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Dramatically growing shear rigidity length scale in the supercooled glass former NiZr2
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Finding a suitably growing length scale that increases in tandem with the immense viscous slowdown of
supercooled liquids is an open problem associated with the glass transition. Here, we define and demonstrate the
existence of one such length scale which may be experimentally verifiable. This is the length scale over which
external shear perturbations appreciably penetrate into a liquid as the glass transition is approached. We provide
simulation based evidence of its existence, and its growth by at least an order of magnitude, by using molecular
dynamics simulations of NiZr2, a good fragile glass former. On the probed timescale, upon approaching the glass
transition temperature Tg from above, this length scale ξ is also shown to be consistent with Ising-like scaling,

ξ ∝ ( T −Tg

Tg
)
−ν

, with ν ≈ 0.7. Furthermore, we demonstrate the possible scaling of ξ about the temperature at
which super-Arrhenius growth of viscosity, and a marked growth of the penetration depth, sets in. Our simulation
results suggest that upon supercooling, marked initial increase of the shear penetration depth in fluids may occur
in tandem with the breakdown of the Stokes-Einstein relation.
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Introduction. When a liquid is cooled sufficiently quickly
to temperatures well below its melting temperature, nucle-
ation is avoided and the transition to the crystalline state,
possessing both extended long-range structural order and
absolute minimum free energy, is bypassed. A liquid main-
tained beneath its melting temperature exists in metastable
equilibrium and is said to be supercooled. A supercooled
liquid lacks the long range structural order characteristic of
the underlying crystalline ground state, instead maintaining
the amorphous atomic arrangement typical of a liquid. As
the temperature of the supercooled liquid is lowered further,
the viscosity (and relaxation time) increases dramatically, by
up to some 14 decades over a temperature range as small
as 100 K. Eventually, a temperature Tg is reached at which
the viscosity (and hence, relaxation time) is so large (>1013

Poise/100 s) that structural rearrangements cease to take place
on any reasonable timescale, and the liquid behaves rigidly
in response to fluctuations and perturbations. By definition,
the liquid is then out of equilibrium, and this is deemed
the glass transition. The ‘transition’ occurring at Tg is in
fact not a thermodynamic transition but instead a kinetic
crossover. There is no thermodynamic driving force (energy
saving) associated with Tg , and a structural rearrangement and
associated symmetry breaking is apparently absent. In addition
to the smooth emergence of rigidity at Tg , the glass transition
is accompanied by a rich phenomenology and wide range of
interesting features that cannot be enumerated here but are
discussed in a variety of exceptional reviews, e.g., Refs. [1–6].

The two most puzzling aspects of the glass transition are
the onset of structural rigidity without apparent long range
structural order (with associated long-time, nonzero shear
modulus), and the dramatic, faster than Arrhenius increase
of the viscosity/relaxation time found in the so-called fragile
glass formers [7,8]. Both features seem to call for, and likely
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require, the existence of a growing length scale, intimately
connected to the propagation of some form of amorphous order
or increasingly cohesive, extended network. In fact, while the
notion of a growing activation energy barrier is clearly tied to
cooperative motion, even more fundamentally, simple intuitive
reasoning suggests that a dramatically growing (or diverging)
timescale to relaxation should be coupled to a similarly
increasing (and possibly diverging) length scale. Recently,
rigorous bounds mandating the existence of a concomitant
growth of spatial length scale with relaxation time have been
proven to exist [9].

The notion of a growing length scale underlying the
dynamic slowdown of the glass transition is a principle feature
of most theories of glass formation, such as that of Adam and
Gibbs, random first order transitions, mode-coupling theories,
kinetically constrained models, and others [1–6,10–18]. Some
of these theories predict an underlying phase transition at
a temperature below Tg , with the glass transition serving
as a kinetic “ghost” preceding the actual thermodynamic
change. Others posit that there is no true thermodynamic
transition besides the melting/freezing transition and that the
length scale corresponds to a geometrically arrested structural
ordering which is still capable of bringing about rigidity.
As such, the quest to find physical, verifiable, and suitably
increasing length scales has been underway for decades.
Many proposals for appropriate length scales have been made
including those associated with liquidlike defects, the lowest
eigenvalues of the relevant Hessian matrix for a system, various
point-to-set lengths, elasticity lengths [19–33], and dynamical
heterogeneity lengths [34–42] and computer vision methods to
ascertain both static and dynamic length scales [43]. “Hybrid”
correlation length scales, that have mixed static/dynamical
characteristics, have also been found, as in Ref. [44]. Each
of the previously proposed length scales is exceptionally
interesting in their own right (and perhaps many can eventually
be found to arise from the same underlying mechanism), but
many display the same drawbacks. Previous numerical and
experimental work has shown that these length scales evade
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experimental verification, and/or do not display an exceptional
growth upon approach to Tg . For instance, in the case of the
length scale investigated in Ref. [44], the behavior of the length
scale and underlying physics bears a passing resemblance to
the investigation done in this paper, but that length scale,
which arises in response to internal perturbations associated
with thermal fluctuations, requires knowledge of individual
particle displacements, making it difficult to experimentally
detect. It is natural to expect that propagating amorphous order
should be able to be revealed experimentally, and our proposed
correlation length has the benefit of being readily measurable
with methods beyond scattering experiments.

It is also worth noting that in Ref. [45], the authors found
evidence of a decreasing correlation length upon cooling
toward the glass transition temperature Tg in kinetically strong
glassforming liquids. This was found to be indicative of
a lambda transition in the vicinity of the glass transition.
It was further suggested that for kinetically fragile liquids,
the behavior would be the opposite, with the correlation
length increasing upon approach to Tg . While this general
behavior is consistent with our findings, we found no evidence
suggestive of a lambda transition in this system, and further,
the correlation length investigated in Ref. [45], was purely
dynamical in nature.

In light of the above discussion, and based upon suggestions
made in previous theoretical work [43,46], we perform molec-
ular dynamics simulations of NiZr2, an excellent representative
of a fragile glass [47]. We provide evidence for the rapid
increase of the shear penetration depth, defined as the length
over which a supercooled liquid rigidly responds to externally
imposed forces. We find that the near divergence of the
penetration depth as the system becomes glassy is not far off
the mark of Ising-like scaling.

The Shear Penetration Depth. In ordinary critical phenom-
ena, the correlation length scale is defined as the typical spatial
extent of a fluctuation of the thermodynamically relevant order
parameter. It can also be interpreted as the average length over
which a perturbation by the appropriate conjugate “generalized
force” will appreciably propagate. For example, in the Ising
model, the correlation length corresponds to fluctuations in
the typical size of magnetic domains (the order parameter is
the magnetization �M), and it also corresponds to the distance
over which an applied magnetic field �B (the conjugate force)
will influence the system. As it is known that in crystalline
solids the rigidity is due to long range order, we can apply
this idea to the glass transition problem. In this case the
ordering should be short range at temperatures just below
melting and grow as temperature as lowered. We can quantify
this by subjecting the liquid to a shear perturbation on the
boundary and tracking how it penetrates the liquid transverse
to the applied stress. Liquids, by definition, are capable of
rearrangement to dissipate shear stress; a shear force applied
to the top of a liquid will only propagate appreciably through
a finite number of layers below the perturbation before fully
decaying. Intuitively, one would expect that a high temperature
liquid, having relatively low viscosity, would respond to the
external force in a manner such that only the forced layer
experiences a substantial displacement relative to the opposite
boundary. As the temperature is lowered and the viscosity
increases, one expects an associated increase in the liquids

FIG. 1. Representation of the proposed response of general super-
cooled fluid systems. The solid lines represent the original box shape
before perturbation. The dashed regions represent the successive
layers that respond to the perturbation at temperatures above and
around Tg . At high temperatures only the layers experiencing the
external stress move appreciably, but as temperature T is lowered and
the cooperativity becomes pronounced, the perturbation is transmitted
deeper into the material, reflecting increasing rigidity. Note that
the extent to which the layers move as depicted has been greatly
exaggerated for clarity.

effective, short-lived rigidity. This, we argue, corresponds
with increasing structural ordering and kinetic cohesion of
networklike structures in the liquid. At moderate supercooling,
then, one expects a deeper penetration of shear perturbations
and associated displacements sustained by layers of the liquid
that are increasingly distant from the applied perturbation.
As depicted in Fig. 1, the shear is applied to the top layer
of the simulation box, transverse to the vertical (z) direction.
The penetration depth is defined as the distance (along the z

axis) up to which appreciable effects of shear are observed.
At Tg when solidlike rigidity has set in, one expects that
the whole block of material will roughly slide together,
such that the penetration depth is the length of the material.
This is consistent with results that show the continuous
emergence of a finite shear modulus for temperatures below
Tg [48]. This process is pictured, schematically, in Fig. 1.
Ultimately this length scale is agnostic to the specific type
of structural ordering but can be related to cooperativity and
the idea of a divergent correlation length in ordinary critical
theory.

Models and Methods. Molecular dynamics (MD) simu-
lations were employed using the LAMMPS package [49].
The atoms in the simulation evolved under the influence of
a semiempirical Finnis-Sinclair type embedded atom model
potential created by Mendelv et al. [50] with periodic boundary
conditions. The parameters and coefficients associated with
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the potential were fitted using x-ray diffraction data as well
as enthalpy of mixing values, and volume measurements in
the liquid state. This potential has been shown to excellently
reproduce both the high temperature liquid as well as glassy
states of NiZr2 [50].

The simulations were run in the NPT ensemble with
N = 5000 atoms and a target external pressure of P =
0. Thermostatting and barostatting were employed using
a Nose-Hoover thermostat, and barostat, respectively, and
the velocity-verlet algorithm was utilized to integrate the
equations of motion. A 5 fs timestep was employed. The initial
configurations were generated randomly and the atoms were
then allowed to melt and evolve naturally for 0.25 ns at a
temperature of 2200 K to allow for equilibration. The system
was then quenched to various target temperatures ranging from
300 K up to 1900 K using a quench rate ofQ = 1013 K/s. After
the quench, the system was allowed to evolve unperturbed for
an additional 0.1 ns. The process was repeated, starting from
independent initial configurations, for Tg as well as all sampled
temperatures below Tg and some representative temperatures
above.

As the glass transition is a kinetic phenomenon without a
thermodynamic driving force, the glass transition temperature
Tg is not a constant, and weakly depends on cooling rate
and external timescale. Therefore, one has to be careful in
identifying its precise location. Typically, various thermody-
namic parameters show a crossover at the glass transition,
associated with falling out of equilibrium (the system loses
its translational degrees of freedom on the timescale of
observation). One such property that shows a change in
behavior at the glass transition is the volume. The temperature
dependence of the volume shows a “kink” at the glass transition
temperature Tg (the thermal expansion coefficient, α ≡ 1

V
∂V
∂T

,
has a discontinuity), providing an efficient way to determine
Tg . The temperature dependence of the volume of our system
during a quench to 300 K is depicted in panel (a) of Fig. 2.
There appears to be a subtle kink in the vicinity of T ≈ 700 K.
This is in good agreement with the results in panel (b) of the
same figure, which was produced by the author of the potential
in Ref. [50], as well as previous numerical work performed
under similar protocols [51].

In order to assess that our system is behaving as expected
before applying shear stresses, we examine the behavior of the
radial distribution functions at various temperatures. These
results are shown in Fig. 3. It is clear that the system behaves
as expected as the glass transition is approached, and in
comparison with Ref. [50], we see that the radial distribution
functions (RDFs) measured in this work retain the overall
shape and placement of the peaks. The height of the first peak
(and behavior of the splitting of the first peak), however, is
slightly different from those in Ref. [50], and we attribute this
to the discrepancy in quench rates.

We modeled the external shear stress by defining a 4-
angstrom-thick layer at the top of our simulation box and
applying an external force in the x direction on the atoms in
this layer. In order to avoid fracturing in such a small system
size at low temperatures, a force value of only 0.2 eV/A was
used. A stronger force would be expected to make the effects
more dramatic, but system size limitations did not allow for
higher values. The force was left active for 100 timesteps to

FIG. 2. Panel (a): Specific volume as a function of temperature
for our simulated system. Panel (b): Specific volume as a function of
temperature. Reproduced from Ref. [50].

attempt to approximate an impulsive kick at the top of the box.
No external forces were applied to the bottom of the box. After
an observation time of τo = 16 000 timesteps, displacement
data was extracted.

Measurement Results. To quantify the depth of penetration
of the shear stress, we plot the displacement of each atom
in the shear direction (x direction) versus its position in the
transverse height dimension (z direction). The displacement
represents the net movement in the shear direction from the
timestep before the external shear stress was applied, up to the
observation time τo (as described in the methods section). The
height of each particle corresponds to the vertical layer it is in
at the observation time. Due to the periodic boundaries, only
atoms in the layers from z = L

2 to z = L at the observation
time were considered. Figure 4 shows displacement data for
four representative temperatures, (i) deep in the glassy phase
(300 K), (ii) at Tg (700 K), (iii) in the moderately supercooled
regime (1300 K), and (iv) above Tmelt (1500 K). Thermal
effects tended to produce large motions in the height dimension
at temperatures above Tmelt, but the effects were not large
enough to wash out the effect of shear penetration except
at very high temperatures (1700–1900 K). Figure 5 serves
to quantify the impact of thermal noise. In panel (a), the
standard deviation of displacement (at the observation time)
in the direction of applied shear is plotted as a function of
the temperature. As expected, the thermal noise decreases
with decreasing temperatures becoming very small as Tg is
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FIG. 3. Radial distribution function at a temperature of T =
300 K < Tg (top panel), at moderate supercooling with T =
1100 K (middle panel), and above the melting temperature at
T = 1500 K (bottom panel).

approached. In panel (b), the average magnitude of the particle
displacements in the height (z) direction is plotted as a function
of temperature. It is clear from panel (b) that large scale thermal

FIG. 5. Panel (a): Plot of standard deviation of displacement in
the direction (x axis) of the applied shear as a function of temperature.
Panel (b): Average displacement in height dimension (z dimension)
as a function of the temperature.

motion may play a role in “washing out” the shear penetration
depth at the highest temperatures measured.

The general response function R of our system to the
externally imposed shear is a function of distance in the z

direction to the imposed shear, temperature T , and observation

FIG. 4. Typical data at four representative temperatures both above and below Tg (≈ 700 K). The red lines correspond to the standard
deviation at the two boundaries and center of the material. It is noteworthy that they are significantly tighter than the data seems to suggest
at this level of zoom. The black lines are the lines of fit from which the slope is extracted to define the length scale. Note the dramatically
changing behavior as T is lowered.
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FIG. 6. Displacement data for a random configuration at 1700 K.
Panel (b) is the displacement for the observation time (16 000
timesteps), panel (a) is the data at an earlier time (3000 timesteps after
the shear is turned off). As panel (b) shows, at high temperature the
shear induced displacements appear to be far smaller at the standard
observation time used in this paper. Nevertheless, at earlier times, as
seen in panel (a), the displacements are much more noticeable.

time τo;

R = R(z,T ,τo). (1)

In this paper, we chose a constant observation time τo and
varied the temperature to ascertain the penetration depth along
the z axis. The penetration depth of the applied shear ultimately
has some value depending on the temperature. However, our
ability to extract the exact value depends on the observation
time chosen. For sufficiently short observation times, the
effects of the externally applied shear cannot penetrate the
system at the lowest temperatures (near and below Tg).
Therefore, the observation time has to be sufficiently long to
capture the effect at low temperatures. As shown in Fig. 6, for
very long observation times at high temperatures, the effects of
the external shear will be nil. Therefore, using an observation
time which is very long would lead one to conclude a much
deeper penetration depth at high temperatures (see Fig. 6).
Hence, choosing an appropriate observation time is important.
For a couple representative temperatures we investigated the
impact of observation time. In each case the duration for
which the shear force was applied was constant; for this work
we wanted to maintain an approximation of an impulsive
kick to the system. Oscillatory shears have been discussed
elsewhere. It was observed that at the lowest temperatures
(T< TA), the results showed little change when observation
times were changed by factors of two. For high temperatures,
the observation time plays a more noticeable effect. After
investigation, we found that the observation time employed
in this work was sufficient to capture the low temperature
effect of the penetration, while not losing the high temperature
impact except at the highest temperatures studied.

FIG. 7. Plot of the length scale ξ versus temperature. All
temperatures below Tg were averaged over multiple independent runs,
as were select, representative temperatures above Tg .

Typically, one would expect the displacement response to
decay exponentially with depth. As pictured in Fig. 4, at these
system sizes, the shear-induced displacement, while not very
large, is still quite noticeable. As the displacement was not
extremely large, we applied a linear regression to the data
rather than an exponential one. These fits are sufficient to
quantify the penetration depth. Fits to the data were of the
form

δx(z,τo) = m ∗ z + δ0, (2)

where we denote by δ the displacement in the shear direction
(x direction) and z the height of the layer (both measured in
angstroms). We define the rigidity length scale (the penetration
depth) as

ξ ≡ 1

m
, (3)

where m is the slope in Eq. (2). For the temperatures noted
above, the value of m was averaged over multiple runs, and
this average was used in Eq. (3) for these temperatures.

The temperature dependence of the length scale (ξ ) is
shown in Fig. 7. A dramatic growth of ξ with decreasing
temperature is evident. The first notable penetration of the
shear, beyond the layer to which the force was applied,
occurs at a temperature marked TA(≈2Tg) [52]. Below this
temperature super-Arrhenius growth of the viscosity may
be anticipated based upon collective effects [52–55]. The
sudden, monotonic increase of ξ at temperatures below TA,
provides direct support to earlier numerical studies, which
found that metallic liquids begin to develop solidlike features
once they are cooled below TA [52,53]. These solidlike features
include the breakdown of the Stokes-Einstein relationship,
exponential stretching of the relaxation functions, and the
onset of cooperative structural rearrangements during the
liquids relaxation process [1]. Indeed, TA does appear to serve
as a crossover temperature below which the liquid begins
to exhibit a substantial rigid response to external forces,
though it is a local and transient response. Putting all this
together, our simulation results allow us to predict that marked
growth of the shear penetration depth may commence at the
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FIG. 8. Plot of the average value of the slopes m at each of
the measured temperatures along with their associated standard
deviations σ (when multiple runs were performed).

same temperature as the breakdown of the Stokes-Einstein
relation in real supercooled liquids. The penetration depth
increases rapidly as the liquid is supercooled toward the glass
transition temperature Tg . Below the latter temperature, the
material is glassy and exhibits structural rigidity on all practical
timescales, such that shear perturbations propagate the length
of the material and appear to diverge.

As discussed previously, we performed multiple (typically
six) independent measurements at all temperatures T � Tg ≈
700 K, as well as most of the representative temperatures
above Tg (300–800, 1300, 1400, 1700 K). At each of these
temperatures, averaging was done to determine the slope m in
the fit of Eq. (2). The apparently periodic nature of ξ below
Tg can be attributed to noise due to the length scale being
essentially divergent to the system size at these temperatures.
This point is vividly made in Fig. 8, which depicts the average
slopes m as a function of temperature. The error bars on
the points with multiple runs corresponds to the standard
deviation in slopes. We see that, at temperatures near and
below Tg , the combination of the average value and associated
error bars lead to m being virtually indistinguishable from
zero, consistent with the divergence of the penetration depth
beyond the system size at the glass transition. It should also
be immediately noticeable that the data points associated with
the value of the penetration depth at temperatures T = 600,
650, and 750 K, are not plotted in Fig. 7. This is because, as
seen in Fig. 8, the signal to noise ratio ( σ

m
) for these points

was a factor of three for the data point at 600 K and a factor
of ten for the data points at 650 and 750 K. This large relative
error is due to the fact that the length scale ξ is exceedingly
large as the corresponding average slope m is very small,
and in fact virtually indistinguishable from zero [see Eq. (3)].
This corresponds to total penetration of the shear to beyond
the system size, and the fluctuations about m = 0 are to be
expected due to ordinary thermal effects. Because of the large
relative error in the aforementioned data points, we removed
these data points from Fig. 7 so as to not mask the overall
monotonic increase of ξ with incredible values. It may at first
seem concerning that the data point at T = 750 K is suggestive
of near divergence considering it is above Tg . This is, in fact,
not an issue, as the value of Tg is not precise, and very likely

FIG. 9. Lower bound ξLB on the shear penetration depth. See text.

falls within the T = 700 to 750 K range for this system size
and quench rate. Also, the close proximity to Tg and limitations
of resolution at this system size would lead to the impact of the
arrest at the glass transition strongly influencing temperatures
asymptotically close to Tg . Clearly, Fig. 8 serves not only to
explain the fluctuations but also reinforces the idea that the
penetration depth appears to diverge to the system size in
the vicinity of Tg and is perhaps the most consequential and
rigorous result in this paper.

As a lower bound on the shear penetration depth, in Fig. 9
we plot

ξLB ≡ 1

m + σ
. (4)

Because this is a lower bound, we can strongly assert, based
on our data, that the penetration does indeed show dramatic
increase upon supercooling. For temperatures below Tg , the
length scale is so large and slopes so small, that the observed
fluctuations of ξ may be statistical (see Fig. 8). We also
conclude that the length scale becomes, at least, considerably
larger than the system size at Tg , and may in fact diverge.
For the impulsive kick we applied this will remain the case at
all longer timescales of observation. However, if one were to
apply a static shear at the top of the box and left this shear on for
a time longer than the relaxation time, then even below Tg the
length may not diverge. On all practical timescales, though,
it would, not diminishing this length as a natural candidate
for the glass transition problem. The precise behavior of the
penetration depth as the duration of the static shear stress is
varied is an interesting problem, but requires a different type
of analysis, and will be addressed in a future work.

Scaling Arguments. Previous studies have examined the
behavior of various proposed length scales in the vicinity of
Tg (or the Vogel-Fulcher-Tammann temperature T0 [7,56–58].
In Ref. [29], a diverging length scale associated with liquidlike
defects at Tg produced an exponent ν = 1; This value consti-
tutes an upper bound on the exponents reported in other works.
Researchers in Ref. [59] found a critical exponent of ν = 0.875
for the largest icosahedral cluster size in a model metallic glass
former [55]. In both Ref. [60], focusing on inherent structures
in a binary Lennard-Jones glass former, and in Ref. [61], by
largely studying medium-range bond orientational order in
colloidal liquids, scaling analyses gave exponents of ν ≈ 2/3,
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FIG. 10. Power law fits to the shear penetration depth as a
function of reduced temperature (measured relative to glass transition

temperature Tg). Panel (a): ξ ∝ ( T −Tg

Tg
)
−1

. Panel (b): ξ ∝ ( T −Tg

Tg
)
−0.71

.

in rough agreement with a three-dimensional Ising exponent
(ν = 0.625(1) [62]). We performed a similar scaling analysis
of our data, fitting a function of the form

ξ ∝
(

T − Tg

Tg

)−ν

. (5)

To represent the value of the length scale at Tg itself, we
interpolated the value at T = 710 K using the line connecting
T = 800 K and T = 700 K. In addition, the data point at
T = 750 K was excluded from this scaling analysis for reasons
discussed above. When using the full range of temperatures in
applying the power law fit, we extracted an exponent of ν = 1.
This is depicted in Fig. 10(a). Decreasing the temperature
range considered in the scaling to only include temperatures
very close to Tg caused the value of the exponent ν to
decrease. This is depicted in panel (b) of Fig. 10, where
a value of ν = 0.713 was found. Clearly, as the scaling is
applied to a more and more asymptotic region around Tg ,
the value of ν appears to approach a value consistent with
Ising-like scaling. Our value is, thus, in rough agreement
with previously suggested exponents extracted by different
means. A similar study conducted in Ref. [33] studied the
high temperature (T � Tm) correlations of the anisotropic part
of the atomic level stress. In this work the authors found an
exponent of ν ≈ 0.7 for the low temperature extrapolation
of the correlations in their two-dimensional system (the high
crystallization rate at temperatures below Tm thwarted a direct
study at low temperatures). Our possible scaling may provide
further evidence of a universal nature of the length scale
at deep supercooling. As Tg is not a true thermodynamic
temperature, it is unclear what this scaling may mean, but
it may be suggestive of universality in the glass transition.

In Refs. [68,69] theoretical arguments for the scaling of the
length scale about the crossover temperature TA were provided.
It was suggested when asymptotically approaching TA from

FIG. 11. Power law scaling, ξ ∝ ( TA−T

TA
)
νA , in the asymptotic

region below the crossover temperature TA.

below, that a characteristic structural domain size l scaled as

l = τA
νA, (6)

where τA ≡ TA−T
TA

. We examined the shear penetration depth
as a function of the reduced temperature, τA, as depicted in
Fig. 11. We observed that a power law is a good fit in this
region with an exponent, νA ≈ 1.335. If the lowest temperature
(highest reduced temperature) point in Fig. 11 is removed, then
a value of νA ≈ 1.5 will be obtained instead.

Conclusion. We have defined the shear penetration depth
as the distance over which supercooled liquids can support
shear appreciably. This definition is based on a simple physical
picture of liquids as a continuum unable to globally support
shear stress. With decreasing temperature the viscous inter-
layer forces, rigidity, and the lifetime of connectivity increase.
At Tg , the glass transition temperature, these quantities mirror
those of crystals, and the material is solid. This scale has the
added benefit that it may be readily experimentally accessible.
Results from simulations on NiZr2, a typical fragile glass,
support this definition. In the current paper, we applied,
in simulatum, a shear force to the top layer of a NiZr2

system. By measuring the penetration depth, ξ , we have
demonstrated a dramatically increasing structural scale upon
supercooling toward Tg . This leads to the conclusion that
the shear penetration depth marks a very natural candidate
for the structural length scale characterizing glassy dynamics.
Furthermore, and of equal importance, the shear penetration
depth can be measured experimentally. While it might be
practically difficult, in theory, the penetration depth can be
accessed experimentally in a way that does not rely solely on
scattering, and may, therefore, be easier to investigate. This is
a major advantage for this length scale and sets it apart from
previously proposed lengths.

We ultimately believe that the shear penetration depth
is intimately connected to the structure of the supercooled
liquid. It has been shown [53,55,63–68] in extensive numerical
studies that clusters of locally preferred structural order
tend to grow and interconnect as temperature is lowered
in supercooled liquids. These clusters locally minimize the
relevant free energy and hence are stronger and more stable
to fluctuations. Interconnections of the clusters increase in
length and lifetimes [53,54,65] upon lowering temperature
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FIG. 12. Depiction of growing interconnectivity of icosahedral
clusters with supercooling in Cu36Zr64, a very similar metallic glass
former. The Cu atoms are marked red and the Zr by purple. In Panel
(a) we show the longest interconnected cluster at 1200 K. Panel (b)
shows the longest connected cluster at Tg (800 K for this system).
Note that interconnecting icosahedra percolate at Tg . (These results
are similar to those in Ref. [55].)

and eventually span the system size at the glass transition.
This percolation of a structural network, which is depicted in
Fig. 12 for a cousin configuration, is very likely the source of
the penetration depth as well as a leading cause of the arrest at
the glass transition temperature Tg .

Due to their locally stable nature and tight binding, the
clusters resist thermal breakup and lock into a rigid structure
forming a force network that can propagate shear. The
interlocking and cohesiveness of this network also serves to
slow down the dynamics [65], as sufficiently large thermal
fluctuations are needed to break the network and this becomes
less likely with lower temperature. In fragile glasses, this

network has to form quickly over the temperature range
encountered in typical experiments. This is likely due to the
largely nondirectional binding in fragile glasses which lacks
the natural network found in strong covalent liquids.

In metallic liquids, the network is likely icosahe-
dral [53,55,63,64,66]. In silicates (typical of the strong
classification) a natural tetrahedral network with strong bonds
and directionality is present. It has been suggested that [66]
networks of locally preferred structures tend to form in fragile
glasses being either icosahedral or crystal-like at short range.

The notion that the shear penetration in amorphous solids
is due to a system spanning network is a universal one. As
discussed a network forms over a narrow range in fragile
glasses leading to the super-Arrhenius increase of viscosity
and causing the rigidity. In strong glasses, a tetrahedral
network forms at high temperature and becomes increasingly
cohesive as the temperature is lowered to Tg . Other forms
of a system spanning network can also exist. In colloids a
frictional or contact network can be created by jamming, and
in fact a rigidity length scale has been proposed for these
systems [25]. The formation of a contact network has also
been shown to occur, albeit short-lived, in some discontinuous
shear thickening fluids [69]. This contact network may also
play a role strong to fragile crossovers in high pressure thermal
glasses.

Based on the above discussion, it is clear that a shear
penetration length scale can be quite naturally extended to
many, if not most, glassy systems. This leads naturally to the
connection between slowing down and network formation. The
fact that our length scale begins to grow substantially, only
when supercooled beneath TA, further suggests a structural
origin for the glass transition [70,71].
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