor intrasublattice J2a

integral (bond 8.6 Å) is introduced to comply with the
(1/4 0 0) propagation vector. The fourth neighbor intrasub-
lattice integral linking ions separated by

√
a2 + c2 = 10.8 Å

was not considered as it yields a zero molecular field within
the present spiral structure. The Hamiltonian of the problem
contains an exchange part (a negative integral means an
antiferromagnetic coupling), a dipolar interaction part, and
also an anisotropy, or crystal field, part. The two latter terms are
needed for a realistic description of the system since they are
of the same order of magnitude and their balance determines
the direction of the moments. Each ion is linked by exchange
to its neighbors according to the paths described in Fig. 8, and
a molecular field is calculated for each of the eight ions in
the cell. The infinite range dipolar field acting on each ion is
calculated using an Ewald-type summation method [19]. The
dipolar field has no free parameter; it depends only on the
way the magnetic cell is chosen. An axial anisotropy (crystal
field) term is added with the form Han = DS2

z , where D is a
coefficient with magnitude a few 0.1 K and Sz is the component
along c of the Eu2+ spin. For D < 0, this term favors a moment
alignment along c and for D > 0 a moment arrangement in
the (a,b) plane. The calculation is intended to reproduce not
only the magnetic structure and the magnetization curves,
with the correct spin-flip fields, but also the value of the
Néel temperature TN � 13 K and of the paramagnetic Curie
temperature θp � 4 K [14,15].

We have tried to obtain a zero-field structure like that
shown in Fig. 7(a), which is the closest to the actual structure,
neglecting the small δ component of the propagation vector.
First, one finds that the D coefficient must be taken negative,
otherwise the moments have a strong affinity to lie in the
(a,b) plane. Then, one must take J2 > 0 and J2a < 0 to obtain
ferromagnetic (b,c) planes and alternating moment directions
along a. The other integrals Ja and Jc have no obviously
required sign. Exploring the {Jα} space of exchange integrals
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FIG. 9. Calculated magnetization curves along the three sym-
metry directions for the spiral structure of EuNiGe3 with k =
( 1

4 0 0), using the parameters given in the text. Inset: average of
the magnetizations along a and b simulating the experimental data
with H‖(100) or (010).

with reasonable values, we found that the magnetization jumps
at 2 and 3 T for H‖c cannot be reproduced together. The
parameter set we propose reproduces the spin flop at an
intermediate value 2.5 T and the spin flip at 4 T for H‖c,
the spin flip at 6 T for H‖a or b, and the correct TN and
θp values. It yields a zero-field structure of “elliptic” type,
i.e., the moments lie in the (b,c) plane with an incremental
angle φ = 65◦ both for the ions with z = 0 and z = ( 1

2 , 1
2 , 1

2 )
[see Fig. 7(b)]. Neither the phase shift between the two
spirals nor their absolute position can be ascertained in the
calculation. The parameter set reads Ja = 0.1 K, Jc = 0.1 K,
J2 = 0.7 K, J2a = −0.6 K, and D = −0.25 K. The calculated
magnetization curves are represented in Fig. 9; they are to
be compared with the experimental data in Fig. 1. For H‖a
(orange curve), the magnetization is linear with the field, which
is to be expected since H is perpendicular to the (b,c) plane of
the spiral, inducing a conical moment arrangement. For H‖b
(magenta curve), a dip is observed, which is due to the fact that
the conical structure is not realized, when the field lies in the
plane of the spiral, until a threshold spin-flop field is reached;
here 1.3 T. In the inset of Fig. 9, the red curve is an average of
the magnetizations along a and b, simulating the presence of
domains. It is readily comparable with the data shown in the
inset of Fig. 1, and the calculated spin-flop field of 1.3 T is in
very good agreement with the measured value.

B. Discussion

In the above parameter set, the absolute value of J2a , 0.6 K,
is six times larger than that of Ja , 0.1 K. This may seem
puzzling, since the next-nearest neighbor distance along a is
twice the nearest-neighbor distance. The dominant exchange
in EuNiGe3 is probably the RKKY interaction, which varies
with distance as 1/r3, but which is an oscillating function of r .
Then, one may speculate that a large |J2a|/Ja ratio can happen
if the RKKY exchange is close to a node for r = a and is
maximum for r = 2a.

TABLE I. Magnetic characteristics in the EuMX3 series. An
* denotes that the spiral plane is deduced from single crystal
magnetization data, not from neutron diffraction measurements.

Material Spiral plane No. of transitions

EuNiGe3 (this work) (b,c),(a,c) 2
EuPtGe3 [6] (a,b)∗ 1
EuRhGe3 [9] (a,b)∗ 1
EuIrGe3 [9] (b,c),(a,c)∗ 2
EuPtSi3 [5] (b,c),(a,c)∗ 2
EuRhSi3 [8] No spiral 2
EuIrSi3 [8] ? (No single crystal) 2

The Dzyaloshinski-Moriya (DM) exchange [20] was not
included in the calculation, although the nearest-neighbor
ion pairs allow for a nonzero DM vector, their midpoint
not being an inversion center. The introduction of the DM
exchange could induce the observed incommensurability, but
it is likely that it cannot account for another puzzling feature
of the magnetic structure of EuNiGe3: the symmetry breaking
between the a and b axes. Indeed, the zero-field propagation
vector, for instance k1 = ( 1

4 δ 0), is asymmetric with respect
to a and b. At present, we have no explanation as to the source
of this asymmetry in a tetragonal compound.

Among Eu intermetallics of the type EuMX3, where M is
a d metal and X is Ge or Si, EuNiGe3 is the only one where
the magnetic structure, of spiral type, has been determined. We
think that the germanides EuRhGe3,EuIrGe3,EuPtGe3 and the
silicide EuPtSi3 [5,6,9], which show a low field dip in their
magnetization curves, should also present a spiral magnetic
structure. It is of interest to gather the information about the
number of magnetic transitions and the magnetic structure
of the low-temperature phase in the EuMX3 intermetallics
(putative, except for EuNiGe3), as shown in Table I. It comes
out that all the studied EuMX3 materials present a spiral
structure, except EuRhSi3, the situation in EuIrSi3 being
unknown since no single crystal could be grown. There seems
to be a correlation between the number of transitions and
the plane of the spiral structure: one observes one transition
if the spiral lies in the (a,b) plane, and two transitions if
the spiral lies in the (b,c) or (a,c) plane, or if there is no
spiral. In all the compounds, the intermediate phase between
the two transitions is an incommensurate modulated phase,
probably collinear, as determined by Mössbauer spectroscopy.
One can conjecture that a spiral lying in the (a,b) plane is
more stable than a spiral in the (b,c) or (a,c) planes, which
breaks the tetragonal symmetry, as mentioned above. In the
latter case, the transition from paramagnetism would therefore
occur first towards the intermediate phase, then to the spiral
phase.

VII. CONCLUSION

We have studied the magnetic order in EuNiGe3 versus
temperature and magnetic field by single crystal neutron
diffraction. Despite the strong Eu absorption and a limited
dataset, the complete (B,T ) phase diagram in the low-
temperature phase was extracted. The zero-field magnetic
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structure was found to be an equal moment helicoidal phase,
with an incommensurate wave vector k = ( 1

4 δ 0), with
δ � 0.05. Applying the field along the tetragonal axis, we
found the peculiar behavior that δ changes from 0.05 to 0.072
at 2 T, where a first magnetization jump occurs, and vanishes
at 3 T, where the second magnetization jump takes place. All
the structures were refined with good accuracy.

These results are in perfect agreement with previous macro-
scopic measurements (magnetization and magnetoresistivity).
The local information extracted from neutron diffraction
allowed us to identify an additional transition under magnetic
field. Most of these features (except the small incommensurate
component of the propagation vector) were well reproduced
by a self-consistent mean-field calculation.
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