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Temperature and density dependence of the shear viscosity of liquid sodium
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The density and temperature dependence of the shear viscosity of liquid sodium is studied. The stress
autocorrelation function is calculated by equilibrium molecular dynamics simulations, which allow us to obtain
the value of shear viscosity using the Green-Kubo formula. The Fiolhais potential is used to calculate the interionic
interactions, which are validated by comparison between simulation and experimental data along the liquid-gas
coexistence curve. The behavior of viscosity over a wide range of the liquid phase of the phase diagram is studied.
Along isochoric lines, it presents a minimum, while it monotonically increases along isotherms. An expression is
proposed for the viscosity as a function of temperature and density which reproduces our data for liquid sodium
at any density in the range [1000–2000 kg m−3] and any temperature in the range [700–7000 K]. The validity of
the Stokes-Einstein relation over the investigated state points is discussed.
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I. INTRODUCTION

Liquid metals play an important role in several fields. Their
main characteristics are high electrical conductivity, boiling
temperature, latent heat, specific heat, thermal conductivity
and diffusivity, as well as low viscosity. This latter property
is relevant for several purposes, and first of all in metallurgy
to control casting. In geophysics, the viscosity of materials
in the Earth’s core allows us to determinate the properties of
the core itself [1], such as core convection responsible for the
magnetic field of our planet [2]. However, even its estimate
has been the subject of debate as it spans more than 12 orders
of magnitude [3,4]. In this context, the fluid is subject to high
pressures [5] and the study of the viscosity versus density
is necessary. In cooling systems, the low viscosity value, of
the same order of magnitude as other common fluids such as
water, permits us to pump liquid metals through tubes and heat
exchangers at a reasonable cost. A knowledge of temperature
behavior of the viscosity is then essential to improve many
industrial processes. As a last example, having high electrical
conductivity and low viscosity, they are excellent candidates
to carry out electric connections through microtubes in flexible
electronic devices [6].

Among liquid metals, sodium has a certain technological
interest. It could be used as heat transfer fluid within the new
generation nuclear reactors [7]. Indeed, while water requires
several hundreds of bars to remain liquid at temperatures over
100 ◦C, sodium remains liquid up to 900 ◦C under atmospheric
pressure. Moreover, liquid sodium has a viscosity lower than
water (typically about 10−3 Pa s) which is favorable to
industrial use.

Despite the technological interest of sodium, experimental
studies of its viscosity are very limited and date back to the
1960s or earlier [8–11]. Moreover, data are restricted to a
relatively small temperature range and only under atmospheric
pressure. This is first due to the high chemical reactivity of
alkali metals which adds to the difficulty in comparison with
other metals. Second, the very low viscosity value requires very
careful measurements and implies high uncertainty. The usual
method consists of measuring the damping of an oscillating
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crucible filled with liquid metal [12]. As a consequence, the
available experimental data have not been updated for decades.
Furthermore, measuring the viscosity of sodium under high
pressure or at high temperature is nearly impossible in this
context.

Conversely, numerical simulation permits the prediction
of some properties over a wide range of thermodynamical
states. Transport coefficients such as viscosity can be obtained
from correlation functions using the Green-Kubo relation. It
involves the stress autocorrelation function (SACF) which
is computed from microscopic configurations generated by
molecular dynamics (MD) simulations. Being a collective
property, the computation of viscosity requires a rather long
simulated time in order to improve statistical accuracy. There-
fore, classical MD should be favored instead of ab initio ones
which are more accurate, but much more demanding from the
computation time point of view. Curiously, to our knowledge,
there is no complete study of the dependence of viscosity
with temperature or density available in the literature for any
liquid alkali metal. We can mention Refs. [13] and [14] which
both deal with sodium only along the liquid-vapor coexistence
curve, the second one having used nonequilibrium MD.

To perform classical simulations, a realistic description of
the interactions is required. This is a fortiori true in the case
of metals as the interactions strongly depend on density. As
sodium (like other alkali metals) is considered as a simple
metal because it only has one valence electron, its electronic
structure is rather simple and there exist interatomic pair
potentials which can accurately describe its behavior. The
potential of Fiolhais et al. [15] initially developed for the solid
state has proven its capability to describe the alkali metals in
the liquid state. According to Refs. [16–19] (and references
therein), this potential has demonstrated a very good ability to
predict the static structure, diffusion coefficient, and dynamic
structure factor for all the alkali metals and some of their alloys
over a wide range of thermodynamic states. So, the Fiolhais
potential has been chosen for our simulations.

In this study, we will first compute the viscosity of liquid
sodium at thermodynamic states where experimental data are
available, i.e., at ambient pressure to confirm the reliability of
the description of the interactions. These states are close to
the liquid-vapor coexistence, and we will extend the study to
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very high temperatures (up to 7000 K) and densities (up to
2000 kg m−3). Such a wide region of the phase diagram will
allow us to discuss separately the dependence on temperature
and density and to propose an empirical expression of viscosity
over this wide phase diagram part. We will also compare the
behavior of this liquid metal to Lennard-Jones fluid where in-
teractions are independent of the density. Finally, the validity of
the well-known Stokes-Einstein relation binding the viscosity
and self-diffusion coefficient of a liquid will be examined.

This paper is laid out as follows. Section II is devoted to the
description of the interaction potential and to a presentation
of the sodium phase diagram. Indeed, the metallic nature of
sodium depends on the state point. We also give relevant
computational details in order to obtain the shear viscosity
from the SACF. In Sec. III, the results of shear viscosity
are analyzed and compared with experimental data available
in the literature. The temperature and density dependence
is also discussed and our empirical expression is proposed.
The validity of Stokes-Einstein relation between viscosity and
diffusion coefficient is discussed. Finally, in Sec. IV we give
the conclusions and the perspectives of this work.

II. FORMALISM

A. Interaction description

In simulations, the crucial point is the description of the
interactions as it will condition the realism of the predicted
behavior of the system. For alkali metals and therefore
sodium, a density-dependent effective pair potential derived
from the Fiolhais model [15] of electron-ion interaction and
from self-consistent screening using the local field correction
of Ichimaru and Utsumi [20] has shown good ability to
reproduce the static and dynamic structures, as well as atomic
diffusion properties. Although it was initially developed for
the solid state, it is also accurate for the liquid along the
liquid-vapor coexistence curve and for alloys of alkali metals.
Its expression, namely,

u(r) = Z2

r

{
1 − 2

π

∫ ∞

0
FN (q)

sin qr

q
dq

}
, (1)

comprises a direct Coulombic repulsion between ions of
valency Z plus an indirect attraction involving the electron
gas. This last term is expressed using the energy-wave number
characteristic
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)2
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Z2
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[
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]
[1 − G(q)], (2)

accounting for the electron-ion interactions [w(q), Fiolhais
potential] and the electron-electron contribution [ε(q) and
G(q), screening functions]. Complete analytical expressions,
as well as references to earlier studies, can be found in
Ref. [17].

Some important features of metallic potentials should be
recalled. The first one is that they are density dependent
(Fig. 1). This could influence the density dependence of the
physical properties of the system when compared to fluids
like Lennard-Jones for instance. The second one is that the
expressions above presuppose the existence of an electron gas,
i.e., that the system is metallic. It is well established that alkali

FIG. 1. Interaction pair potential for sodium at two densities,
namely 850 kg m−3 (solid black line) and 1800 kg m−3 (dashed red
line), compared to Lennard-Jones potential for argon (dash-dotted
blue line).

metals undergo a metal-to-nonmetal transition at about twice
the density of the critical point (namely ρc = 230 kg m−3 for
sodium). Below this density, the material is no longer metallic
and the description of the interactions used no longer valid.
Therefore, we will not investigate thermodynamic states under
this limit. On the other hand, temperature does not affect the
interactions.

As mentioned in the introduction, the accuracy of the
Fiolhais model of interaction has already been ascertained in
the liquid state from the melting point at ambient pressure
down to densities corresponding to the metal-to-nonmetal
transition along the liquid-gas coexistence. Moreover, this
model was developed for the solid state, and especially in
order to render the correct bcc structure at ambient pressure
conditions. Its ability to describe the interactions under high-
pressure conditions will be discussed in the next section.

B. Phase diagram

The phase diagram of sodium is presented in the (ρ, T )
plane in Fig. 2, as well as each state point studied in this
work, with T , the temperature, and ρ, the density. As will
be explained, these variables are convenient in the framework
of molecular dynamics simulations. When available, we also
indicate the pressure.

This complete phase diagram (low and high pressures)
results from a compilation of literature data available for
sodium [7,21–23]. These data were obtained either experimen-
tally or by ab initio simulation methods. The solid, liquid, and
gas phases are separated by solid lines. While the liquid-gas
coexistence range is well determined and represented in this
figure, we have no information on liquid-solid and solid-gas
coexistence. Thus, the corresponding transitions are only
approximately known.

As the pressure increases, solid sodium undergoes a
structural transition from a body-centered (bcc) to a face-
centered-cubic (fcc) crystal at a density about 2300 kg m−3. A
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FIG. 2. Phase diagram of sodium. Red dots correspond to the
investigated state points. Solid black lines delimit transitions between
two different phases. Pressures are indicated when available.

pressure-induced drop of the melting temperature from 1000 K
at approximately 30 GPa down to room temperature at more
than 100 GPa was predicted by simulation [24] and confirmed
experimentally [25]. At higher densities and pressures (not
presented here), the temperature of liquid-solid transition is
thought to increase again and solid sodium is thought to
undergo further transitions to more exotic structures, but this
is out of the scope of our study.

On the low-density side of the diagram, the critical point
of the liquid-gas coexistence is located at density ρc =
230 kg m−3 with Pc = 256.46 bars and Tc = 2508 K. Under
atmospheric pressure, the density at a given temperature is
determined from the expression of Lucas [26]:

ρ = 0.927 − 2.23 × 10−4(T − Tm), (3)

where Tm = 371 K is the melting temperature under normal
pressure. Along the coexistence curve, as given by Shpilrain
et al. in Ref. [27] (Chap. 6.3.3, p. 453), the density at each
temperature is given by the following relation, valid up to
2200 K:

ρ =
m∑

i=0

aiτ
i, (4)

where ρ is the mass density in kg m−3, τ = T/1000 with T

the temperature (in K), and ai parameters given in Ref. [27]
(Chap. 6.3.3, p. 459).

All our simulations were performed at densities higher
than 2.5ρc, in order to avoid the metal-to-nonmetal transition.
We investigated state points at temperatures ranging from the
melting curve up to 7000 K and densities ranging from the
liquid-gas coexistence limit up to the solidification curve or up
to 2000 kg m−3, if possible. According to Raty et al. [22], liquid
sodium remains free-electron-like below this limit (about
40 GPa), so that we should not be faced with semimetal
or semiconducting behavior. The liquid or solid nature of
each state was checked by considering the pair distribution
function, g(r), and the mean-squared displacement. In order
to estimate the reliability of the interaction description in the
high-density range, we have plotted in Fig. 3 the evolution

FIG. 3. Evolution of the pair distribution function from the solid
to the liquid phase at density 1800 kg m−3. Lines: Our results with
the Fiolhais potential; circles: ab initio results of Yamane et al. [21].
Inset: Corresponding mean-squared displacements.

of the pair distribution function g(r) and of the mean-squared
displacement along the isochoric line corresponding to density
1800 kg m−3. Starting from a bcc solid, the temperature
was increased in a “heat until it melts” approach in order to
estimate the stability of the liquid phase. At each temperature,
the thermalization stage lasted 10 000 time steps and the
production stage 50 000. Although overheating of the solid
phase is possible, we observe melting between 750 and
760 K, in agreement with the phase diagram. Furthermore,
our predicted structure compares favorably with ab initio
results [21] in the liquid phase at 830 K.

We consider that this is an indication of the reliability of
the Fiolhais potential, even in this high-density range. To
our knowledge, there is no previous work investigating the
predictions of this potential under high pressures; this may be
the subject of another study in the future.

C. Molecular dynamics

Our simulations were carried out in the NV E ensemble,
also called microcanonical, which consists in keeping constant
the number of particles, N , the volume, V , and the total energy,
E. Our simulations were performed with 2048 particles in a
cubic box of side L and initialized with an fcc structure, i.e.,
an 8 × 8 × 8 repetition of a four-atom primitive cell of the
fcc lattice. This number of particles appeared large enough to
limit the temperature fluctuations [28] and the finite-size effect
on the viscosity as will be explained later. Verlet’s algorithm
in its velocity form was used to compute the positions and
velocities of each particle, implementing the usual periodic
boundary conditions and minimum image convention in the
three directions [29]. The interaction cutoff radius was chosen
at the node of the force directly inferior to L/2, in order to
limit truncation errors.

The time step was chosen in order to avoid significant
temperature drift (typically, �t = 0.37 fs). During the ther-
malization stage lasting at least 50 000 steps, the velocities
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were rescaled every 50 time steps to the expected temperature.
This allows the system to relax and to reach the desired
(T , ρ) state point. Then, during the production stage, velocities
were left free to evolve and configurations were recorded
every 10 time steps. In order to reach the required accuracy
when computing the viscosity, this stage lasted typically 1 ns,
that is, about 3 000 000 steps. At some given state points,
it was necessary to decrease the time step value in order to
assure that the temperature remains stable during such a long
simulation. When this was necessary, the number of time steps
was adjusted to keep the simulated time equal to 1 ns. In any
event, the temperature drift was less than 4.0% (and most of
the time less than 2.0%), which is smaller than the temperature
fluctuations in the NV E ensemble.

D. Viscosity

The shear viscosity, η, corresponds to the resistance of a
fluid to shear forces. It can be obtained thanks to the Green-
Kubo expression by integration of the time-autocorrelation
function of the off-diagonal elements of the stress tensor:

η = V

kBT

∫ ∞

0
〈δσαβ (0) δσαβ(t)〉dt, (5)

where V is the volume of the system and T its temperature,
kB is the Boltzmann constant, and σαβ the αβ component
of the stress tensor (with α,β = x,y,z) [29]. The notation
〈· · · 〉 refers to an average over a sufficiently large number of
phase-space trajectories in order to reach the thermodynamic
mean, and 〈δσαβ(0) δσαβ (t)〉 is called the stress autocorrelation
function (SACF). For a system of N particles in volume V at
equilibrium, the stress-tensor elements σαβ read

σαβ = − 1

V

N∑
i=1

mi(vi)α(vi)β −
N−1∑
i=1

N∑
j>i

(rij )α(fij )β + σ
(0)
αβ (ρ,T )

= δσαβ(t) + σ
(0)
αβ , (6)

where ri , vi , and mi are respectively the position, velocity, and
mass of particle i, and rij = ri − rj and fij are the relative
coordinates and pair forces between two particles i and j ; σ

(0)
αβ

is a contribution specific to liquid metals depending on T and
ρ, but not on time [30].

In Eq. (5), the viscosity η is computed with a finite upper
limit tmax in the time integral of the stress autocorrelation
function. Let η(tmax) be this value as a function of the truncation
limit. To be accurate, this truncation has to be done at a value
where the SACF is as close as possible to its zero long time
limit value. The SACF fluctuates strongly around this value
and an important computational effort is required to make it
converge. The first and usual way to improve its convergence is
to consider many time origins along the simulation run in the
computation of the thermodynamic mean in the correlation
function. In this study, we considered at least 290 000 time
origins separated by 10 time steps from each other. As the
liquid is isotropic, the second way is to average over three off-
diagonal elements of the stress tensor σxy , σyz, σxz, and three
directions obtained by 45◦ rotation of the axes [31], namely
1
2 (σxx − σyy), 1

2 (σyy − σzz), and 1
2 (σxx − σzz). In Fig. 4, we

present typical curves of η(tmax) as a function of tmax for eight

FIG. 4. Viscosity η(tmax) as a function of truncation time tmax.
Think solid red curve corresponds to the average of 8 runs (thin dashed
lines). Data are obtained at atmospheric pressure and T = 770 K.

runs (thin dashed lines) as well as the average of these curves
(thick red curve). For a given state point, these eight runs were
performed from the same initial configuration by increasing
the thermalization stage from 55 000 to 85 000 steps in order
to get 8 independent microscopic states corresponding to the
same macroscopic state point. As can be seen from the figure,
the curves obtained for each run are still fluctuating and it is not
easy to locate accurately the asymptotic limit by considering
a single curve. Depending on the investigated thermodynamic
state, the fluctuations are more or less important. In the worst
situation that we encountered, the dispersion between the
single curves was about 10%. On the other hand, the mean
of these eight curves converges nicely to an estimation of
the shear viscosity value, η̄. Thus, for each state point, we
performed 8 runs obtained in the same way and we estimate
the statistical uncertainty to be about 5%.

We checked the influence of the number of particles on
the behavior of the SACF. No significant effect of N was
observed, especially if N � 1000 as confirmed by several
studies [28,31]. However, increasing the number of particles
permits us to reduce the pressure and temperature fluctuations
which scale as N−1/2 during an NV E simulation [28].
Increasing the number of particles also has an effect on the
behavior of η(tmax). Indeed, tmax should be kept smaller than
the time needed for a sound wave to cross the box. Otherwise,
we observe a drift in η(tmax) as tmax increases correlated with
the periodic boundary conditions. Using N = 2048 allows us
to reach the plateau in η(tmax) before this effect appears.

III. RESULTS

In this section, we present our results for the shear viscosity
of liquid sodium.

A. Comparison with experimental data

Before analyzing the influences of temperature and density,
we compare our results with experimental data available in the
literature in Fig. 5. These data were obtained under pressures
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FIG. 5. Viscosity as a function of temperature along the liquid-
gas coexistence border. Comparison between experimental (stars [8],
triangles [32]) and our simulation data. Solid lines are fits obtained
using Kaptay’s expression.

close to the atmospheric one (as the sample was sealed into
a container). Under normal pressure between melting and
boiling points, the isobaric line is very close to the liquid-gas
coexistence border. The simulation results were obtained along
this coexistence line up to 2000 K. Data given by Ewing
et al. [8] (stars) were presumably smoothed by these authors,
in contrast to the results of Godfrey et al. [32] (triangles).
Fluctuations in Godfrey et al. data are due to the low viscosity
which makes accurate measurements difficult. Nevertheless,
both experimental studies show similar results.

Comparing simulated and experimental shear viscosity,
there clearly appears a shift between both sets of curves.
The relative difference may seem rather high, but it should be
considered that sodium viscosity is very low and the difference
is in fact only about 4 × 10−5 Pa s. This difference may be
due to inaccuracies in the description of the interactions. It
should also be recalled that due to chemical reactivity of
sodium, the viscosity is indirectly measured from the damping
of the oscillations of a container filled with fluid. These
measurements are very delicate and, surprisingly, date back
to the 1960s for the most recent, to the best of our knowledge.
Moreover, according to Kasama et al. [33], viscosity of
liquid metals is very sensitive to impurities. For instance, the
viscosity of Hg is increased 8% by the addition of 1 at. % of
Ag. Similarly, adding 1 at. % of P or S divides iron viscosity
by 2. Consequently, even if the pair potential is certainly the
most important source of discrepancies, a need for updated
experimental data of the viscosity of this metal is great.

On the other hand, notwithstanding the above-mentioned
shift, our data nicely reproduce the variation of the viscosity
along this line and we believe that they are appropriate to
discuss temperature and density dependence of this physical
quantity.

Kaptay [34] proposed an equation which is able to model
the viscosity of pure liquid metals at their melting point and
also its variation with temperature under normal pressure.
Two competing concepts previously introduced to describe the
temperature dependence of viscosity, namely activation energy

and free volume, have been unified and combined thanks to
Andrade’s equation [35] in order to elaborate the following
relation:

η = A
ρ2/3T 1/2

M1/6
eBTm/T , (7)

where η, M , and Tm are viscosity, molar mass, and melting
temperature of a given metal, respectively, ρ and T being the
mass density and temperature at the considered state point.
The semiempirical parameters A and B appeared to be nearly
the same for all the metals considered.

In Fig. 5, we have also drawn the curves fitted to the
experimental data of Ewing and to ours using Eq. (7).
This relation reproduces nicely the behavior of the shear
viscosity along the coexistence line even up to temperature
as high as 2000 K. Of course, parameters A and B have
different values for each data set: we obtain A = 1.50 × 10−8

[J
1
2 (K mol)−

1
6 ] and B = 2.63 for Ewing’s data and A =

1.01 × 10−8 and B = 2.78 for our simulation data. The slight
difference between both sets of parameters values is first due
to the shift existing between both curves, but also to the
temperature range on which the fit was performed. Indeed,
experimental data of Ewing are known on a much smaller range
[416–959 K] than our simulations performed over the [370–
2000 K] interval. If we restrict the fit of the simulation data to
the same temperature range, we obtain A = 1.125 × 10−8 and
B = 2.66. Consequently, Kaptay’s relation seems to model
correctly the behavior of the viscosity along the liquid-vapor
coexistence curve.

However, there is an implicit dependence between tem-
perature and density along this line and it appears that this
expression is not able to separately take into account density
and temperature dependence. In Fig. 6, we have plotted our
results along an isochoric line and tried to fit them using
Eq. (7). It appears that this relation does not properly reproduce
the evolution of the viscosity over a large temperature range.

FIG. 6. Viscosity as a function of temperature along the isochoric
line ρ = 900 kg m−3. Symbols are simulation results. Red dashed line
corresponds to the fit with Kaptay function, while black solid line is
the fit with the expression proposed in Eq. (8). Green dash-dotted
and blue dotted curves correspond to other expressions discussed in
the text.
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In fact, the validity of this relation is limited to a specific
range of the phase diagram, namely close to the melting point
and under relatively low pressures. According to Kaptay, the
validity of the expression is limited to pressures lower than
100 bars, i.e., close to the liquid-gas coexistence. Within the
scope of our study, the pressures are much higher than this
limit (at a density of 2000 kg m−3, the pressure is about
0.2 Mbar). Equation (7) also does not correctly reproduce the
very low density behavior. Along an isotherm, if density tends
to zero, this function tends to zero. However, according to the
Chapman-Enskog solution of the Boltzmann equation [35],
the viscosity must tend to a finite constant.

Thus, Kaptay’s relation can only be applied in a very
limited region of the phase diagram and around the liquid-gas
coexistence. In the following, we propose a relation that
permits us to separately study the influence of temperature
and density on the viscosity and that is valid in a large region
covering the liquid state.

B. Temperature dependence

The shear viscosity of sodium is shown in Fig. 7 as
a function of temperature. Nine isochoric lines are plotted
corresponding to state points represented in Fig. 2. At
ρ � 900 kg m−3 the curves have the same typical behavior:
as temperature increases, viscosity decreases quickly at low
temperatures, reaches a minimum, and increases slowly in the
high-temperature region.

Such a qualitative behavior is expected from the asymp-
totic behaviors of Kaptay’s relation and confirmed by ex-
perimental measurements [36] on argon. As explained by
Meier et al. [37], it results from the interplay between
three contributions to viscosity (kinetic-kinetic ηkk , kinetic-
potential ηkp, and potential-potential ηpp terms). They showed

FIG. 7. Viscosity of sodium, η, as a function of temperature for
different isochoric lines. Black solid lines correspond to the fitting by
the relation proposed in Eq. (8). The minimum of each fit is pointed
out by stars located on the red dotted line. Inset: Same study for
Lennard-Jones model fluid as done by Meier et al. [37] and completed
by us. Same color code and symbol are used.

that ηpp (which quickly decreases with T ) dominates at
high densities, contrary to the gas region where ηkk (which
slowly increases with T ) is the largest contribution to the
viscosity.

At low densities, where the interaction contribution be-
comes negligible, the kinetic part increasing with temperature
prevails. Even if we could not reach too low densities due to
the metal-to-nonmetal transition, this is clearly recovered at
the lowest density displayed (ρ = 637 kg m−3) whose curve is
parallel to the zero-density viscosity η0. These limiting values
were determined from a linear function developed on the basis
of several low-density data [38–40] and proposed by Verfaftik
et al. in Ref. [27] (Chap. 7.3, p. 822). The same slope is
observed between both curves indicating how, at low densities,
the viscosity depends on the temperature. Compared to η0, the
shift shows the density dependence.

At higher densities, this kinetic contribution still dominates,
provided that the temperature is high enough. On the other
hand, at low temperatures, the potential contribution due
to the interatomic interactions prevails. As this contribution
decreases with T , an increase of the temperature leads to a fast
decrease of the viscosity. This is a rather intuitive behavior if
one considers that the increase of temperature leads to a raising
of thermal excitation that hinders cohesion of the material.

Thus, except for the lower densities, a minimum in the
viscosity is found for each isochoric line. In Fig. 7, they are
indicated by stars that are located on the red dotted curve.
In the work of Meier et al. [37] on the Lennard-Jones fluid
(see inset in Fig. 7), the same behavior was observed along
isochoric lines. However, Meier’s data suggest that a minimum
no longer exists at the highest densities. As they were limited to
rather low temperatures, we have performed some simulations
of Lennard-Jones fluids at ρ∗ = 0.95 and temperatures up to
T ∗ = 10. The viscosity values that we obtained are identical
in the temperature range they studied (confirming if necessary
that our calculations of the viscosity by the Green-Kubo
method are correct). Moreover, a minimum is observed even at
the highest density, provided that the temperature range is wide
enough. Thus, the occurrence of a minimum in the temperature
dependence of the viscosity at constant density seems to be a
general feature exhibited by both metallic and rare gas fluids
at liquid densities.

As we mentioned above, Kaptay’s relation qualitatively
reproduces the temperature dependence of viscosity, but it
is not satisfactory on a quantitative point of view (see Fig. 6).
This is also observed in the case of the Lennard-Jones fluid.
This is partly due to the fact that part of the temperature
dependence is implicitly included in the density term as it
varies with T . Moreover, Kaptay’s relation has been developed
for a limited temperature range and it is not surprising that its
extrapolation fails in reproducing the data. The discrepancy
mainly concerns the high-temperature part of the curves where
the T 1/2 term seems to be unsatisfactory. Let us consider the
Stokes-Einstein relation which will be discussed in detail in
Sec. III D. According to this relation, η is proportional to T/D,
with D the self-diffusion coefficient. On restricted temperature
ranges, the temperature dependence of D is often depicted as
an Arrhenius law, A exp(−B/T ). Thus, a first guess could be
to consider the following relation: AT exp(B/T ). In fact, it
also appears to be unsatisfactory (see Fig. 6). This has to be
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FIG. 8. Parameters A, B, C as functions of the density ρ. Red
solid lines correspond to fit of the data as described in the text.

related to the known deviation of the D = D(T ) dependence
from an Arrhenius law [16].

Having tried several expressions involving a limited number
of adjustable parameters, we noticed that the best agreement
was obtained over the whole density domain with the following
expression:

η(T ) = (AT 2 + C)eB/T , (8)

where A, B, and C are parameters depending on the density.
As seen in Fig. 7, this function reproduces both qualitatively
and quantitatively the temperature dependence of the viscosity
of sodium as well as that of the Lennard-Jones fluid (see inset).
Asymptotic behaviors are well accounted for in both the low
and high density limits of the investigated temperature interval.
We did not succeed in finding phenomenological or theoretical
justification for this expression and we guess that this point
could stimulate further research.

Each isochoric line was fitted by this new function and
parameters A, B, and C are plotted as functions of density
in Fig. 8. Such a smooth behavior of the fitting parameters
with density leads us to believe that the agreement between
simulation data and fitting function could be not fortuitous.

The parameter C has a linear behavior

C = αC + βCρ, (9)

TABLE I. Parameter values of Eqs. (9), (10), and (11).

A(K−2) B (K) C (Pa s)

α 8.12 × 10−7 −6.03 × 108 6.56 × 10−6

β 8.54 × 10−13 1.289 × 103 1.11 × 10−7

whereas both A and B are modeled by

A = αA

ρ2
+ βA, (10)

B = αB

ρ2
+ βB. (11)

The values of the parameters are summarized in Table I.

C. Density dependence

Replacing parameters A, B, and C by their expressions in
Eq. (8) and rearranging it, we obtain a relation which depends
simultaneously on temperature and density:

η(ρ,T ) =
[(

αA

ρ2
+ βA

)
T 2 + (αC + βCρ)

]
e

( αB

ρ2 +βB )/T
. (12)

In Fig. 9, shear viscosity is plotted as a function of density
along ten isotherms. Viscosity increases with density. This
is rather intuitive since increasing density implies that the
particles are getting closer to each other, leading to an increase
of collisions and, consequently, of viscosity. A linear behavior
in the high-density range of each isotherm can also be noticed.

Since viscosity values at low density are not accessible
below the metal-to-nonmetal transition (ρ < 2.5ρc), it is
difficult to have a clear picture of the density dependence
below this limit. However, the behavior of viscosity below
1000 kg m−3 seems to depart from linearity. This is consistent

FIG. 9. Viscosity, η, of sodium as a function of density, ρ, along
different isotherms. Symbols: Simulation results; black lines: results
of Eq. (12) with parameters of Table I. Inset: Same plot, but for
densities lower than 900 kg m−3.
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with the fact that viscosity must tend to a nonzero constant at
zero density according to the Chapman-Enskog theory.

In order to clarify this tendency, we can consider the
study of Meier et al. [37] on the Lennard-Jones fluid. In this
system, there appears a transition between high and low density
regimes. At low densities, the viscosity tends to a constant
whereas at high densities, it increases sharply and seems to
follow a linear law (this last point is difficult to confirm
from their original figure). At intermediate densities (about
2ρc–2.5ρc), isotherm curves intersect and this is recovered
in our results for sodium. But, in our case, this range is
difficult to highlight as we are limited by both liquid-vapor
and metal-to-nonmetal transitions. Below the crossing point,
viscosity increases with temperature while it decreases at
densities above this point, in full consistency with our results
displayed in the previous section.

In Fig. 9, we have also drawn the curves obtained from
Eq. (12) using parameter values deduced from the fit of
isochoric lines and summarized in Table I. We first observe that
viscosity values along isotherms predicted by this equation
are in good agreement with our simulation data, except at
the smallest densities. The discrepancies are due to a wrong
asymptotic limit of this function which should tend to a
nonzero value as the density tends to zero as we mentioned
above. Indeed, if T is kept constant, Eq. (12) can be rewritten as

η(ρ) =
(

a

ρ2
+ b + cρ

)
ed/ρ2

. (13)

This equation is numerically consistent with a linear behavior
of isotherms at high densities, but does not tend to a finite
constant as the density tends to zero (here, d < 0).

Once again, this has to be attributed to the fact that we
cannot investigate the low-density part of the phase diagram,
so that our expressions of the density dependence of the
parameters A, B, and C should not be extrapolated to this
limit. However, with parameter values of Table I, Eq. (12)
reproduces qualitatively and quantitatively well the viscosity
of liquid sodium at any temperature between 700 and 7000 K
(corresponding to [0.28Tc,2.8Tc]) and any density between
900 and 2000 kg m−3 (corresponding to [3.9ρc,8.7ρc]).

D. Stokes-Einstein relation

The well-known Stokes-Einstein (S-E) relation [41] relates
two fundamental dynamic properties, the diffusion coefficient
(D) of a particle and the viscosity (η) of the liquid. For a
Brownian particle in a solvent, it states

D = kBT

CπηR
, (14)

where C = 6 for the slip boundary condition, and C = 4 for
the stick boundary condition [30], and R is the radius of the
particle. In a dense fluid, this equation is found to be quite
valid, when an appropriate definition of R (now called the
hydrodynamic radius [30]) is taken, and with the constant
C depending on the liquid considered [41]. An approximate
theoretical investigation [41] suggests that with R being the
so-called Wigner-Seitz radius

RWS = (3/4πn)1/3, (15)

n = N/V being the number density, Eq. (14) becomes

D = kBT

4πηRWS

. (16)

Another theoretical proposition also suggests RWS for the
radius, but gives C = 3 for dense liquids [42,43]. Tests done on
Lennard-Jones liquids give C = 3.1, very close to 3 [41,44].
On the other hand, for a hard-sphere fluid, predictions based
on the Enskog kinetic theory indicate C depending slightly on
the volume fraction, in the range 3.2 < C < 4.8 [44]. Here
we check this relation for liquid sodium, in the wide region of
the phase diagram explored. Besides RWS , we also explore two
other possibilities for R, namely R1 = rmin/2, or R2 = rmax/2,
with rmin the distance at which g(r) takes off from 0, and rmax

the location of its main peak.
The diffusion coefficient (D) is obtained from the mean-

squared displacement of the atoms. Unlike the viscosity, D

depends on the system size [45]; the corrected expression for
D is

D = DPBC + 2.837kBT n1/3/(6πηN1/3), (17)

where DPBC is the finite-size diffusion coefficient (using the
periodic boundary conditions). We rewrite Eq. (14) as

C = kBT

πηRWSD
, (18)

and we investigate the values of C obtained from different
hypothesis for R, using DPBC and the corrected D.

Our results are gathered in Fig. 10. Panel (a) shows the
C values vs T along the liquid-gas coexistence line. We can
see that using R = RWS and the corrected D, we obtain C

values which are relatively constant, and included in the range
3.5 < C < 4.7. There is a slight tendency for C to increase
with T , but this increase is not strong (not exceeding 1.2). The
other hypotheses for R, on the other hand, seem to predict C

values that are too large compared to the known values for
the Lennard-Jones dense liquids. Furthermore, criteria based
on g(r) are less handy than the one based on n, for a given
system.

Panel (b) displays C values vs T obtained along an isochoric
line (ρ = 900 kg/m3). This time again, using R = RWS and
corrected D, we obtain C values which are stable, with C

about 3.5.
In panel (c) is shown C vs ρ for one isotherm (T = 700 K).

Except the first few points, C is remarkably stable and is
about 3.3 for a relatively large range of density (1000 < ρ <

1800 kg/m3).
In conclusion, our investigation on the S-E relation indi-

cates that such a relation, although not rigorously valid in
dense liquid sodium, is however semiquantitatively correct.
More precisely, if we adopt the Wigner-Seitz radius for the
hydrodynamic radius, using a value of C = 3.6, we can obtain
the diffusion coefficient D within about 30% error, knowing η

and using the S-E relation Eq. (14).
Thus, this relation can be quite useful for experimentalists

investigating these liquids as viscosity is easier to measure than
the diffusion coefficient, but also conversely for simulations
as the diffusion coefficient can easily be computed.
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FIG. 10. Parameter C vs T along the liquid-gas coexistence line (a); vs T along the isochoric line ρ = 900 kg/m3) (b); vs ρ along the
isotherm T = 700 K (c).

IV. CONCLUSION

In this study, we have applied equilibrium molecular
dynamics simulations to the study of viscosity of liquid sodium
over a wide range of the phase diagram. We estimate the
statistical accuracy of our results to 5%. Close to the liquid-gas
coexistence, they fairly well agree with experimental data.
The accuracy of the description of the interactions is surely
the main cause of the difference. Nevertheless, the need for
updated experimental data is patent.

Along isochoric lines, viscosity presents a minimum as tem-
perature increases, except at the lowest densities investigated.
On the other hand, it monotonically increases along isotherms.
While Kaptay’s relation satisfactorily describes the evolution
of viscosity along the liquid-vapor coexistence curve, it fails
to disentangle temperature and density influences. Therefore,
we proposed a relation which, in the investigated range,
qualitatively and quantitatively describes the viscosity of liquid
sodium.

Interestingly, the same qualitative behavior has been re-
ported for the Lennard-Jones fluid and the relation proposed
in this study seems also able to describe the viscosity of rare
gas fluids. Universal behaviors of many physical properties
of liquid alkali metals have already been reported. It could
be interesting to further extend the study of the influence
of temperature and density on the viscosity to other fluids,
especially metallic ones, because of their potential practical
use.

Finally, we also investigated the validity of the Stokes-
Einstein relation. We observed that it applies to liquid sodium
within 30% accuracy with C = 3.6 provided that the Wigner-
Seitz radius is used as the effective hydrodynamic radius.
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