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Ground-state candidate for the classical dipolar kagome Ising antiferromagnet
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(Received 3 December 2015; revised manuscript received 16 May 2016; published 9 June 2016)

We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising
antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the
limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature
regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and
is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making
it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.
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I. INTRODUCTION

Dipolar long-range interactions can often lead to uncon-
ventional arrangements of magnetic moments, particularly
when their interplay with the spatial distribution of these
moments gives rise to frustration. One typical example can
be found in spin ice pyrochlores, such as Ho2Ti2O7 [1]
and Dy2Ti2O7 [2], where the observed icelike physics has
a deep dipolar root [3]. Artificial realizations that mimic
the frustration-induced effects encountered in such condensed
matter compounds have recently attracted much interest and
have generally taken the form of lithographically patterned
arrays of magnetic nanoislands, bearing the name of artificial
spin ices [4,5]. The magnetostatic framework of these arrays,
the almost infinite freedom in design, and the possibility to
locally probe each magnetic component have enabled the
exploration of a wide range of intriguing phenomena over
the past few years [6,7].

Several artificial frustrated systems have been studied, with
a particular attention given to square and kagome geometries
with in-plane magnetized elements. Nevertheless, another
type of kagome network has been recently fabricated [8,9],
with magnetic moments pointing perpendicular to the lattice
plane. This so-called kagome Ising system presents only
antiferromagnetic pairwise couplings, contrary to its in-plane
counterpart, the kagome spin ice, which displays a mixture
of ferro- and antiferromagnetic interactions, depending on the
relative orientation of the considered pair of spins (see Fig. 1).
If governed solely by nearest-neighbor spin couplings, these
two kagome spin networks show identical thermodynamic
behavior. More specifically, they both present a crossover
from the paramagnetic phase into a spin ice manifold,
where each triangle respects the so-called kagome ice rules,
requiring the existence of a minority spin per triangle. This
local constraint minimizes nearest-neighbor interactions
and, within this short-range interaction picture, yields a
macroscopically degenerated ground-state manifold [10,11]
characterized by a cooperative paramagnetic regime [12] and
exponentially decaying pairwise spin correlations. However,
dipolar long-range contributions lift this degeneracy and
determine distinctive low-temperature behavior for the two
kagome networks, each of them having its own story to
tell [9]. Otherwise said, the longer range couplings enrich the
palette of unconventional magnetic phases that can potentially
be achieved within the framework of artificial spin ices and

a simple change in the spin orientation can yield completely
new spin textures, even when the lattice topology is preserved.
However, while the thermodynamic features of kagome spin
ice have been thoroughly investigated numerically [13,14]
and its phase space has been intensively explored experimen-
tally [15–22], the low-temperature properties of the dipolar
kagome Ising antiferromagnet remain mostly unaddressed,
both theoretically and experimentally, and a main challenge
is to study the potential formation of long-range spin order.

By employing Monte Carlo simulations, we have explored
the at-equilibrium thermodynamic features of this spin model,
particularly in the low-temperature regime. Although our
Metropolis Monte Carlo approach [23] does not manage to
simulate the full recovery of the magnetic degrees of freedom,
we believe that this system ultimately achieves long-range
spin order and we provide a candidate for its dipolar
long-range ground state. Some studies have been previously
performed on the kagome Ising antiferromagnet considering
first, second, and even third order spin couplings [24–27], but,
to the best of our knowledge, this state has not been reported
before. Furthermore, it also proves to be fully compatible
with the thermodynamic features sampled so far, making it
a very likely choice for the lowest-energy state of the dipolar
kagome Ising antiferromagnet.

In addition to the description based on the spin degrees
of freedom, we have also employed the magnetic charge
picture, which generally consists of replacing each spin with
a pair of opposite, classical magnetic charges [28]. For the
case of kagome spin ice, all spins lie in the network’s plane
and, since each spin is the connection point between two
neighboring kagome triangles, it contributes with a positive
unitary magnetic charge in one triangle and a negative unitary
magnetic charge in the other. Furthermore, individual charge
contributions coming from any three spins that share the same
kagome triangle can be summed up at the vertex sites, thus
ultimately yielding an effective hexagonal array of vertex
magnetic charges. Since the Ising spins can be written as the
product between a ±1 scalar value (σu) and a vector (�eu) that
defines the spin direction along the bisectors of a kagome
triangle, �Su = σu · �eu, the values of each vertex charge can be
expressed as a sum of the Ising states of the spins located at
the corners of its corresponding triangle:

Q� =
∑

u∈�

σu, Q∇ = −
∑

u∈∇
σu, (1)
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FIG. 1. The kagome lattice is a triangular network of corner-
sharing triangles. Two particular arrays have been fabricated so far
in the framework of artificial spin ice: the kagome spin ice, with the
Ising-like spins lying in the network plane, and the kagome Ising,
with spins pointing along the vertical axis.

where Q� and Q∇ represent the charge values for a �-shaped
and ∇-shaped triangle, respectively, and the minus sign in the
latter expression ensures global charge neutrality. Although
less intuitive, vertex charge states can also be defined for the
kagome Ising network as well by following this convention (in
that case, �eu = �ez for every lattice site).

This effective charge description has proven to be partic-
ularly useful in the case of dipolar kagome spin ice, which
presents a two-stage ordering process [13,14], passing through
a so-called spin ice 2 phase before achieving long-range
spin order. This intermediate state is characterized by the
coexistence of spin order and disorder [29,30] and is also
regarded as an algebraic spin liquid that sits upon an emergent
magnetic charge crystal [13,14]. Furthermore, this charge
framework has been successfully employed to experimentally
highlight the differences in the behavior of the two dipolar
kagome networks [9,17].

The remainder of this paper is organized into four main
sections. We shall first present the model employed along with
the parameters of our Monte Carlo simulations. Afterwards,
the candidate state will be described using both the spin
and effective magnetic charge pictures. A specific section is
then dedicated to the properties of this ground-state candidate
and its compatibility with the at-equilibrium thermodynamics
sampled so far. Furthermore, a discussion will follow, focusing
on some of the intriguing features that this state displays.
Lastly, conclusions are provided along with potential routes
for future investigations.

II. THE MODEL AND THE SIMULATIONS

We have performed Monte Carlo simulations for kagome
Ising networks with L × L × 3 lattice sites (L ranging from
12 to 36) using the dipolar spin ice Hamiltonian [3]. Given
the Ising nature of the spins and the fact that they all share the
same quantization axis ( �ez), the Hamiltonian can be brought
to a more compact, scalar form:

H = J0

∑

〈u<v〉
σuσv + D

∑

(u<v)

σuσv

r3
uv

, (2)

where σu and σv represent the Ising states (�Su = σu · �ez and
σu = ±1), ruv stands for their relative position, D is the dipolar
constant, and J0 is an additional coupling that corrects the
interaction between nearest neighbors, should it deviate from

the dipolar approximation. More specifically, in the case of ar-
tificial spin ices, the finite size of the elements can slightly alter
the Ising nature of the nanoislands, while proximity effects
can result in deviations from the point-dipole approximation.
Nevertheless, using micromagnetic simulations, these effects
have been reported to significantly affect only nearest-neighbor
couplings, and can actually be accounted for by the addition
of a nearest-neighbor exchange-like term [17]. Following
a similar approach, we noticed that there is only a slight
deviation for nearest neighbors in the case of our previously
studied artificial kagome Ising samples [9], yielding J0

∼=
(1/2)Deff , where Deff = D/r3

NN . This allows us to define the
effective nearest-neighbor coupling as JNN = J0 + D/r3

NN =
(3/2)(D/r3

NN). Periodic boundary conditions have been imple-
mented and the pairwise couplings are summed up within a
maximum radius disk such that a spin does not interact with
one of its images [31]. Starting from a paramagnetic regime
(T/JNN = 100), the temperature is gradually dropped down. A
Metropolis single-spin-flip algorithm has been employed and,
for each temperature value, we used 104 modified Monte Carlo
steps (MMCS) for thermalization followed by 104 MMCS
for sampling decorrelated spin configurations and computing
relevant thermodynamic quantities (see note [32] for more
details on MMCS).

After the system reaches the spin ice phase and all triangles
respect the kagome ice rule, longer range contributions
further correlate the system. The single-spin-flip dynamics still
manages to ergodically map the phase space down to a deep
spin ice temperature, but it ultimately suffers from a critical
slowing down effect for T/JNN

∼= 0.03, at a point where the
system seems to be experiencing a phase transition. A similar
phenomenon occurs for dipolar kagome spin ice at the onset
of the spin ice 2 phase, but this algorithmic inconvenience
can be overcome by including collective spin flips [33] in
the form of closed spin loops [13,14,34]. These loop updates
ensure that the kagome ice rules are not violated while they
also preserve an already-established antiferromagnetic charge
order. The former argument has motivated us to apply this
collective spin dynamics to the kagome Ising system as well,
where the loops become alternating, closed chains of spins.
While this addition enhances the exploration of the warm
spin ice regime, these collective spin flips are increasingly
rejected at lower temperatures and this particular dynamics
ultimately freezes at roughly the same point as the single spin
flips do. Nevertheless, the thermodynamic behavior sampled
so far proves to be useful and, with the help of a geometrical
construction, ordering tendencies can be revealed, in direct
space, at the lowest temperatures. These have ultimately led us
to the ground-state candidate that we propose, a configuration
to which we shall refer to as the 7-shaped phase.

III. THE GROUND-STATE CANDIDATE

Our candidate is a rectangular crystal of a 12-spin magnetic
unit cell, commensurable with the underlying triangular Bra-
vais lattice, as reproduced in Fig. 2(a). Although there are many
different ways in which the 12-spin magnetic unit cell can be
defined, we have opted here for the one revealed by the so-
called arrow picture, which consists of drawing an arrow from
all spin-up states to all their nearest-neighboring spin-down
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FIG. 2. The 7-shaped phase—a candidate for the ground state of the dipolar kagome Ising network. (a) The spin configuration is a crystal
of 7-shaped unit cells with a rectangular basis ( �A1, �A2), which can be made commensurable with the Bravais triangular basis ( �a1, �a2) of the
original kagome network. Each unit cell contains (a) 12 spins, represented here by red and blue dots corresponding to the up and down states
respectively, and (b) 8 vertex magnetic charges, represented by magenta and cyan dots for the +1 and −1 states, respectively. (c) The arrow
picture representation for this configuration reveals the 7-shaped unit cells, which are in turn made out of alternating sequences of spins that
define the perimeters of trapezoidal shapes with different orientations.

states. This geometrical construction maps the local stray field
lines between nearest-neighboring spins in a magnetostatic
framework and can highlight magnetic moment organizations
that are energetically favorable locally. By applying it to
configurations sampled by our Monte Carlo simulations in
the low-temperature regime of the dipolar kagome Ising
antiferromagnet, a tessellation of trapezoidal shapes can be
revealed, where each trapezoid’s perimeter is a chain of
alternating up and down nearest-neighboring spin states [see
Fig. 2(c)]. The 7-shaped unit cells are then formed by an ap-
propriate organization of four such trapezoidal shapes. Given
the rotational and time-reversal symmetries of these 7-shaped
unit cells, the candidate configuration is sixfold degenerated.

If we now consider the effective magnetic charge
description, each unit cell contains 8 vertex magnetic charges,
as can be seen in Fig. 2(b). However, there is an equal
amount of positive and negative unitary charges per unit
cell, thus making the latter charge neutral. On a network
scale, these charges ultimately organize into an alternating
sequence of positively and negatively charged zigzag-like
stripes [see Fig. 2(b)], which are, in fact, aligned with one of
the rectangular crystal vectors, while alternating in sign along
the other. This is in sharp contrast with the antiferromagnetic
charge order specific to the low-temperature regime of dipolar

kagome spin ice and actually indicates a preference for a
ferromagnetic charge arrangement.

With the spin and charge descriptions of this candidate
state at hand, we will now turn to verifying its viability as
a ground-state configuration. This can be primarily done by
checking its compatibility with the thermodynamic behavior
sampled so far.

IV. COMPATIBILITY OF THE 7-SHAPED PHASE

First, for this candidate to truly be a ground state, its energy
has to be the lowest possible within the dipolar framework. In
fact, the energy/spin of this configuration is e/JNN = −0.6744
and it is lower than all the other values sampled throughout
the entire simulation [see Fig. 3(a)]. Notice the relatively
small difference between this value and the energy of the
ground state of a kagome Ising antiferromagnet governed
only by nearest-neighbor couplings, which, for the current
parameters, would be eSR/JNN = −2/3. While this slight
difference might conceal the importance of longer range
coupling terms, their impact is highlighted by the temperature
evolutions of the network averages of the pairwise spin
correlators, Cαj (T ) = 〈σασj 〉(T ), which can also serve as test
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FIG. 3. The temperature dependencies of the average values of different thermodynamic quantities computed for a dipolar kagome Ising
network with 36 × 36 × 3 lattice sites within the simulated temperature window, prior to the critical slowing down of the single-spin-flip
dynamics. In all three cases, the error bars correspond to the standard deviation of the distribution of values sampled for each Monte Carlo
temperature and the colored dots highlight the values extracted from the candidate state. (a) After minimizing nearest-neighbor interactions, the
average energy continues to decrease steadily, reaching a value of 〈eLT /JNN〉 = −0.6702 for the lowest simulated temperature, slightly higher
than the 7-shaped phase one, e7B/JNN = −0.6744. (b) The evolution of the first seven pairwise spin correlators, as defined in the inset. All plots
aim for the values computed from the 7-shaped phase, thus reflecting the system’s apparent desire to reach it. With the exception of Cατ , all
values tend to ±1/3. In fact, the αβ,αγ , and αη pairs form kagome networks that fully respect the kagome ice rule. (c) The nearest-neighbor
charge correlator displays a monotonic behavior, continuously increasing and apparently aiming for the value of +1/3, compatible once again
with the proposed configuration.

agents for the compatibility of the 7-shaped state with the
sampled thermodynamic behavior.

The development of the first seven pairwise spin correlators,
as defined by Wills et al. [27], is given in Fig. 3(b), along with
the values extracted from our ground-state candidate. Notice
how the latter play the role of target values for the evolution of
the former, thus emphasizing the compatibility of the 7-shaped
state with the extrapolations of the behavior sampled so far.
The same feature can be observed if the charge description
is now considered and the nearest-neighbor charge correlator,
QiQi+1, is computed. As previously reported [9], the kagome
Ising charge correlator becomes positive deep within the spin
ice phase and appears to evolve towards the value of +1/3
[see Fig. 3(c)]. This would imply that, on average, each vertex
charge is surrounded by two nearest neighbors of the same
sign and one with the opposite. This is exactly the case
in the 7-shaped phase, where each local charge correlator
is equal to +1/3, given the formation of winding charged
stripes.

In addition, snapshots sampled in heat-bath conditions
at low temperatures contain patches of the candidate con-
figuration. In fact, the arrow picture unveils a tessellation
of trapezoidal shapes which seem to struggle to align
with the already-established 7-shaped clusters. The pres-
ence and distribution of these domains can be quanti-
fied for each temperature by computing the spin structure
factor, i.e., the Fourier transform of the spin correlation

function:

S(�k) =
∑

(u,v)

〈σuσv〉 exp[−i�ruv
�k], (3)

where σu and σv stand for lattice Ising spins, ruv is their relative
position in direct space, and �k is a vector of the reciprocal
space.

Figure 4 presents the temperature plots of the specific heat
and the entropy of the dipolar kagome Ising network along
with typical spin structure factor maps for each regime. As the
system cools and the spins correlate, the diffuse background of
the structure factor gradually disappears and Bragg peaks start
to develop around certain 	 and M points. In addition, there
are some faint peaks forming along the 	-K lines, at 3/4 of
the distance from the center of the Brillouin zones. In fact, this
entire behavior is compatible with the 7-shaped phase (see the
maps of Fig. 4). Its spin structure factor selectively displays
Bragg peaks for certain 	 and M points, as well as along some
	-K lines, at 3/4 of the distance. These features can be some-
what easily understood by referring to the magnetic charge
stripe organization. These stripes repeat themselves every two
lattice parameters along the �a2 direction and, along a stripe’s
direction, display a zigzag periodicity defined by �A1, a typical
	-K vector (see Fig. 2). However, given the sixfold degeneracy,
all possible domain orientations are present at the last-
sampling temperature and the structure factor map is a linear
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FIG. 4. (a) The specific heat and the entropy of a dipolar kagome Ising antiferromagnet with 36 × 36 × 3 lattice sites, as sampled by a
single-spin-flip dynamics. The sharp increase in the specific heat signals the presence of an apparent phase transition at T/JNN

∼= 0.03, deep
within the spin ice phase. (b)–(e) Typical spin structure factor maps are given for each temperature regime and show how the system evolves
towards (f) the sixfold-averaged map of the 7-shaped phase, a reconstruction of which is provided separately for more clarity. Notice how the
map of the last sampling temperature still displays a diffuse kagome-like structure, typical of a deep spin ice regime, but starts building up the
Bragg peaks specific to the 7-shaped phase. This is due to the presence of relatively large clusters of the candidate configuration at this stage.

combination of the three possibilities. This suggests, yet again,
the compatibility of the candidate ground state with the order-
ing tendencies of the dipolar kagome Ising antiferromagnet.

V. DISCUSSION

Although these examples are necessary but not sufficient
conditions for confirming the validity of this configuration as
the long-range dipolar ground state, the 7-shaped phase has

proven to be fully compatible with the extrapolations of all
thermodynamic quantities sampled so far, thus making it a very
likely candidate. Interestingly, it displays a 6-fold degeneracy,
similar to the ground states of other kagome-based dipolar spin
models [35,36].

As previously mentioned, the 12-spin magnetic unit cell
can be defined in different ways, but the trapezoidal formations
revealed by the arrow picture may prove useful for unraveling
an appropriate spin dynamics that can potentially overcome
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FIG. 5. (a) A low-temperature snapshot (T/JNN
∼= 0.03) from a region of a 36 × 36 × 3 dipolar kagome Ising network showing the

formation of 7-shaped domains with different orientation axes (gray, yellow, and faded yellow areas). The green areas are trapezoids that do
not fit within any of the clusters, while the dark green areas mark defects that do not form preferential trapezoidal structures. Expanding the
clusters or adjusting one to fit a neighbor is clearly beyond the practical use of the single-spin-flip dynamics. However, by interchanging a
pair of opposite spins from its inner hexagon (b), the trapezoid’s orientation can be modified. Notice that, in this example, only two out of the
nine possible scenarios can preserve the initial shape, forming potentially favorable configurations, while other choices can even result in the
creation of kagome-ice-rule-breaking triangles. Therefore, selectively choosing the spin pairs and extending the procedure over larger areas
can potentially result in an efficient cluster dynamics that can enhance the exploration of these low-energy manifolds.

the critical slowing down of single spin flips, which are rather
inefficient for expanding or merging already-formed 7-shaped
clusters. By flipping certain pairs of up and down spins within
the internal hexagon of a trapezoidal formation, the trapezoid’s
orientation can be changed (see Fig. 5), potentially adjusting
it to its environment. However, it is worth noting that one
such update can also lead to the creation of defects or even
ice-rule-breaking configurations, which would be immediately
rejected by the detailed balance condition. Therefore, this
procedure might have to be applied repeatedly over numerous
trapezoids or even selectively to several at a time, in the form
of a collective spin dynamics [33].

Another interesting feature of the 7-shaped phase, and
of the dipolar kagome Ising antiferromagnet in general, is
the formation of magnetic charged stripes. These structures,
along with the positive values of the nearest-neighbor charge
correlator, highlight the preference for a ferromagnetic charge
order, in sharp contrast with dipolar kagome spin ice. However,
a perfect ferromagnetic charge crystal is impossible to achieve
at the network scale due to the requirement for global charge
neutrality, thus leaving the magnetostatically favorable option
of forming charged lines that effectively screen each other out
by alternating. This behavior emphasizes the strong impact that
a change in the spin’s geometry can have on the organization
of the emerging charge field.

VI. CONCLUSION

In conclusion, the development of long-range ordered states
in the dipolar kagome Ising antiferromagnet have been studied

via Monte Carlo simulations, in the quest for the ground-state
configuration. In spite of the algorithmic limitations, we
can nevertheless provide a candidate for this unknown state
through the use of a geometrical construction based on a
phenomenological approach. This so-called 7-shaped phase
is a rectangular crystal of a 12-spin magnetic unit cell and
has proven to be fully compatible with all thermodynamic
features observed so far, making it a very likely choice for
the dipolar long-range ground state of the kagome Ising
antiferromagnet.

From a numerical point of view, the challenge still re-
mains to find a collective spin dynamics that can properly
access this state and even characterize the apparent phase
transition. Experimentally, such intriguing spin textures can
potentially be achieved within the framework of artificial
spin ices, particularly using thermally active structures,
which, for certain protocols, can somewhat overcome the
intrinsic slowing down of single spin flips and locally re-
trieve low-energy states that are hardly accessible otherwise
[20].
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