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1Marian Smoluchowski Institute of Physics, Jagiellonian University, prof. S. Łojasiewicza 11, PL-30348 Kraków, Poland
2CNR-SPIN, I-84084 Fisciano (SA), Italy, and Dipartimento di Fisica “E. R. Caianiello”, Universitá di Salerno, I-84084 Fisciano (SA), Italy
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We introduce a one-dimensional (1D) pseudospin model on a ladder where the Ising interactions along
the legs and along the rungs alternate between XiXi+1 and ZiZi+1 for even/odd bond (rung). We include also
the next-nearest-neighbor Ising interactions on plaquettes’ diagonals that alternate in such a way that a model
where only leg interactions are switched on is equivalent to the one when only the diagonal ones are present.
Thus in the absence of rung interactions the model can interpolate between two 1D compass models. The model
possesses local symmetries which are the parities within each 2×2 cell (plaquette) of the ladder. We find that
for different values of the interaction it can realize ground states that differ by the patterns formed by these
local parities. By exact diagonalization we derive detailed phase diagrams for small systems of L = 4, 6, and 8
plaquettes, and use next L = 12 to identify generic phases that appear in larger systems as well. Among them
we find a nematic phase with macroscopic degeneracy when the leg and diagonal interactions are equal and the
rung interactions are larger than a critical value. By performing a perturbative expansion around this phase we
find indeed a very complex competition around the nematic phase which has to do with releasing frustration in
this range of parameters. The nematic phase is similar to the one found in the two-dimensional compass model.
For particular parameters the low-energy sector of the present plaquette model reduces to a 1D compass model
with spins S = 1 which suggests that it realizes peculiar crossovers within the class of compass models. Finally,
we show that the model can realize phases with broken translation invariance which can be either dimerized,
trimerized, etc., or completely disordered and highly entangled in a well identified window of the phase diagram.

DOI: 10.1103/PhysRevB.93.214402

I. INTRODUCTION

Entanglement in spin models is one of the central topics in
modern condensed-matter theory [1]. It is frequently accom-
panied by frustration of exchange interactions [2,3]. However,
frustration alone is not sufficient to generate entanglement
but in many cases it triggers entangled excited or ground
states. Some models without entanglement are exactly solvable
in two dimensions, as for instance the fully frustrated two-
dimensional (2D) Ising model of Villain [4] with the reversed
sign of exchange interaction along every second column with
respect to the unfrustrated square lattice, and its generalization
with periodically distributed frustrated bonds along more
distant columns [5].

In contrast, the 2D compass model [6], with competing
XiXj and ZiZj interactions between S = 1/2 pseudospins
(Xi and Zi are Pauli matrices) along horizontal and vertical
bonds in the square lattice, is quantum and has intrinsic
entanglement which can be reliably treated only by advanced
many-body methods [7,8], including quantum Monte Carlo
[9], multiconfigurational entanglement renormalization ansatz
[10], and tensor networks at finite temperature [11]. The latter
approach allowed us to confirm that long-range order develops
in the 2D quantum compass model at finite temperature,
in analogy to the 2D classical Ising model, without or
with frustrated interactions [4,5]. Moreover, the symmetry
properties of the 2D compass model are responsible for certain
relations between the correlations functions which may be
viewed as hidden order [12,13].

Recent interest in the compass models is motivated by sev-
eral developments: (i) investigating quantum phase transitions

[7,8,10]; (ii) its relation to p + ip superconductivity [14];
(iii) the recently confirmed prospect of topological quantum
computing [15–18]—it could be realized in nanoscopic sys-
tems where perturbing Heisenberg interactions do not destroy
the nematic order in the lowest energy excited states [19] while
the ground state remains ordered also at finite temperature [20];
(iv) order and excitations in case of compass interactions on a
frustrated checkerboard lattice [21]; (v) spin-orbital physics in
transition-metal oxides with active orbital degrees of freedom
[22–39]; (vi) its realization in iridates with strong spin-orbit
coupling [40], leading to the compass interactions on the
triangular lattice [41] or to the exactly solvable Kitaev model
on the honeycomb lattice [42,43], and (vii) its experimental
realizations in optical lattices [44]. In the case of ferromagnetic
(FM) spin-orbital systems entanglement is absent [45] and one
finds here quantum orbital models [46–55]. The 2D compass
model is their generic representation and its interactions stand
for directional orbital interactions between eg or t2g orbitals
on the 2D square or on three-dimensional (3D) cubic lattice.
While both eg and t2g orbital models are distinct, none of them
reduces to the compass model [6,56] which is more universal
and stands for the paradigm of directional interactions in the
orbital physics [46–55].

In spite of their conceptual simplicity, only very few
quantum orbital models are exactly solvable. Among them the
Kitaev model on the honeycomb lattice is the most prominent
one as it describes a spin liquid with only nearest-neighbor
(NN) spin correlations [42,43]. Recently considerable atten-
tion attracted also the one-dimensional (1D) compass model
which is exactly solvable by the mapping on the transverse
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Ising model [57]. As the 2D compass model, it includes only
two spin components and the ground state is highly degenerate.
This triggers various phase transitions when the interactions
are tuned [58]. By investigating the block entanglement
entropy in the four ground-state phases it has been found that
the changes of entanglement signal the second-order rather
than the first-order transitions [59]. Further insights into the
mechanism of quantum phase transitions were obtained by the
matrix product state approach [60,61]. Furthermore, the exact
solution was generalized to the case with a finite transverse
field [62] which destabilizes the orbital-liquid ground state
with macroscopic degeneracy and rather peculiar specific-heat
and polarization behavior of the 1D compass model follows
from highly frustrated interactions [63].

Another exactly solvable case is the compass model on
a ladder with leg and rung interactions satisfying the same
directional pattern as in the 2D model [64]. In contrast,
the 1D plaquette orbital model with a topology of a ladder
introduced recently [65] is not exactly solvable but transforms
to an effective 1D spin model in a magnetic field, with spin
dimers that replace plaquettes and are coupled along the
chain by three-spin interactions. This model is motivated
by the 2D plaquette orbital model [66,67] and has very
interesting properties as the quantum effects are of purely
short-range nature which makes it possible to estimate the
ground-state energy in the thermodynamic limit from the exact
diagonalization of finite clusters.

In the present paper we investigate a generalization of the
1D plaquette compass model [65] with the diagonal pseu-
dospin interactions added within each plaquette. We present
the phase diagrams obtained by exact diagonalization for finite
systems with periodic boundary conditions (PBCs) which
contain generic phases that are expected to appear for any
system size. This model interpolates between two 1D compass
models in the absence of rung interactions. As we show below,
the nematic phase found in this frustrated plaquette orbital
model is similar to the one established for the 2D case [66]
which indicates that the present model realizes the paradigm
of dimensional crossover within the class of compass models.

The paper is organized as follows: in Sec. II we in-
troduce the frustrated Cx-Cz Hamiltonian and derive its
block-diagonal form making use of its local symmetries. Its
symmetry line in the parameter space is explored in Sec. III.
Next we present a competition between different classical
states for a single plaquette in Sec. IV A and show that this
can be used as a guideline to understand the complex quantum
phase diagram for a generic case of L interacting plaquettes,
as shown for L = 4 in Sec. IV B where we also visualize
the configurations found there. In Sec. IV C we present the
phase diagram for L = 4 in the anisotropic case when all
the ZZ interactions are slightly weaker than the XX ones.
Phase diagrams for larger systems with L > 4 are investigated
in Sec. V—in Sec. V A we show the detailed phase diagram for
a ladder consisting of L = 6 plaquettes and its configurations,
while Secs. V B and V C concentrate on the evolution of the
phase diagram with increasing L and identification of generic
phases using large ladders with L = 8 and L = 12. Section VI
is devoted to phase competition in the vicinity of the nematic
phase and we study the behavior of the energy levels when this
phase is approached using perturbative expansion up to fourth

order. Finally, in Sec. VII A we quantify the entanglement of
the effective dimers in symmetry subspaces for the systems
of the sizes L = 4 and L = 6. In Sec. VII B we do the same
for plaquettes in the initial physical basis. The summary and
conclusions are given in Sec. VIII. The paper is supplemented
with one Appendix in which we show the relation between
the spin transformation that we use to block-diagonalize the
present model and the one which was used before for a simpler
Cx-Cz model [65].

II. HAMILONIAN AND ITS SYMMETRIES

We consider the Hamiltonian of the 1D plaquette compass
Cx-Cz model which can be written as follows:

H =
L∑

i=1

{JrungXi,2Xi,3 + Jleg(Xi,1Xi,2 + Xi,3Xi,4)}

+ Jdiag

L∑
i=1

(Xi,1Xi,3 + Xi,2Xi,4)

+
L∑

i=1

{JrungZi,1Zi,4 + Jleg(Zi,1Zi+1,2 + Zi,4Zi+1,3)}

+ Jdiag

L∑
i=1

(Zi,1Zi+1,3 + Zi,4Zi+1,2), (2.1)

where Xi,p and Zi,p are the σx and σ z Pauli matrices for
plaquette i = 1, . . . ,L at site p = 1,2,3,4; see Fig. 1. We
consider all exchange interactions positive, i.e., antiferromag-
netic (AF). A simpler Cx-Cz model considered in Ref. [65]
can be recovered by setting Jrung = Jleg and Jdiag = 0. Here
and below we assume PBCs of the form ZL+1,2 = Z1,2 and
ZL+1,3 = Z1,3.

There are two types of the symmetry operators specific to
the model (2.1), namely

P z
i = Zi,1Zi,2Zi,3Zi,4,

P x
i = Xi,1Xi,4Xi+1,2Xi+1,3. (2.2)

Following the spin transformations derived in Ref. [65] we can
find a block-diagonal form of the Hamiltonian H (2.1) in the
common eigenspace of the symmetry operators. Here we will
use an alternative form of such transformation, as we consider
it more suitable to treat the present frustrated (generalized)
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FIG. 1. Schematic view of the Hamiltonian of the 1D plaquette
compass Cx-Cz model; see Eq. (2.1). Black (red) lines stand for the
XX (ZZ) bonds connecting first and second neighbors. The system
is naturally divided into four-site cells (plaquettes) that are labeled by
i = 1,2, . . . ,L and which carry internal site index p = 1,2,3,4.
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problem, namely

Xi,1 = r�
i ,

Xi,2 = r�
i siτ

x
i,2τ

x
i,3,

Xi,3 = r�
i siτ

x
i,3,

Xi,4 = r�
i siτ

x
i+1,2, (2.3)

and

Zi,1 = s�
i τ

z
i,3,

Zi,2 = s�
i−1τ

z
i,2,

Zi,3 = s�
i−1riτ

z
i,2τ

z
i,3,

Zi,4 = s�
i . (2.4)

Here τ
x/z

i,2/3 are new Pauli operators at plaquette i and sites 2
and 3 within the plaquette and ri and si are the symmetry
operators, namely

ri ≡ P z
i = Zi,1Zi,2Zi,3Zi,4,

si ≡ P x
i = Xi,1Xi,4Xi+1,2Xi+1,3, (2.5)

and r�
i , s�

i are the anticommuting partners of these operators
that can be expressed in terms of initial Pauli operators as

r�
i = Xi,1,

s�
i = Zi,4. (2.6)

These operators will not be needed: r�
i and s�

i do not appear
in the block-diagonal form of the Hamiltonian and ri and
si are good quantum numbers taking the values of ±1. The
transformations of Eqs. (2.3) and (2.4), however complicated
they may be, are reversible. The inverse transformations read

τ x
i,2 = Xi,2Xi,3,

τ x
i,3 = Xi,3Xi,4Xi+1,2Xi+1,3, (2.7)

and

τ z
i,2 = Zi,2Zi−1,4,

τ z
i,3 = Zi,1Zi,4, (2.8)

completed by the relations of Eqs. (2.5) and (2.6). Note that
however ri and si can be alternatively called ri ≡ τ z

i,1 and

si ≡ τ x
i,4, as they commute with the pseudospins τ

x/z

i,2 and τ
x/z

i,3 .
This does not automatically imply that r�

i and s�
i can be indeed

identified with τ x
i,1 and τ z

i,4; we find that r�
i anticommutes with

τ z
i,3 and s�

i with τ x
i,3. The block-diagonal Hamiltonian has the

following form:

H =
L∑

i=1

{
Jrungτ

x
i,2 + Jleg

(
siτ

x
i,2τ

x
i,3 + τ x

i,3τ
x
i+1,2

)}

+ Jdiag

L∑
i=1

(
si + τ x

i,2τ
x
i+1,2

)
τ x
i,3

+
L∑

i=1

{
Jrungτ

z
i,3 + Jleg

(
riτ

z
i,2τ

z
i,3 + τ z

i,3τ
z
i+1,2

)}

+ Jdiag

L∑
i=1

(
1 + riτ

z
i−1,3τ

z
i,3

)
τ z
i,2. (2.9)

From the computational point of view it is worthwhile to
notice that thanks to the symmetries we reduce the number of
quantum degrees of freedom by half, i.e., instead of four initial
Pauli operators {Xi,1,Xi,2,Xi,3,Xi,4} and their anticommuting
partners per plaquette (see Fig. 1), we now have only two of
them, {τ z

i,2,τ
z
i,3}, with anticommuting partners and two good

quantum numbers {ri,si} taking values ±1. Thus instead of
plaquettes with internal site index p = 1,2,3,4 we now deal
with dimers with p = 2,3. From the fundamental point of view
the specific pattern of the {ri,si} Ising spins is an important
characterization of model’s ground state at given values of the
interactions, as we shall see further on.

Note that in the absence of diagonal interaction, i.e., at
Jdiag = 0, the model is equivalent to the 1D XY model in the
external XY field. To see it clearly one can redefine the Pauli
operators to get rid of p = 2,3 indices and gauge away the ri

and si phase from the interaction term (strictly speaking this
can be done completely only for an open chain so we neglect
here the closing 〈L,1〉 bond). To do this we use the following
transformation:

τ x
i,2 = s1s2s3 . . . si−1τ

′x
2i−1,

τ x
i,3 = s1s2s3 . . . siτ

′x
2i , (2.10)

and

τ z
i,2 = r1r2r3 . . . ri−1τ

′z
2i−1,

τ z
i,3 = r1r2r3 . . . riτ

′z
2i (2.11)

to get

H′
OBC(Jdiag = 0) = Jrung

L∑
i=1

(
Riτ

′z
2i + Si−1τ

′x
2i−1

)

+ Jleg

2L−1∑
i=1

(
τ ′z

i τ
′z
i+1 + τ ′x

i τ
′x
i+1

)
, (2.12)

with

Ri ≡ r1r2r3 . . . ri .

Si−1 ≡ s1s2s3 . . . si−1. (2.13)

Here the chain has open boundary conditions (OBCs). Clearly
the interaction part is the XY model that can be solved by
a Jordan-Wigner transformation to get a solution in terms
of free fermions with cosine dispersion. On the other hand,
the linear part makes the model unsolvable as it becomes
nonlocal and of infinite order in the thermodynamic limit after
the transformation. Nevertheless, we find the Cx-Cz model
written in this form simpler than in the original form introduced
in Ref. [65]—see the Appendix for the transformation linking
these two forms.

Another interesting limit is when Jrung = 0 and either
Jleg = 0 or Jdiag = 0. Looking at Fig. 1 one can easily see that
in this limit the system splits into two independent subsystems
and each of them is described by the so-called 1D compass
model [57], with XX and ZZ interactions alternating on
even/odd bonds. Away from these points the two 1D compass
models start to interact in a very complex way.
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III. HIGH-SYMMETRY LINE

Apart from the local parities which are the symmetries of
the model for any choice of its exchange parameters J ’s, there
is a special line in the parameter space, namely

Jleg = Jdiag, (3.1)

where the model has extra symmetries. These are interchanges
of the two spins located at every rung of the ladder in Fig. 1—
it is easy to notice that such an operation done on a single
rung will interchange leg and diagonal bonds within the two
plaquettes adjacent to this rung. When Eq. (3.1) is obeyed,
this has no effect on Hamiltonian (2.1). Such an interchange
for a (2,3) rung can be realized by a spin interchange operator
known from the so-called Kumar model [68], i.e.,

X 2,3
i = 1

2 (1 + �σi,2 · �σi,3), (3.2)

where �σi,p = {Xi,p,Yi,p,Zi,p}. Similarly one can define the
spin interchange operator X 1,4

i for rungs (1,4).
If Eq. (3.1) applies, the Hamiltonian commutes with

X 2,3
i and X 1,4

i for every i, whose spectrum consists of one
eigenvalue λs = −1 for a spin singlet on a rung and three
eigenvalues λt = 1 for a spin triplet. This knowledge can
be used to rewrite the Hamiltonian of Eq. (2.1) at constraint
Eq. (3.1) in the form of Hsym ≡ H(Jleg = Jdiag) given by the
following equation:

Hsym = 2Jrung

L∑
i=1

{(
Sx

i,2

)2 + (
Sz

i,1

)2 − 1
}

+ 4Jleg

L∑
i=1

(
Sx

i,2S
x
i,1 + Sz

i,1S
z
i+1,2

)
, (3.3)

where S
x/z

i,3/4 are the spin S = 1 or S = 0 operators being the
sums of two S = 1/2 spin operators on every rung, i.e.,

Sx
i,2 = 1

2 (Xi,2 + Xi,3), Sz
i,2 = 1

2 (Zi,2 + Zi,3),

Sx
i,1 = 1

2 (Xi,1 + Xi,4), Sz
i,1 = 1

2 (Zi,1 + Zi,4). (3.4)

The spin interchange symmetry present in Hsym guarantees
that the total spin S on every site (i,2) and (i,1) is a good
quantum number. Note that in analogy to the previous section
we mapped a ladder Hamiltonian onto a model of dimerized
chain but here the building blocks are S = 1 or S = 0 spins.
This new Hamiltonian still has the parity symmetries which
are now given by

P z
i = (

2
(
Sz

i,2

)2 − 1
)(

2
(
Sz

i,1

)2 − 1
)
, (3.5)

P x
i = (

2
(
Sx

i,1

)2 − 1
)(

2
(
Sx

i+1,2

)2 − 1
)
, (3.6)

whose meaning is now the parity of number of Sz
i = 0 or

Sx
i = 0 eigenvalues on every (2,1) or (1,2) bond respectively.

Note that Hsym has a degenerate manifold of very sim-
ple eigenstates with energy E0 = −2JrungL and degeneracy
d = 22L. These states we construct by putting on every site
(i,2) either total spin S = 0 or spin S = 1 with Sx

i,2 = 0 and
on every site (i,1) either total spin S = 0 or spin S = 1 with
Sz

i,1 = 0. For the original ladder this means that on every rung
(2,3) we put a spin singlet or a spin triplet with zero projection

on the x spin axis and on every rung (1,4) we put a spin
singlet or a spin triplet with zero projection on the z spin
axis. Equivalently one can take a symmetric or antisymmetric
combination of singlet and triplet and then for every rung
(2,3) we can choose between states |← →〉 and |→ ←〉 and
for every rung (1,4) we can have either |↑ ↓〉 or |↓ ↑〉. In this
way we can produce 22L rung-product states with energy E0.
Such states belong to the ground-state manifold of the model
with the constraint Eq. (3.1) and large enough Jrung, and we
will call them nematic in the following sections.

Finally, we note that by setting Jrung = 0 in Eq. (3.3), we get
a Hamiltonian whose low-energy sector realizes a 1D compass
model with spins S = 1. Combining Eqs. (2.9) and (3.3) at
Jrung = 0 we see that the present plaquette model realizes
a crossover within a class of 1D compass models—setting
Jleg = 1 and increasing Jdiag from 0 to 1 changes spins S = 1/2
to spins S = 1. We note that the S = 1 1D compass model
was studied before [69] and it was shown that for such a
choice of parameter values as here the ground state of the
model is unique, disordered, and gapped. We also found that
it is strongly dimerized, i.e., looking at two-point correlation
functions only the correlations that enter the Hamiltonian (3.3)
are nonvanishing.

IV. POSSIBLE QUANTUM PHASES

A. A single plaquette with frustration

The ground state of the model given by the block-diagonal
Hamiltonian of Eq. (2.9) can occur in different subspaces of
the symmetry operators (i.e., different diagonal blocks) labeled
by the quantum numbers {r1, . . . ,rL,s1, . . . ,sL}, depending on
the values of exchange parameters, {Jrung,Jleg,Jdiag}. This is
a more complex situation than in the case of the unfrustrated
Cx-Cz model where the ground state was found always in the
subspace ri ≡ si ≡ 1 [65]. The difference is a manifestation
of the intrinsic frustration induced by the diagonal bonds.

Let us consider first a single (open) Z plaquette shown in
Fig. 1, described by a four-site Hamiltonian of the form

H� = JrungZ2Z3 + Jleg(Z1Z2 + Z3Z4)

+ Jdiag(Z1Z3 + Z2Z4), (4.1)

where pseudospins at sites i = 1 and i = 4 do not interact as
this bond belongs to the next plaquette; see Fig. 1. We set a
constraint in the parameter space,

Jdiag = 2 − Jleg, (4.2)

and we change Jleg in the interval 0 � Jleg � 2 to interpolate
between the two unfrustrated Cx-Cz models. Equation (4.2)
serves also to determine the units of dimensionless exchange
parameters. Plaquette frustration vanishes when Jdiag = 0, or
in the equivalent limit when Jleg = 0 (but Jdiag = 2)—in both
limits the plaquette spins form an open chain and one recovers
a unit of the unfrustrated Cx-Cz model of Ref. [65]. All
eigenstates are classical and have degeneracy d = 2 (with
equivalent configurations obtained by reversing all spins).

One can easily check that three distinct configurations exist
which become ground states in various regions of parameters:

(i) In the area of Jrung � 2(1 − |1 − Jleg|), the pseudospin
configuration in the ground state is the one that satisfies leg
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FIG. 2. Ground-state phase diagram for a L = 4 plaquette ladder
with PBCs as function of Jleg and Jrung. The exchange on diagonal
bonds Jdiag is set following Eq. (4.2). The ground states (phases) are
shaded in color or white and labeled according to their symmetry
patterns {r1, . . . ,r4; s1, . . . ,s4}, which are indicated together with
their degeneracies d . Red dots are the 1D compass points, blue
dots indicate the simple Cx-Cz states, and green dot is S = 1 1D
compass point. The critical value J cr

rung for a nematic state is indicated
by horizontal line at Jleg = 1.0. The boundaries separating classical
states {ψ0,ψ−1,ψ1} obtained for a single frustrated Z plaquette (4.1)
are indicated by thin dashed lines.

and diagonal bonds but the rung bond is frustrated. This state
is

|ψ0〉 = |↑〉1|↓〉2|↓〉3|↑〉4. (4.3)

(ii) For stronger Jrung > 2(1 − |1 − Jleg|) and Jleg < 1, one
finds the ground state that optimizes only rung and diagonal
bonds, namely

|ψ−1〉 = |↓〉1|↓〉2|↑〉3|↑〉4. (4.4)

(iii) Finally, for Jrung > 2(1 − |1 − Jleg|) and Jleg > 1 we
find the ground state that optimizes only rung and leg bonds
which is

|ψ1〉 = |↑〉1|↓〉2|↑〉3|↓〉4. (4.5)

The states (4.4) and (4.5) are degenerate along the line
Jleg = 1 for Jrung > 2 in Fig. 2. The lines between the |ψ0〉
and |ψ1〉 (|ψ−1〉) states set the stage and different phases of
a ladder consisting of Z and X plaquettes presented in Fig. 1
develop around them, as we show below. We can expect that
in the quantum many-body regime the intracell frustration
discussed here will result in very nontrivial configurations.

B. Phase diagram for a ladder of L = 4 plaquettes

Indeed, in Fig. 2 we find a complex phase diagram found
for a system of L = 4 plaquettes with PBCs, containing ten
different pseudospin configurations. All the phase boundaries

mark the level crossings between the ground states from the
different invariant subspaces of the Hamiltonian (2.1) labeled
by the quantum numbers {ri,si}. The phase diagrams were
obtained in the following way: first the phase space was
discretized by a sufficiently dense lattice of points (typically
100×100 points for 0 � Jleg � 1 and 0 � Jleg � 2.2) and
for every point all the symmetry-nonequivalent subspaces
were searched for the ground state to find the one with
the lowest energy. Then, knowing what the phases are and
how approximately they are located, the bisection algorithm
was used to establish smooth boundaries between them. The
dominant one was found before in the unfrustrated Cx-Cz

model, where ri ≡ si ≡ 1. This phase we call FMu because
{ri} and {si} variables can be seen as Ising spins that are here
in the FM configuration, all pointing up. This phase consists
of two parts, the bottom and the top one. These parts are
separated by a window of other configurations that stem from
the compass points located in the bottom corners of the phase
diagram. This window contains the classical phase boundaries
discussed for a single plaquette in Sec. IV A and ends exactly
at its critical point (Jleg,Jrung) = (1.0,2.0).

First, we note that the diagram is symmetric around the
high-symmetry line Jleg = 1 starting from the S = 1 compass
point at Jrung = 0, which is deeply embedded in the FMu
phase. Going up from this point we increase the values of the
quadrupolar external fields in the high-symmetry Hamiltonian
(3.3) and in the end we leave the FMu phase. Note that the
ground state remains gapped along the whole Jleg = 1 line
as it was at Jrung = 0. Moving left or right from this line we
lower the symmetry of the problem—the S = 1 or S = 0 spins
placed on every rung of the ladder dissociate into pairs of spins
S = 1/2 up to extreme case of compass points with exponential
degeneracy at Jleg = 0 and Jrung = 0. This “quenching” of
pairs of spins S = 1/2 is similar to the formation of J = 0
singlets out of spins S = 1/2 and orbital moments L = 1/2 in
presence of strong spin-orbit coupling [40].

In the narrow shoulders of the window starting from
Jrung = 0 and either Jleg = 0 or Jleg = 2.0 we find two
wedges of the FMd phase being exactly opposite to the FMu
configuration, where all the symmetries have −1 eigenvalues.
This phase is stable for not too large Jrung and away from
the high-symmetry point Jleg = Jdiag = 1.0. Quite surprisingly
tiny bubbles of this phase can be found at the onset of the
phase that we call nematic, exactly at Jleg = Jdiag = 1.0 and
Jrung = J cr

rung � 1.664. Centrally around Jleg = 1 at the very top
and bottom of the window we find a phase which is partially
FMu and FMd, where ri ≡ −1 and si ≡ 1, namely the FMdu
phase. This configuration is doubly degenerate because here
it is permitted to uniformly interchange ri and si quantum
numbers and set ri ≡ 1 and si ≡ −1.

More generally, the main source of degeneracies found in
the phase diagram of Fig. 2 is the invariance of the block
diagonal Hamiltonian of Eq. (2.9) with respect to translations
and to {ri} ↔ {si} interchange. Because of this we are
always allowed to cyclically translate the symmetry quantum
numbers, i.e., going from the subspace {r1, . . . ,rL; s1, . . . ,sL}
to {rL,r1 . . . ,rL−1; sL,s1, . . . ,sL−1} will not affect the energies.
Similarly, we are allowed to translate the initial ladder
of Fig. 1 by a one-lattice spacing along the ladder legs
provided that we also interchange all X operators with the
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Z ones. Thus going from the subspace {r1, . . . ,rL; s1, . . . ,sL}
to {sL,s1,s2 . . . ,sL−1; r1, . . . ,rL} will not affect the energies as
long as the X and Z bonds are equivalent. For simplicity this
operation on the {ri ,si} subspace labels will be called the r ↔ s

interchange, keeping in mind that there is also a translation of
the si quantum numbers involved. Note that a very similar
discussion concerns the analogous {ri,si} quantum numbers in
the 2D compass model; see Refs. [13].

Going further towards the center of the window in the phase
diagram of Fig. 2 we find the last ordered phase which is the
FMd-AF one. In this phase the {ri} quantum numbers are all
equal to −1 as in FMd phase but the si ones are alternating
as in the AF state, hence we use the label AF. This phase
has a degeneracy of d = 8 coming both from translation and
the r ↔ s interchange discussed above. In the similar area of
the phase diagram we find a phase with no particular order in
the eigenvalues of the symmetries which we call QD4, meaning
quantum disorder. There are three other phases of this type,
QD1-QD3, but all of them are stable only in tiny regions of
the phase diagram, i.e., close to quantum critical points where
three different phases meet.

Finally, we find special phases of measure zero in the phase
diagram which have macroscopic degeneracy that cannot be
explained only by the translation and the r ↔ s interchange
symmetry. These are the already mentioned compass points
where we recover the degeneracy of two independent 1D
compass models d = (2L−1)

2
[57], and less expected nematic

phase with degeneracy d = 22L. In the latter phase the
degeneracy comes from the fact that both leg and diagonal
interactions in this phase have zero expectation value and only
the rungs give finite contribution to the ground-state energy.
Thus according to Eq. (2.9) the quantum numbers {ri} and {si}
do not affect the energy and can be arbitrary. Quite remarkably
the onset of the nematic phase does not coincide with the
classical value of Jrung = 2.0 but is placed much lower at
J cr

rung � 1.664. This is clearly the effect of frustration which is
not included in a single Z plaquette, see Sec. IV A, and comes
from the competition between the XX and ZZ bonds that want
to order pseudospins along two perpendicular directions.

The different ground-state configurations (phases) realized
by the model can be conveniently characterized by a 3D vector

field living on one leg of the initial ladder. In three components
of such vectors we can encode the average values of three
different bonds outgoing from the point at which the vector is
anchored—these are leg, rung, and diagonal bonds. Because
the two legs of the ladder are perfectly equivalent, it is enough
to check the following bond operators labeled by a site index
j along a single leg, 1 � j � 2L:

h
x/z

j,rung =
{

Xi,2Xi,3 ≡ τ x
i,2 j = (2i − 1)

Zi,1Zi,4 ≡ τ z
i,3 j = 2i

,

h
x/z

j,leg =
{

Xi,1Xi,2 ≡ siτ
x
i,2τ

x
i,3 j = (2i − 1)

Zi,1Zi+1,2 ≡ τ z
i,3τ

z
i+1,2 j = 2i

,

h
x/z

j,diag =

⎧⎪⎨
⎪⎩

Xi,1Xi,3 ≡ siτ
x
i,3 j = (2i − 1)

Zi,1Zi+1,3 ≡
ri+1τ

z
i,3τ

z
i+1,2τ

z
i+1,3 j = 2i

,

where i labels the plaquettes, 1 � i � L. Here we keep in
mind that these bonds are of the XX (ZZ) type for odd (even)
points along the ladder’s leg. In this way such vector fields
tell us all about the NN interactions in a given phase. In this
context we can consider a periodicity of a given phase. If the
XX and ZZ interactions are perfectly balanced then we can
expect that for simplest ground states the bond averages will
be the same for every point along the leg and consequently
all the vectors will be the same. Such configuration respects
the translational and the r ↔ s interchange symmetry of the
initial ladder, as one could expect from the ground state.

To understand better the physical meaning of phases found
in the phase diagram of Fig. 2 we present the ground-state
values of all different bonds of the initial Hamiltonian shown
in Fig. 1. In Fig. 3 we show a 3D representation of the
ground-state averages of the above operators as functions of
the position i at 15 representative points in the phase diagram.
These points are placed in all different phases but also in two
pieces of one phase; for instance we have the bottom and top
part of the FMu phase meaning simply the low- and high-Jrung

parts visible in the phase diagram. This terminology we also
apply to a few other phases and concerning the FMd phase we
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FIG. 3. Visualization of the configurations which characterize different types of order in the phase diagram of Fig. 2. The solid lines indicate
both the system itself and different phases or different domains of one phase which are labeled below. Arrows show the strength of the XX or
ZZ interactions within consecutive plaquettes of the ladder such that their 3D components correspond to the ground-state average of the rung,
leg, and diagonal interactions denoted as 〈hx/z

i,rung〉, 〈hx/z

i,leg〉, and 〈hx/z

i,diag〉, respectively. The reference frame is given in the left top corner. Arrows
along the solid lines mean that only rung interactions are nonzero, vertical arrows mean diagonal interactions, and horizontal ones on the legs
only.
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FIG. 4. Absolute values of the Fourier transforms of the bond
averages 〈hx/z

i,rung〉, 〈hx/z

i,leg〉, and 〈hx/z

i,diag〉, shown in Fig. 3 in the
phases FMd-AF, bot. QD4, QD3, top QD2 and QD1. Different
symbols—circles, squares, diamonds correspond to rung, leg, and
diagonal bonds respectively.

write “wedge” and “bubble” to distinguish between the tiny
piece of FMd close to Jleg = 1.0 and Jrung = J cr

rung and the rest
of it.

Figure 2 first shows particular limits, like that (i) in the
nematic phase only the rung bonds are nonzero, or (ii) one has
only diagonals or legs nonzero at the compass points, or (iii) the
bottom FMu differs from the top FMu phase by the polarization
of the rung bonds; in the bottom part the rungs can be neglected
but in the top part they are satisfied. Further on, we can see
that the wedge part of the FMd phase looks very similar to
the compass point from which it stems and in the bubble FMd
phase the rung bonds are much more favored. The combined
FMdu phase exhibits a strong period 2 alternation of the bond
values whereas in the FMd-AF one the period is 4. Thus we
say that the FMdu phase is dimerized in the sense that going
along the ladder we will a observe stronger/weaker alternation
of a given type of a bond, i.e., a leg, rung, or diagonal one.
Analogously, the FMd-AF is tetramerized. Finally, we find
why the QD phases are really disordered as they exhibit
no periodicity. This means that translational invariance is
completely broken in these phases. Of course, if we average
over the degenerate {ri,si} configurations then the translational
invariance will be recovered but the system will not gain any
energy by forming such a superposition.

FIG. 5. Ground-state phase diagram for a system with L = 4
plaquettes and all Z bonds rescaled by a factor of γ = 0.9 as function
of Jleg and Jrung. The exchange on diagonal bonds Jdiag is set following
Eq. (4.2). The ground states are shaded in color or white and labeled
according to their symmetry patterns, {r1, . . . ,r4,s1, . . . ,s4}, which
are indicated together with their degeneracies d . Red dots are the
compass points. The critical value J cr

rung for a nematic state is indicated
by horizontal line.

Finally, in Fig. 4 we show the Fourier transforms of the
bond averages 〈hx/z

i,rung〉, 〈hx/z

i,leg〉, and 〈hx/z

i,diag〉 in the phases with
longest periods, namely FMd-AF, bottom QD4, QD3, top QD2
and QD1. These are defined as

〈
h

x/z

k,bond

〉 ≡ 1√
2L

2L∑
j=1

eikj
〈
h

x/z

j,bond

〉
, (4.6)

with bond= rung,leg,diag, k= 2π
2L

n and n=0,1, . . . ,2L−1.
In all phases shown in Fig. 4 we see a dominant ferromagnetic
order at least for one type of bond meaning large k = 0 Fourier
component. In the case of the FMd-AF phase we have four
nonvanishing Fourier components for any type of bond which
indicates a four-site unit-cell order. In the case of the QD phases
all the components are nonvanishing indicating no translational
symmetry.

C. A ladder of L = 4 plaquettes with anisotropic interactions

In the previous section we studied the phase diagrams of the
model given by Eq. (2.1) with balanced XX and ZZ terms,
i.e., they enter with exactly the same exchange interactions.
It is interesting to consider as well the present model with
unbalanced interactions. In Fig. 5 we show the phase diagram
obtained for a ladder of L = 4 plaquettes in the case where
all the ZZ interactions are reduced by a factor of γ = 0.9—of
course this does not affect the symmetries that we used so far
to get the block-diagonal Hamiltonian. From the point of view
of symmetries we lose the r ↔ s interchange so typically the
degeneracies that we find will be reduced by a factor of 2. In
the phase diagram we see that first of all the range of stability of
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FIG. 6. Ground-state phase diagram for a ladder consisting of
L = 6 plaquettes as function of Jleg and Jrung. The exchange on
diagonal bonds Jdiag is set following Eq. (4.2). The ground states
are shaded in color or white and labeled according to their symmetry
patterns, {r1, . . . ,r6; s1, . . . ,s6}, which are indicated for each phase
together with their degeneracies d . Red dots are the 1D compass
points, blue dots indicate the simple Cx-Cz states and green dot is
S = 1 1D compass point. The critical value J cr

rung for a nematic state
is indicated by horizontal line.

FMdu phase is strongly enlarged and that the window between
the two pieces of the FMu phase is enlarged too. Now it goes
above the classical threshold of Jrung = 2 and goes lower at
the high-symmetry point of Jleg = Jdiag = 1.

The enhanced stability of the FMdu phase is clearly due to
the fact that the anisotropic interactions brake the symmetry
between the {ri} and {si} quantum numbers and the FMdu
configuration is compatible with such a symmetry breaking.
We also notice that the quantum disorder phases are less
stable now and two of them are completely absent compared
with Fig. 2. On the other hand, we gain two more ordered
phases, namely AF-FMd and AF which appear as bubbles
instead of the bubble FMd phase which is now gone (and the
wedge FMd phase is now smaller). This shows clearly that
the disordered phases were triggered by frustration caused
by the incompatibility of the XX and ZZ interactions. The
nematic phase is again unaffected.

V. GENERIC PHASES FOR LARGE L

A. Phase diagram for a ladder of L = 6 plaquettes

We now increase the system size to identify generic phases
in the phase diagram of Fig. 2, and to check which ones could
follow from finite-size effects. Figure 6 confirms that several
phases we have found for a short ladder of L = 4 plaquettes
reappear for L = 6. These are FMu, FMd, FMdu, and FMd-
AF phases. The disordered phases found before are gone but
there are others appearing instead. There are also other ordered
phases with a longer period 3, namely Fr3 (ferrimagnetic with

FIG. 7. Absolute values of the Fourier transforms of the bond
averages 〈hx/z

i,rung〉, 〈hx/z

i,leg〉, and 〈hx/z

i,diag〉, shown in Fig. 8 in the phases
FMd-AF, bot. QD4, QD3, top QD2 and QD1. Different symbols—
circles, squares, diamonds—correspond to rung, leg, and diagonal
bonds respectively.

period 3), which is stable in a large area of the central region
of the window and FMd-Fr3 which replaces the former QD1
phase. Period 3 is now allowed by the system size and we
anticipate that it is favorable from the point of view of the
three-site terms in the block-diagonal Hamiltonian so we can
expect such phases whenever L is divisible by 3.

Again, we find quantum disordered (QD) phases, this time
QD1 and QD2. The QD1 phase takes the most of the area where
the FMd-AF one is stable for L = 4, whereas the QD2 phase
appears in the form of bubbles that stem from the bubbles of
the FMd phase which are now much larger than for L = 4. The
degeneracy is twice larger in the QD2 phase (and also some
others) than predicted only by a translation argument, i.e., for a
label �r = �s = (− − − − −+) we can generate only five other
distinct ground states by a translation by moving simply the
+ spin, suggesting d = 6, whereas the degeneracy is de facto
d = 12. Now we can check the action of the r ↔ s inversion;
we take the configuration �r = �s = (− − − − −+) and we get
�r = (+ − − − −−) and �s = (− − − − −+) ones. Note that
quite counterintuitively we go from the configuration with
�r = �s to the one with �r �= �s keeping the energy spectrum
unchanged. Then by performing translations once again we
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FIG. 8. Visualization of the configurations present in the phase diagram of Fig. 6. The solid lines indicate both the system itself and different
phases or different pieces of one phase which are labeled below. Arrows show the strength of the XX or ZZ interactions within consecutive
plaquettes of the systems such that their 3D components correspond to ground-state average of the rung, leg, and diagonal interactions denoted
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i,leg〉, and 〈hx/z

i,diag〉, respectively. The reference frame is given in the left top corner. Arrows along the solid lines mean that only
rung interactions are nonzero, vertical arrows mean only diagonal interactions, and horizontal ones only along the legs.

can get the other five configurations which explains the total
degeneracy of d = 12 = 2×(1 + 5). Quite remarkably, all
these changes in the phase diagram do not affect the nematic
phase which occurs for the same parameters as before.

Figure 7 presents the Fourier transforms of the bond
averages 〈hx/z

i,rung〉, 〈hx/z

i,leg〉, and 〈hx/z

i,diag〉 [defined by Eq. (4.6)] in
the phases with the longest periods, namely Fr3, bot. FMd-Fr3,
QD3, top FMd-Fr3, QD1, and QD2. As for L = 4 we see that
in all phases there is a dominant ferromagnetic component at
least for one type of bond meaning large contribution at k = 0.
In the case of the Fr3 phase we have three nonvanishing Fourier
components for any type of bond which indicates a three-site
unit-cell order. In the case of mixed, FMd-Fr3 phases, top and
bottom, the number of nonvanishing components is 6 which
corresponds to a six-site unit-cell order. As expected in the QD
phases all the Fourier components are nonvanishing indicating
disorder, however for QD1 most of them are small apart from
the dominant k = 0 contribution.

Finally, in Fig. 8 we visualize the bond averages for different
phases in the phase diagram of Fig. 6. The phases that were
present before (for L = 4) look here in a similar way as in
Fig. 3 so we focus on period-3 and disordered phases. We see
that indeed phase Fr3 has a periodicity 3 and every three sites
there is a strong increase in diagonal correlations which are
weak otherwise and the dominant contribution to the energy
comes from the rungs. The mixed FMd-Fr3 phase doubles the
period 3 and favors the diagonals (or legs if Jleg > 1). Thus
we see that there is a spontaneous trimerization occurring in
the phase Fr3 whereas the FMd-Fr3 one is hexamerized. The
disordered QD1 phase is very weakly disordered and similar
to the wedge FMd phase or the compass one. The disorder in
the QD2 phase seems to be stronger than in the QD1 one and
is qualitatively similar to the top part of the FMd-Fr3 phase.

B. Larger ladder of L = 8 plaquettes

To check the generality of the phase diagrams shown in
previous sections we explored the cases of larger plaquette

ladders, L = 8 and L = 12. In Fig. 9 we show the phase
diagram for L = 8. The diagram was obtained in the following
way: First the Jleg − Jrung parameter plane was discretized as a
lattice of 40×20 points and in each point all 4116 symmetry-
distinct {r1, . . . ,rL; s1, . . . ,sL} subspaces were searched for the
ground state and then the subspaces with lowest energy were
selected as stable configurations for every lattice point. In this
way we identified eight different phases which are realized
by the L = 8-plaquette ladder, shown in Fig. 9. Note that
unlike in the previous cases we did not refine the boundaries
between the phases by a bisection algorithm but we used a
higher-resolution lattice of 100×200 points looking only at
these eight subspaces found before. Thus every pixel in the
plot of Fig. 9 symbolizes a lattice point with a color determined
by the optimal {r1, . . . ,rL; s1, . . . ,sL} configuration.

Looking at the phase diagram of Fig. 9 we observe an
overall similarity to the phase diagrams obtained for L = 4 and
L = 6 (shown in Figs. 2 and 6), i.e., the number of eight distinct
phases is the same as in these two cases. The main difference
is the absence of the FMd-AF phase which is here replaced
by the FMd-Fr4 one. This can be seen as a generalization of
FMd-AF where the period-2 AF order is replaced by Fr4 with
a period 4. As L = 8 is not a multiplicity of 3, the phases with
period 3 are absent here and the diagram resembles more the
one for L = 4. Instead of the Fr3 phase one finds now two QD
phases: QD2 and QD4. We remark that QD2 phase looks quite
similar to Fr3 if we analyze the values of ri and si . In addition,
the FMd-Fr3 phase found before at L = 6 becomes here the
QD1 phase for the same reason as above, and again a certain
similarity between these phases is observed.

In fact, one may also start from a larger L = 8 system,
and one finds that the phase FMd-Fr4 is replaced at L = 6
by two QD phases: QD1 and QD2. These phases arise as a
finite-size effect but are similar to the original FMd-Fr4 which
is incompatible with the length of L = 6. More generally, we
emphasize that the phase FMd-Fr(L/2) is generic and appears
for any length L = 4n, as demonstrated below by L = 12
accessible in our analysis. Quite surprisingly, the FMd-AF
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FIG. 9. Ground-state phase diagram for a ladder consisting of
L = 8 plaquettes as function of Jleg and Jrung. The exchange on
diagonal bonds Jdiag is set following Eq. (4.2). The ground states
are shaded in color or white and labeled according to their symmetry
patterns, {r1, . . . ,r8; s1, . . . ,s8}, which are indicated for each phase
together with their degeneracies d . Red dots are the 1D compass
points, blue dots indicate the simple Cx-Cz states, and green dot is
S = 1 1D compass point. The critical value J cr

rung for a nematic state
is indicated by horizontal line.

phase found at L = 6, does not survive for L = 8 and is there
replaced by QD3; cf. Figs. 6 and 9. This suggests that the
FMd-AF phase is gradually destabilized with increasing size
L, and indeed only a very narrow parameter range is found for
L = 12; see below.

C. Largest ladder of L = 12 plaquettes

Finally we may ask what happens to the phases with period
2 and 4 in the case when also period-3 ones are allowed by
the system size L. This is a case when L is divisible both
by 4 and by 3 and the lowest possible L satisfying these
condition is L= 12. In Fig. 10 we can see a restricted phase
diagram for this case in low resolution. This follows from a
lattice of 40×20 points in the Jleg − Jrung plane for which we
compare the ground-state energies of the eight configurations
with translational symmetry obtained for lower L, namely the
FMd, FMu, FMdu, FMd-AF, Fr3, FMd-Fr3, FMd-Fr4, and
FMd-Fr6 phases. The latter one is another generalization of
the FMd-AF phase with a longer period. Indeed, the FMd-Fr6
phase is stable in a region between the wedge and bubble
FMd phase; see the phase diagram of Fig. 10, and seems to
be analogous of the FMd-Fr4 phase found for L = 8 and the
FMd-AF one found for L = 4. Note that the FMd-Fr4 phase is
absent here, and the FMd-AF one appears only in two points
in the phase diagram close to the onset of the nematic phase.
We anticipate that it occurs in place of some QD phase which
was not considered here.

Thus we can conclude that for general L divisible by 4 an
FMd-Fr(L/2) phase appears in this part of phase diagram, with

FIG. 10. Restricted ground-state phase diagram for a ladder con-
sisting of L = 12 plaquettes as function of Jleg and Jrung comparing
stability of seven different {r1, . . . ,r12; s1, . . . ,s12} configurations
with degeneracy d indicated by color shading or white. The exchange
on diagonal bonds Jdiag is set following Eq. (4.2). Red dots are the
1D compass points, blue dots indicate the simple Cx-Cz states, and
green dot is S = 1 1D compass point. The critical value J cr

rung for a
nematic state is indicated by a horizontal line.

ri ≡ −1 and with most of si = −1 except for sL/2 = sL = 1.
For smaller system sizes a similar phase was less robust. For
instance, the phase diagram for L = 6, see Fig. 6, suggests
in this parameter range a QD1-like phase which has similar
properties as the FMd-Fr3 one—all ri ≡ −1 and almost all
si = −1 except for two sites placed irregularly. Concerning the
period-3 phases, namely Fr3 and FMd-Fr3, we see that they
appear in similar positions as in the L = 6 phase diagram, so
we argue that they are generic for L divisible by 3. Moreover, it
seems that QD phases observed at smaller system sizes appear
because ordered characteristic of large L cannot yet develop.

VI. PERTURBATIVE EXPANSION AROUND
NEMATIC PHASE

The nematic phase is the exact eigenstate of the Hamiltonian
and thus it is a good starting point of a perturbative expansion
around the high-symmetry line Eq. (3.1) characterized in
Sec. III. For a high enough value of Jrung we start by taking the
Hamiltonian in the form of Eq. (2.9) and dividing it into the
unperturbed part H0 proportional to Jrung and the rest which
will be treated as perturbation, V = H − H0; we get

H0 = Jrung

L∑
i=1

(
τ x
i,2 + τ z

i,3

)
, (6.1)

V =
L∑

i=1

(
τ z
i,2Ai + τ x

i,3Bi

)
, (6.2)
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where

Ai ≡ Jleg
(
riτ

z
i,3 + τ z

i−1,3

) + Jdiag
(
1 + riτ

z
i−1,3τ

z
i,3

)
, (6.3)

Bi ≡ Jleg
(
siτ

x
i,2 + τ x

i+1,2

) + Jdiag
(
si + τ x

i,2τ
x
i+1,2

)
. (6.4)

Note that both Ai and Bi commute with H0 so the only
terms in V that will make the excitations in the eigenstates
of H0 are τ z

i,2 and τ x
i,3 that play the role of transverse fields.

In the zeroth order the ground state is a product state of
the form |ψ (0)

0 〉 = ⊗
i |←〉i,2 ⊗ |↓〉i,3, and with ground-state

energy E
(0)
0 = −2LJrung. We remark that for Jleg = Jdiag and

any ri and si operators Ai and Bi annihilate the ground state
|ψ (0)

0 〉, i.e., Ai |ψ (0)
0 〉 ≡ Bi |ψ (0)

0 〉 ≡ 0, so at Jleg = Jdiag |ψ (0)
0 〉

becomes an exact ground state of the full Hamiltonian H.
Using the textbook perturbative expansion we easily find
that the first-order correction vanishes, i.e., E

(1)
0 = 0, and the

second-order correction has a form of

E
(2)
0 = − (δJ )2

Jrung

L∑
i=1

(2 + ri + si), (6.5)

with δJ ≡ Jleg − Jdiag. Note that the correction gives the
lowest energy for ri ≡ si ≡ 1 which means that for large
enough Jrung close to the high-symmetry line δJ = 0 the
optimal configuration (phase) is FMu. This agrees with all
the phase diagrams shown in the previous sections. We also
easily notice that for fixed Jrung the energy gap around nematic
phases closes as (δJ )2.

Now it is interesting to see what happens in higher orders of
the expansion. The next nonvanishing order is the fourth order.
Doing the expansion one gets four types of contributions to
the fourth-order energy correction E

(4)
0 but only one is of the

order of (δJ )2 and the rest is of higher orders in δJ . Since we
are interested in the neighborhood of the nematic phase, only
this lowest-order contribution is relevant. We get

E
(4)
0 = −(δJ )2(σJ )2

J 3
rung

L∑
i=1

(2−risi −ri+1si)+O(δJ 3), (6.6)

with σJ ≡ Jleg + Jdiag. This correction contains an AF inter-
action term between classical spins ri and si so the optimal
configuration for E

(4)
0 is FMdu. We see now that the effective

fourth-order Hamiltonian for the classical spins around the
nematic phase, namely

Heff ≡ E
(0)
0 + E

(2)
0 + E

(4)
0 , (6.7)

describes a competition between FMu and FMdu phases. In the
upper part of the phase diagram (Jrung > 2.0) the FMu phase
wins in the large Jrung limit whereas the FMdu phase is stable
for lower values of Jrung. We found that the transition point
is J �

rung � 1.42 and that these two phases are the only ones
that are stable. The value of J �

rung however does not agree with
the upper boundary Jrung = 2 between the FMdu and FMu
phases around δJ = 0, found in the phase diagrams of Figs. 2,
6, 9, and 10. This shows that the phase competition around
the nematic phase in the low Jrung regime is very complex
indeed and requires higher orders of the expansion to resolve
the question of stability.

VII. ENTANGLEMENT IN THE LADDERS
WITH L = 4 AND L = 6 PLAQUETTES

A. Dimer-dimer entanglement

To quantify the entanglement of the states described in
Figs. 3 and 8 we will evaluate the mutual information I d−d

i,i+1 of
the neighboring dimers (with PBCs) in each of these states as
function of the site index i. By a dimer we understand pairs
of transformed pseudospins {τi,2,τi,3} that appear in the block
diagonal Hamiltonian of Eq. (2.1). The mutual information is
defined by the von Neumann entropies of the individual dimers
i and i + 1 and the pair of dimers {i,i + 1} as follows:

I d−d
i,i+1 = Sd

i + Sd
i+1 − S

d,d
i,i+1, (7.1)

where the von Neumann entropy SA of any subsystem A is
given by the formula [1,70,71]

SA = −TrρA log2 ρA, (7.2)

with ρA being the reduced density matrix of the subsystem A

(i.e., the density matrix ρ of the whole system is traced over
all degrees of freedom outside the subsystem A). Note that the
subsystem A can also stand for a part of degrees of freedom in
the entire system as done in the spin-orbital systems [45]. In
practice, it is convenient to express ρA in terms of ground-state
correlation functions. For instance ρd

i for a single dimer i can
be written as

ρd
i = 1

22

∑
α,β=

0,x,y,z

τ α
i,2τ

β

i,3

〈
τα
i,2τ

β

i,3

〉
, (7.3)

where τ 0
i,p ≡ 1 and τ

y

i,p ≡ −iτ z
i,pτ x

i,p and where the two τ

operators in front of the average live in a local Hilbert space
of a single dimer (ρi is a 4×4 matrix). Similarly, for a pair of
dimers we can calculate ρ

d,d
i,i+1 from a formula

ρ
d,d
i,i+1 = 1

24

∑
α,β,γ,δ=
0,x,y,z

τ α
i,2τ

β

i,3τ
γ

i+1,2τ
δ
i+1,3

〈
τα
i,2τ

β

i,3τ
γ

i+1,2τ
δ
i+1,3

〉
. (7.4)

In Fig. 11 we show the mutual information I d−d
i,i+1 (7.1) for

the ground states of the ladder of L = 4 plaquettes shown in
Fig. 3 and for ground state at the Cx-Cz point as function of
i. The Cx-Cz point is taken to compare the entanglement in
the present cases to the one found for the unfrustrated Cx-Cz

model in Ref. [65] which was found to be characterized by
ICx−Cz = 0.284 64. Here we recover this value working in
a different basis and we find that typically the phases not
obtained before in the unfrustrated case are more entangled.
Note that the nematic phase is not shown here because its
ground state in terms of operators τi is a classical product state
and by the definition of Eq. (7.1) it has a vanishing mutual
information.

In Fig. 11 we marked the phases in which I d−d
i,i+1 is high

(I � 1.0) on average and we find that these are both wedge
and bubble FMd phases but also FMd-AF and compass ones,
together with QD1 phase which is a tiny scrap at the interface
of FMd and FMd-AF phases (see Fig. 2). All these phases
can be seen as an evolution of the compass phase for finite
Jleg and Jrung and indeed altogether they connect the two
compass points. The entanglement seems to decrease when
Jrung is strongly increased, for instance in the bubble FMd
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bot. FMu
top FMu
Cx-Cz
wedge FMd
bubble FMd
bot. FMdu
top FMdu
FMd-AF
Compass
bot. QD4
top QD4
QD3
top QD2
bot. QD2
QD1

1 2 3 4i

1.0

0.5

0.0

I i,i
+

1
d-

d

FIG. 11. Mutual information I d−d
i,i+1 (7.1) between the NN dimers

as a function of i for a ladder of L = 4 plaquettes obtained in different
phases and pieces of one phase shown in the phase diagram of Fig. 2.
The (top) red lines are for phases in which I d−d

i,i+1 is on average high
(I � 1) and the black (bottom) lines are for those in which I d−d

i,i+1 is
on average low (I � 0.55).

phase. Quite surprisingly the quantum disordered phase apart
from QD1 do not seem to be strongly entangled although in
QD2 and QD3 phases the mutual information Ii,i+1 (7.1) can
be enhanced locally to rather high values.

As we can see from Fig. 12, for the larger ladder of L = 6
plaquettes the division between more and less entangled phases
seems to be clearer. Again we observe that the phases which
can be seen as a continuation of the compass points in the phase
diagram of Fig. 6 are highly entangled. These are the FMd,
FMd-AF, QD1, QD2, and FMd-Fr3 phases and the compass
states themselves. This suggests that the two compass points
are the sources of entanglement in the phase diagram of
the extended Cx-Cz model, and the phases that are realized
are always such that it is possible to move continuously from
one point to another keeping the entanglement high. This
could be seen as some kind of a conservation law, as if the
entanglement played a role of charge here.

Finally, we note that quite counterintuitively at the S = 1
compass point, i.e., Jrung = 0 and Jleg = Jdiag, the dimer-dimer
mutual information is not big for any of these two systems and
takes a value of IS=1 � 0.45. Naively one could expect that
it should be even higher than at the compass point Jleg = 0
because frustration seems to be enhanced by perfectly balanced
leg and diagonal bonds. Nevertheless it is smaller and it grows
monotonously both when moving horizontally and vertically
from the S = 1 compass point, as long as one stays within the
FMu phase.

B. Plaquette-plaquette entanglement

Intuitively one expects that the dimer-dimer entanglement
described in the previous subsection should be equivalent to
the plaquette-plaquette entanglement of the original ladder
shown in Fig. 1. However, this is not so obvious because
mutual information is not a basis-independent quantity. The
basis dependence comes from taking the partial trace in order
to obtain a reduced density matrix. This is why we decide to

bot. FMu
top FMu
Cx-Cz
wedge FMd
bubble FMd
bot. FMdu
top FMdu
FMd-AF
Compass
Fr3
bot. FMd-Fr3
top FMd-Fr3
QD1
QD2

1.0

0.5

0.0

I i,i
+

1
d-

d

1 2 3 4         5         6
i

FIG. 12. Mutual information I d−d
i,i+1 (7.1) between the NN dimers

as a function of i for a ladder of L = 6 plaquettes obtained in different
phases and pieces of one phase shown in the phase diagram of Fig. 6.
The red (top) lines are for phases in which I d−d

i,i+1 is on average high
(I � 1) and the black (bottom) ones are for those in which I d−d

i,i+1 is
on average low (I � 0.55).

examine the question of plaquette-plaquette entanglement in
the initial, physical basis. Similarly as before we define the
mutual information of the NN plaquettes as

I
p−p

i,i+1 = S
p

i + S
p

i+1 − S
p,p

i,i+1, (7.5)

where by a plaquette i we understand a subsystem composed
of four initial spins {Xi,p,Yi,p,Zi,p} with p = 1,2,3,4. To
calculate this quantity we express the relevant reduce density
matrices in terms of correlation function as

ρ
p

i = 1

24

∑
A,B,C,D=

1,X,Y,Z

Ai,1Bi,2Ci,3Di,4〈Ai,1Bi,2Ci,3Di,4〉 (7.6)

for a single plaquette and for two plaquettes the expression
is analogous but with eight Pauli operators. Our ground state
is expressed in terms of spins τi,2 and τi,3 so we need to use
the transformations of Eqs. (2.3) and (2.4). The sum contains
44 terms but because of the fixed parities ri and si only 32
ground-state averages are nonzero. One has to be careful with
the signs because operators under average contain r�

i and s�
i

which anticommute not only with ri and si but also with τ z
i,3

and τ x
i,3. Note that the average will be nonzero only if all r�

i and
s�
i appear an even number of times to cancel each other since

(r�
i )2 ≡ (s�

i )2 ≡ 1. In the case of the reduced density matrix
of a pair of plaquettes the situation is even more complicated.
For non-neighboring plaquettes the number of nonvanishing
averages is simply 322 because these plaquettes can be treated
“independently.” In the case of NN plaquettes this number
grows to 2×322.

In Figs. 13 and 14 we show the results obtained for the
mutual information of two NN plaquettes for L = 4 and
L = 6 for the same points in the phase diagrams as in
the case of dimers. Note that the vertical scale is twice as
large as for pairs of dimers because von Neumann entropy
and hence mutual information are extensive quantities. From
these plots we can draw analogical conclusions as before
because qualitatively they are similar to Figs. 11 and 12.
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1 2 3 4i

bot. FMu
top FMu
Cx-Cz
wedge FMd
bubble FMd
bot. FMdu
top FMdu
FMd-AF
Compass
bot. QD4
top QD4
QD3
top QD2
bot. QD2
QD1

2.0

1.0

0.0

I i,i
+

1
 p

-p

FIG. 13. Mutual information I
p−p

i,i+1 (7.1) between the NN plaque-
ttes as a function of i for a ladder of L = 4 plaquettes obtained in
different phases and pieces of one phase, shown in the phase diagram
of Fig. 2. The line colors and characters are the same as in Fig. 11.

This shows that the entanglement between dimers can be
treated as qualitatively equivalent to the entanglement of
initial plaquettes. Consequently, the nematic phase exhibits
no plaquette-plaquette entanglement.

VIII. SUMMARY AND CONCLUSIONS

We have investigated the consequences of frustration in
the 1D plaquette compass Cx-Cz model with additional frus-
tration due to finite antiferromagnetic exchange on plaquette
diagonals. We have used a systematic approach based on the
symmetry properties and demonstrated that different possible
ground states of this model are characterized by the eigenval-
ues of the local parity operators being the symmetries of the
model. A similar approach was used before for the 2D compass
model [13] and the 1D plaquette Cx-Cz compass model [65],
but in these cases the ground state was always found in the
simplest possible subspace where all the symmetry eigenvalues
(parities) are positive. Here we have seen that due to frustration
caused by next-nearest neighbor compass interactions along
diagonal bonds in the ladder, there is a window in the parameter
space {Jleg,Jrung} where such a highly symmetric ground state,
called here FMu, becomes unstable and one finds instead more
exotic phase patterns containing negative parities. Examples
of such phases are an anti-FMu configuration, namely FMd,
where all the parities are negative, or various configurations
where the parities alternate. Furthermore, we have shown that
some of these states can be stable for arbitrary system size
whereas others are strongly related to small system sizes, i.e.,
ladders of L = 4 or L = 6 plaquettes.

We argue that the window of exotic phases stems from the
frustration that one already finds for a single plaquette with
ZZ interactions only. Especially, the window for perfectly
balanced XX and ZZ bonds never goes above Jrung = 2,
which is a value predicted by a single plaquette study, and
its shoulders cover the phase-transition lines encountered for a
single plaquette. We have shown, however, that it can become
broader (exceeding Jrung = 2) when the anisotropy between
XX and ZZ bonds is introduced. We note that in any case

1 2 3 4         5         6
i

bot. FMu
top FMu
Cx-Cz
wedge FMd
bubble FMd
bot. FMdu
top FMdu
FMd-AF
Compass
Fr3
bot. FMd-Fr3
top FMd-Fr3
QD1
QD2

2.0

1.0

0.0

I i,i
+

1
 p

-p

FIG. 14. Mutual information I
p−p

i,i+1 (7.1) between the NN plaque-
ttes as a function of i for a ladder of L = 6 plaquettes obtained in
different phases and pieces of one phase, shown in the phase diagram
of Fig. 6. The line colors and characters are the same as in Fig. 11.

the window of exotic phases in the phase diagram connects
two points in the phase diagram where the model is equivalent
to the 1D compass model, namely Jrung = 0 and Jleg = 0(2),
with Jdiag given by Eq. (4.2). It suggests that these phases are
a continuation of the degenerate manifold of ground states of
this peculiar 1D model [59,60].

One could expect that the ground states always respect
the symmetries of the initial ladder: (i) translational ones and
(ii) the r ↔ s interchange invariance. However, we have
observed that for ladders of up to L = 12 plaquettes, the
ground states exhibit lower symmetry than that of the initial
ladder in the highly frustrated window in the phase diagram,
and this manifests itself by ordered states with a longer
period, i.e., spontaneous multimerization. In particular, we
have obtained four phases that seem to be stable for any even
L: two of them (FMu and FMd) preserve full translational
invariance while one (FMdu) is dimerized and one (FMd-AF)
is tetramerized. We note that a similar dimerization due
to purely quantum fluctuations was recently found in the
Kumar-Heisenberg model [72], but in contrast to it here the
transition to the dimerized state is discontinuous. In addition,
we have found that for a system size L being a multiplicity of 3
(and even), two other configurations can be stabilized, one with
a unit cell of 3—Fr3—and for the cell of six sites—FMd-Fr3.
These are examples of trimerized and hexamerized ground
states. We argue that the trimmers are compatible with the
three-site interactions in the effective Hamiltonian that stem
from the diagonal bonds. Apart from these rather regular
phases we have also found configurations that we called
quantum disordered in the sense that their periodicity was
equal to the system length 2L. These phases were different for
L = 4 and L = 6, and we suggest that they occur only in so
small systems while they are gradually destabilized by ordered
phases with longer periods when the system size increases.

Finally, for high enough Jrung, here Jrung � J cr
rung � 1.664,

and maximal frustration of leg and diagonal interactions, i.e.,
Jleg = Jdiag = 1, we have observed a nematic phase from L= 4
to L = 12 and in the anisotropic ladder of L = 4 plaquettes
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as well. Nematicity here means that the state is an eigenstate
of all rung bonds of the ladder optimizing their energies but
at the same time it is an eigenstate with zero energy of the
ladder Hamiltonian without rungs. This means that effectively
only the rung bonds contribute to the ground-state energy.
We note that this state is similar to the nematic state of the 2D
compass model [16,17]. This observation together with the 1D
compass points found in the phase diagrams makes us claim
that the present ladder model realizes indeed the paradigm of
dimensional crossover within the class of compass models.

Quite surprisingly, the vertical onset of the nematic phase
is always well within the window of exotic phases, below
the classical boarder of Jrung = 2 where the window typically
closes. In this area of the phase diagram there is clearly a very
subtle competition of several energy scales that results in what
we call bubble phases being attached to the line of nematic
phase. These bubbles seem to be generic as they are present
for L = 4, 6, and 8, as well as in the anisotropic ladder of L = 4
plaquettes. In the absence of anisotropy these are pieces of the
FMd phase which is typically stable in the wedges touching
the compass points.

The nematic phase is characterized by a macroscopic
degeneracy of d = 22L related to the fact that the values of
local parity operators do not affect the energy here and there
are 2L of them. But in contrast to the compass model on the
checkerboard lattice [21], the high degeneracy in the nematic
phase and at the compass points is not removed by quantum
fluctuations. The nematic phase appears as a highly singular
part of the plaquette model where the continuum of states is
squeezed to one point. By a perturbative expansion around the
nematic phase we have demonstrated a competition between
FMu and FMdu phases. The FMu (FMdu) phase wins in
the large (small) Jrung limit. In all phase diagrams we have
identified a special point of the 1D S = 1 compass model
which gives a gapped and unique disordered ground state at
Jrung = 0 and Jdiag = Jleg.

As stated before, we argue that the window of exotic phases
connecting the two compass points in the phase diagram
is an evolution of the manifold of compass ground states
for finite Jrung. Quite remarkably, this evolution seems to
preserve the entanglement that manifests itself by a high
mutual information of the neighboring dimers in the effective
block-diagonal Hamiltonian or, equivalently, high mutual
information of the neighboring plaquettes in the original
ladder Hamiltonian. The mutual information seems to be the
highest at the compass points whereas it is low in the most
prolific FMu phase (including the ground state of the Cx-Cz

model [65]). However, in the window of exotic phases the
entanglement is typically high and comparable to the compass
points. We argue that this high entanglement originates from
high frustration that can be, to some extent, understood in
terms of a single-plaquette study.

Summarizing, we would like to emphasize that the results
presented for larger systems of L = 8 and L = 12 plaquettes
provide enough information to anticipate the possible phases
for any L. We have shown that the phases FMd, FMu, FMdu
appear always, as well as FMd-Fr(L/2) for L divisible by 4,
while in other cases when L is divisible by 3 phases Fr3 and
FMd-Fr3 appear instead, together with a similar QD1 phase.
We have observed that quantum disordered phases appear

usually when the system size L is not compatible with the
actual unit cell of an ordered phase, favored otherwise in
a given range of parameters. We suggest that the obtained
phase diagram for L = 12 plaquettes is already quite close
to the ultimate phase diagram in the thermodynamic limit.
The presented analysis of such complex phase diagrams
proves that the model is challenging enough to address the
relevant phases by carrying out an extensive density-matrix
renormalization-group study for relatively large system size L

at the level of the original ladder Hamiltonian, as probing of
all {ri,si} configurations is too demanding beyond the system
sizes considered here.
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APPENDIX: DIFFERENT FORM
OF THE Cx-C z HAMILTONIAN

For a simple Cx-Cz Hamiltonian of Ref. [65] we used the
following transformation to σ

x/z

i,2/3 Pauli operators to get its
block-diagonal form:

Xi,1 = r�
i ,

Xi,2 = r�
i siσ

x
i,2σ

x
i,3

(
σx

i+1,2

)
,

Xi,3 = r�
i siσ

x
i,3

(
σx

i+1,2

)
,

Xi,4 = r�
i si

(
σx

i+1,2

)
, (A1)

and

Zi,1 = s�
i σ

z
i,3,

Zi,2 = s�
i−1

(
σ z

i−1,3

)
σ z

i,2,

Zi,3 = s�
i−1ri

(
σ z

i−1,3

)
σ z

i,2σ
z
i,3,

Zi,4 = s�
i . (A2)

This gives in the Cx-Cz Hamiltonian in the linear-cubic form
presented in Ref. [65]

H(Jdiag = 0)

=
L∑

i=1

{(
Jlegσ

z
i,2 + Jrungσ

z
i,3

) + (
Jrungσ

x
i,2 + Jlegσ

x
i,3

)
+ Jlegriσ

z
i−1,3

(
σ z

i,2σ
z
i,3

) + Jlegsi

(
σx

i,2σ
x
i,3

)
σx

i+1,2

}
, (A3)

whereas in terms of present τ
x/z

i,2/3 operators we get a linear-
quadratic form of Eq. (2.9) which in this limit simplifies to

H(Jdiag = 0) =
L∑

i=1

{
Jrung

(
τ x
i,2 + τ z

i,3

)
+ Jleg

(
siτ

x
i,2τ

x
i,3 + riτ

z
i,2τ

z
i,3

)
+ Jleg

(
τ x
i,3τ

x
i+1,2 + τ z

i,3τ
z
i+1,2

)}
. (A4)
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Note that the τ
x/z

i,2/3 Pauli operators are one-to-one related to

the σ
x/z

i,2/3 ones by the following identities:

τ x
i,3 = σx

i,3σ
x
i+1,2,

τ x
i,2 = σx

i,2,

τ z
i,3 = σ z

i,3,

τ z
i,2 = σ z

i,2σ
z
i−1,3, (A5)

and the backward relations are

σx
i,3 = τ x

i,3τ
x
i+1,2,

σ x
i,2 = τ x

i,2,

σ z
i,3 = τ z

i,3,

σ z
i,2 = τ z

i−1,3τ
z
i,2. (A6)
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[28] A. M. Oleś, G. Khaliullin, P. Horsch, and L. F. Feiner,
Phys. Rev. B 72, 214431 (2005).

[29] G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005).
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[39] W. Brzezicki, A. M. Oleś, and M. Cuoco, Phys. Rev. X 5,
011037 (2015); W. Brzezicki, M. Cuoco, and A. M. Oleś,
J. Supercond. Novel Magn. 29, 563 (2016).

[40] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009); J. Chaloupka, G. Jackeli, and G. Khaliullin, ibid.
105, 027204 (2010); 110, 097204 (2013); F. Trousselet,
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