
PHYSICAL REVIEW B 93, 214111 (2016)

Density-based crystal plasticity: From the discrete to the continuum
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Because of the enormous range of time and space scales involved in dislocation dynamics, plastic modeling at
macroscale requires a continuous formulation. In this paper, we present a rigorous formulation of the transition
between the discrete, where plastic flow is resolved at the scale of individual dislocations, and the continuum,
where dislocations are represented by densities. First, we focus on the underlying coarse-graining procedure.
Our work reveals that both a spatiotemporal convolution and an ensemble average are required and that the
emerging correlation-induced stresses are scale dependent. Each of these stresses can be expanded into the sum
of two components. The first one depends on the local values of the dislocation densities and always opposes the
sum of the applied stress and long-range mean field stress generated by the geometrically necessary dislocation
(GND) density; this stress acts as a friction stress. The second component depends on the local gradients of the
dislocation densities and is inherently associated to a translation of the elastic domain; therefore, it acts as a back
stress. Finally, we show that that these friction and back stresses contain symmetry-breaking components that
were missing in previous continuous formulations and that make, at mesoscale, the local stress experienced by
dislocations depend on the sign of their Burgers vectors.
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I. INTRODUCTION

Plasticity of crystalline solids involves the notion of
dislocations. However, even today, conventional plasticity
theories use mesoscopic variables and evolution equations
that do not involve dislocations. This paradoxical situation
is due to the enormous length and time scales that separate the
description of plasticity at the level of individual dislocations
and the macroscopic scale of engineering materials. This
huge space and time separation renders the hope to use a
discrete dislocation based approach out of reach for treating
engineering problems. It could be argued that conventional or
phenomenological plasticity theories are justified because, at
the macroscopic scale, engineering materials always display
some sort of disorder that gives to any macroscopic property
or measure an inevitable averaging character. Hence, at
macroscale, plastic strain may be seen as resulting from a space
and time average over a huge number of individual dislocation
glide events.

Nevertheless, conventional plasticity theories rely on strong
approximations and on phenomenological laws that must be
calibrated for each material or for each specific application.
Therefore, it is desirable to make a link between the micro- and
macroscales and to develop a mesoscopic plasticity theory that
relies on a sound physical basis, i.e., that at least incorporates
dislocation glide. The development of such a mesoscale theory
is also crucial to better understand and simulate the materials
behavior at length scales where the elastic interaction between
dislocations becomes of the order of the interaction between
dislocations and obstacles, such as precipitates in a matrix,
small grains in a polycrystal, or interfaces in nanomaterials.
At these scales, dislocations display collective phenomena that
result in patterning and complex dynamic regimes. In these
situations, plasticity cannot be described by a simple averaged
plastic strain that obeys local time-dependent equations. Size-
dependent effects and, most importantly, transport become
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fundamental. Conventional theories of plasticity are no longer
valid and are unable to account for the complexity of the
plastic activity because they lack the relevant internal length
scale and do not incorporate transport. These considerations
motivate the development of continuum models in which
dislocations are represented by continuous densities and in
which the dynamics has conserved the transport character of
the underlying dislocation glide.

Continuum dislocation representations often start from the
Nye [1] and Kröner [2] representation of dislocations. This
is the case of the field dislocation model (FDM) proposed by
Acharya [3,4] and developed subsequently by various authors
[5–8]. The basic equations have been in fact known as early as
the 60’s [9,10] (see also Refs. [11,12]). The basic ingredient
of the FDM is the dislocation density tensor α = − curl βp,
where βp is the plastic distortion tensor. When envisaged at the
smallest scale, the tensor α represents all the dislocations, and
there is no need to introduce the concept of “geometrically
necessary” or “statistically stored” dislocations (GND and
SSD, respectively). The model is then exact, regardless of
the atomic nature of the dislocations and provided that we
accept that the dislocation velocity is simply proportional to
the local resolved shear stress. However, being continuous by
nature, the implementation of the model requires the use of
a computational grid with a grid step significantly smaller
than the Burgers vector length. This drastically limits the
spatial length scale that can be investigated. Therefore, in
order to reach a convenient macroscale, a change of scale
must be performed to bridge the gap between the singular
density tensor introduced above and a continuous one defined
at an intermediate scale. There is of course no unique way
to select this so-called “mesoscale.” Obviously, the mesoscale
must be larger than the average distance between dislocations
and smaller than the characteristic length scale we want to
investigate (average grain size in polycrystals, average distance
between interfaces in multiphase alloys, etc.). The underlying
averaging or “coarse-graining” procedure has of course been
already mentioned in the context of the FDM [13,14].
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The crucial point is that the application of the coarse-
graining procedure to the FDM equations leads to transport
equations for the averaged one-body GND density in which
the plastic strain rate inevitably depends on the correlations
between the lower scale GND and velocity fields. This closure
problem is often resolved by using a phenomenological
velocity law borrowed from macroscopic plasticity models
leading to the so-called phenomenological mesoscopic field
dislocation model (PMFDM) [13,15]. The actual implemen-
tation of the mesoscale FDM thus suffers from the lack of a
mathematically justified mesoscale plastic strain rate.

A more recent formulation of a continuum dislocation
dynamics (CDD) has been proposed by Hochrainer and its
collaborators [16,17]. It is based on a modified definition of
the dislocation density tensor, in order to keep at mesoscale
information concerning the geometry of the dislocations
(in particular, line directions and curvatures). The necessity
of using an averaging procedure to obtain a meaningful
continuum model has also been pointed out in the context
of the CDD formulation [18] (see also Refs. [19,20]), but
a rigorous mathematical formulation of this coarse-graining
procedure has not yet been proposed.

An attempt to better treat the closure problem has been
proposed by Groma and its collaborators [21–23]. This is the
route that we follow below. A particular attention will be paid
to the nature of the coarse-graining procedure that has been
overlooked up to now, as well as to its consequences on the
local stress fields that emerge from the averaging process.

Our findings include the following. First, we show that the
coarse-graining procedure requires a space and time convolu-
tion supplemented by an average on a statistical ensemble.
Then, we show that the emerging local friction and back
stresses, which are reminiscent of the dislocation-dislocation
correlations, depend on the length scale associated to the
averaging process required by the coarse-graining procedure.
This scale dependence is illustrated through the numerical
analysis of the friction stress as a function of the coarse-
graining length. We also show that these correlation-induced
stresses contain symmetry-breaking components, a feature that
has been ignored in the previous works, and that make the local
stress experienced by dislocations to depend on the sign of their
Burgers vectors. Finally, we find that the emerging back stress
depends on the gradients of both the geometrically necessary
and total dislocation densities. A brief version of these results
has been presented in Ref. [24].

II. MESOSCALE DENSITY-BASED THEORY

We first clarify the mathematics and physical aspects of the
coarse-graining procedure that must be used to coarse grain
the dislocation dynamics from the discrete to the continuum.
We consider the simplest situation, namely a 2D dislocation
system with N edge dislocation lines parallel to the z axis
restricted to glide along the x axis. Nucleation and annihilation
events are not taken into account [25]. The Burgers vector of
dislocation i, i = 1 to N , is noted si

�b, where si is the sign of
the dislocation i and �b = (b,0,0). We assume an overdamped
motion: The glide velocity of the ith dislocation along the
x axis is simply proportional to the resolved Peach-Koehler

force acting on the dislocation i,

d�ri

dt
= Msi

�b
⎛
⎝ N∑

j �=i

sj τind(�ri − �rj ) + τext

⎞
⎠, (1)

where M is the mobility coefficient equal to the inverse of the
dislocation drag coefficient, τext the external stress resolved in
the slip system, and τind(�r) the resolved shear stress at position
�r generated by a positive dislocation located at the origin:

τind(x,y) = μb

2π (1 − ν)

x(x2 − y2)

(x2 + y2)2
, (2)

where μ is the shear modulus and ν the Poisson ratio.
The first step is to define discrete dislocation densities:

ρ+
dis

(�r,t,{�r 0
k

}) =
N∑

i=1

δsi ,+1δ
(�r − �ri

(
t,

{�r 0
k

}))
(3)

ρ−
dis

(�r,t,{�r 0
k

}) =
N∑

i=1

δsi ,−1δ
(�r − �ri(t,

{�r 0
k

}))
,

where {�r 0
k } refers to the initial positions of the N dislocations,

δs,t is the Kronecker symbol, and δ(�r) the 2D Dirac function.
The notation �ri(t,{�r 0

k }) means that the trajectory of dislocation
i depends on the initial dislocation positions {�r 0

k }.
By multiplying Eq. (1) by the Dirac function δ(�r −

�ri(t,{�r 0
k })) and taking its derivative with respect to �r , we get

the following transport equation for the discrete densities:

− ∂

∂t
ρs

dis(�r) = sM �b · ∂

∂�r

{∫
�r ′ �=�r

τind(�r − �r ′)
∑

s ′=±1

s ′ρs ′
dis(�r ′)

× ρs
dis(�r)d�r ′ + τext ρ

s
dis(�r)

}
(4)

where, to simplify the notation, we write ρs
dis(�r) for

ρs
dis(�r,t,{�r 0

k }). Obviously, these transport equations link the
time dependence of the one-body densities to the products
of two one-body densities, which is a direct consequence
of the pairwise dislocation interactions. At this stage, the
dislocation densities ρs

dis(�r) are highly singular. The next step
is to introduce a coarse-graining procedure.

A. Coarse-graining procedure

We introduce now a coarse-graining procedure commonly
used in statistical physics (see, for example, Ref. [26]). We
first define a space and time convolution process that we use
to coarse-grain microscopic fields to mesoscopic ones:

fmeso(�r,t) =
∫∫

w(�r ′,t ′) fmicro(�r + �r ′,t + t ′) d�r ′dt ′ (5)

where the weighting function w(�r,t) is normalized. For
simplicity, and without loss of generality, we choose w(�r,t) to
be separable:

w(�r,t) = wL(�r) wT (L)(t), (6)
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where the functions wL(�r) and wT (L)(t) are separately normal-
ized: ∫

wL(�r) d�r = 1 and
∫

wT (L)(t) dt = 1. (7)

The spatial linear dimension L of wL(�r) should be of the order
of the spatial resolution of the continuous model we seek
and, obviously, significantly larger than the average distance
between dislocations. The temporal width T (L) of the time
window wT (L)(t) should, in all generality, depend on L. In
fact, the appropriate choice of T (L) is linked to the kinetic
behavior of the degrees of freedom that, inevitably, we will
have to average out in order to close the theory: T (L) should be
defined in such a way that the correlations we want to average
out have the time to reach a stationary state at scale L. We
comment on that point in section II D. Here, we just mention
that, for convenience, we choose wT (L)(t) to be nonzero only
for t ≤ 0:

wT (L)(t) �= 0 if t ≤ 0. (8)

Mesoscopic density fields may be defined through Eq. (5),
but this is not enough to get a consistent continuous transport
theory. First, we expect that the time evolution of the
mesoscopic dislocation densities will be given by first-order
transport (i.e., hyperbolic) equations. These equations must be
supplemented by initial conditions at t = 0 which, of course,
must be defined at mesoscale. In other words, the coarse-
graining procedure should be such that, when applied to Eq. (4)
and its initial condition given by the dislocation positions
{�r 0

k } at t = 0, we end up with a set of mesoscopic transport
equations supplemented by continuous initial conditions that
do not depend on any specific initial set {�r 0

k }. Therefore, if
ρs(�r,t = 0), s = ±1, are given initial continuous densities,
we must introduce a N -body probability density distribution
P{sk}(�r 0

1 , . . . ,�r 0
N ) on the (discrete) initial positions {�r 0

k } which
is linked to the initial mesoscopic densities ρs(�r,t = 0) in a
way that we discuss below. The distribution P{sk}(�r 0

1 , . . . ,�r 0
N ),

where {sk} refers to the predefined (and fixed) signs of the
N dislocations, introduces a statistical ensemble on the initial
discrete dislocation positions: P{sk}(�r 0

1 , . . . ,�r 0
N )d�r 0

1 . . . d�r 0
N is

the probability to have an initial dislocation configuration with
dislocation 1, whose sign is s1, in a small volume d�r 0

1 around
position �r 0

1 , dislocation 2, whose sign is s2, in a small volume
d�r 0

2 around position �r 0
2 , etc.

Now, the overall coarse-graining procedure is defined as the
conjugate action of the space-time convolution window w(�r,t)
and the ensemble average defined by the probability density
P{sk}(�r 0

1 , . . . ,�r 0
N ). The mesoscopic field Xmeso(�r,t) associated

with the discrete field Xdis(�r,t,{�r 0
k }) is therefore defined by:

Xmeso(�r,t) =
N∏

k=1

∫
d�r 0

k P{sk}
(�r 0

1 , . . . ,�r 0
N

) ∫
d�r ′

×
∫

dt ′w(�r ′,t ′)Xdis
(�r + �r ′,t + t ′,

{�r 0
k

})
. (9)

We refer to this coarse-graining procedure by the following
short-hand notation:

Xmeso(�r,t) = 〈〈
Xdis

(�r,t,{�r 0
k

})〉〉
P
, (10)

where the double brackets refer to the space and time convo-
lution and the lower index P to the ensemble average. The
mesoscopic one-body and two-body densities are therefore
defined by:

ρs(�r,t) = 〈〈
ρs

dis

(�r,t,{�r 0
k

})〉〉
P

(11)

and

ρss ′
(�r,�r ′,t) = 〈〈

ρs
dis

(�r,t,{�r 0
k

})
ρs ′

dis

(�r ′,t,
{�r 0

k

})〉〉
P
. (12)

We mention that the two-body densities defined in Eq. (12) are
continuous function of �r and �r ′. This would not be the case
if the coarse-graining procedure were limited to a space and
time convolution. This is the second reason why we need to
consider an average over a statistical ensemble.

We can now be more precise about the link, mentioned
above, between the probability density P{sk}(�r 0

1 , . . . ,�r 0
N ), that

defines the statistical ensemble, and the continuous dislocation
densities ρs(�r,t) that will be used as initial conditions for the
mesoscopic kinetic equations. We consider that any discrete
initial condition {�r 0

k } on the N dislocation positions is extended
to t < 0:

i = 1 to N and t ≤ 0 : �ri

(
t,

{�r 0
k

}) = �r 0
i . (13)

Then, using the definition of the discrete densities [Eq. (3)]
and the definition of the coarse-grained ones [Eq. (11)], we
get:

ρs(�r,t = 0) =
N∏

k=1

∫
d�r 0

k P{sk}
(�r 0

1 , . . . ,�r 0
N

) ∫
d�r ′

∫
dt ′w(�r ′,t ′)

×
N∑

i=1

δsi ,sδ
(�r + �r ′ − �ri

(
t ′,

{�r 0
k

}))
. (14)

Using Eqs (6), (7), and (13), we obtain:

ρs(�r,t = 0) =
N∑

i=1

δsi ,s

N∏
k=1

∫
d�r 0

k P{sk}
(�r 0

1 , . . . ,�r 0
N

)
×wL

(�r 0
i − �r). (15)

This equation constitutes a constraint that P{sk}(�r 0
1 , . . . ,�r 0

N )
must fulfill for a given set of initial mesoscopic densities
ρs(�r,t = 0). However, this is not enough to completely define
the probability density P . In order to proceed, supplemental
properties must be assigned to P . As in Ref. [27], we
argue that, in order to use no more information than the
one actually embedded into the mesoscopic initial densities,
which in principle are meant to reflect a realistic experimental
situation, the supplemental rule needed to completely define
P should simply invoke the maximum entropy principle.
This is equivalent to impose that no other information,
besides that given by the constraint of Eq. (15), should be
used to define the statistical ensemble associated to P . This
implies that the stochastic variables �r 0

i , i = 1 to N , must be
considered as statistically independent. Therefore, they must
follow one-body distribution functions fsi

(�r), that depend only
on their sign si , over which the density P{sk}(�r 0

1 , . . . ,�r 0
N ) is
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factorized:

P{sk}
(�r 0

1 , . . . ,�r 0
N

) = fs1

(�r 0
1

)
fs2

(�r 0
2

)
. . . fsN

(�r 0
N

)
. (16)

Of course, the distribution functions fs(�r), s = ±1, are
separately normalized:∫

fs(�r)d�r = 1. (17)

Using Eqs. (16) and (17), Eq. (15) becomes

ρs(�r,t = 0) =
N∑

i=1

δsi ,s

∫
wL

(�r 0
i − �r)fsi

(�r 0
i

)
d�r 0

i (18)

which may be written as

ρs(�r,t = 0) = Ns

∫
wL(�r0 − �r)fs(�r0)d�r0, (19)

where Ns is the number of dislocations of sign s. Up to
the coefficient Ns , the initial condition ρs(�r,t = 0) is simply
equal to the convolution of fs(�r), the distribution of initial
positions of the discrete dislocations of sign s, with the
convolution window wL(�r). For a given set of initial conditions
ρs(�r,t = 0), s = ±1, and a given convolution window wL,
Eq. (19) defines a unique set of functions fs(�r), s = ±1
and, therefore, a unique probability density P{sk}(�r 0

1 , . . . ,�r 0
N ).

Thus, for prescribed initial mesoscopic dislocation densities
ρs(�r,t = 0) and a given spatial convolution window wL(�r), the
coarse-graining procedure introduced in Eq. (9) is completely
and uniquely defined.

B. Coarse-grained kinetic equations

By a direct application to Eq. (4) of the coarse-graining
procedure defined in Eq. (9), we get the following mesoscopic
equations:

− ∂

∂t
ρs(�r,t) = sM �b · ∂

∂�r

{∫
�r ′ �=�r

τind(�r − �r ′)

×
∑
s ′

s ′ρss ′
(�r,�r ′,t)d�r ′ + τext ρs(�r,t)

}
,

(20)

where the mesoscopic one-body and two-body densities
ρs(�r,t) and ρss ′

(�r,�r ′,t) have been defined in Eqs. (11) and
(12).

At this stage, no approximation has been introduced.
Equation (20) is exact and contains the same information and
complexity as Eq. (4) and, therefore, as Eq. (1). However,
the time evolution of one-body densities ρs(�r,t) is linked to
the two-body dislocation densities ρss ′

(�r,�r ′,t). It is straight-
forward to realize that the time evolution of these two-body
densities are themselves linked to the three-body densities,
and so forth. Obviously, we are faced by the classical problem
of closure that we meet in statistical physics when we try
to replace a set of discrete degrees of freedom by a set of
continuous densities.

The next step is to solve the closure problem. This of course
requires the introduction of some approximations. One way to

do that is to analyze and possibly approximate the two-body
correlations, defined by:

dss ′
(�r,�r ′,t) = ρss ′

(�r,�r ′,t)
ρs(�r,t) ρs ′ (�r ′,t)

− 1. (21)

Using Eq. (21), the kinetic equation (20) becomes:

− ∂

∂t
ρs(�r,t) = sM �b · ∂

∂�r
[
ρs(�r,t){τext + τsc(�r,t)

+τ s
corr(�r,t)

}]
, (22)

where the local stresses τ s
sc(�r,t) and τ s

corr(�r,t) are defined by:

τsc(�r,t) =
∑
s ′

s ′
∫

�r ′ �=�r
τind(�r − �r ′) ρs ′

(�r ′,t) d�r ′ (23)

and

τ s
corr(�r,t) =

∑
s ′

s ′
∫

�r ′ �=�r
τind(�r − �r ′) dss ′

(�r,�r ′,t)

× ρs ′
(�r ′,t) d�r ′. (24)

C. Mean field stress

Together with Eqs. (21), (23), and (24), kinetic equation
(22) is exact but not closed. The simplest way to have a closed
continuous theory is to neglect the correlations dss ′

(�r,�r ′,t).
Equation (22) becomes:

− ∂

∂t
ρs(�r,t) = sM �b · ∂

∂�r (ρs(�r,t){τsc(�r,t) + τext}). (25)

The local stress exerted on dislocations of sign s does not
depend on s and is simply the sum of the external stress τext

and the stress τsc(�r,t) generated by all the one-body densities
and defined in Eq. (23):

τsc(�r,t) =
∫

�r ′ �=�r
τind(�r − �r ′)κ(�r ′,t)d�r ′ (26)

where we have introduced the polar or GND (geometrically
necessary dislocation) density:

κ(�r,t) =
∑
s ′

s ′ρs ′
(�r,t). (27)

As τsc(�r,t) does not incorporate any correlation effects, it may
be called a mean field stress or, as it closes the theory, a
self-consistent stress [21].

D. Correlation-induced local stresses

We want now to go beyond the mean field approximation
and incorporate the correlations. In other words, the correlation
stress τ s

corr(�r,t) defined in Eq. (24) is now taken into account.
These correlations should be approximated in order to close
the theory.

For that purpose, we need to discuss the time and spatial
variations of the correlation functions dss ′

(�r,�r ′,t). It has
already been observed [22,23] that the correlation length
of dss ′

(�r,�r ′,t) is finite and of the order of a few average
dislocation spacings (see also below the numerical analysis
presented in Fig. 2). Consequently, if the width of the
convolution window is sufficiently larger than the mean
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dislocation spacing, the correlations dss ′
(�r,�r ′,t), for a fixed

point �r and as a function of �r ′, decrease to zero before the
one-body densities ρs ′

(�r ′) vary significantly. Therefore, within
the domain around point �r where they are nonzero, dss ′

(�r,�r ′,t)
may be considered as a function of (�r − �r ′) and of the local
one-body densities ρs(�r,t):

dss ′
(�r,�r ′,t) � dss ′

(�r − �r ′,{ρs(�r,t)},t) (28)

where the notation {ρs(�r,t)} refers to {ρs(�r,t),s = ±1}. Now,
we comment on the time dependence of the correlations. We
recall that the coarse-graining procedure introduced above [see
Eqs. (6) and (9)] involves a time convolution. A width T (L)
for the time window must be selected.

Our present purpose is to close the theory at the order
of the two-body correlations. In other words, we want to
incorporate two-body correlations in such a way that their
time dependence is formally linked to the time dependence of
the one-body densities, which themselves are defined at scale
L. Therefore, the time convolution should be such that the
averaging process incorporates all the time scales associated
to the kinetics up to spatial scale L. This point is essential for
capturing and embedding properly the lower scale kinematics
and configurational dislocation properties into a physically
sensitive theory where the correlations are expressed as local
functionals of one-body dislocation densities defined at scale
L. In physical terms, this requires us to select a time window
T (L) such that the coarse-grained correlations reach a steady
state at scale L.

This point should be analyzed in light of the very complex
spatiotemporal behavior that dislocations often display. Their
dynamics is in particular characterized by the existence of
a yielding transition when they are subject to an increasing
stress. Both below the yielding point and in the subsequent
flowing regime, the collective dislocation motion exhibits
strongly intermittent avalanchelike dynamics characterized
by a slow relaxation process. It has been in particular
observed [28,29] that, close to the yielding point but also
far below, the dynamics is characterized by power laws and,
therefore, is essentially scale-free up to a cutoff time tc(L) that
depends essentially on the system size L. This size-dependent
relaxation time marks a crossover from a regime where the
strain rate follows a power law, γ̇ (t) ∼ t−2/3, to a regime
where the strain rate decays exponentially to zero or reaches
a steady value, depending on whether the stress is below or
above the yielding point. Therefore, a convenient choice for
the time convolution window is to select a width T (L) of the
order of the relaxation time tc(L). Under this condition, the
overall coarse-graining procedure will generate correlations
which are dependent on the local one-body densities only:
The explicit time dependence in dss ′

(�r,�r ′,t) disappears and
shows up only implicitly through the time dependence of
the one-body densities ρs(�r,t). In other words, the conjugate
actions of properly defined space and time convolutions lead
us to a well defined local density approximation. In short,
Eq. (28) becomes:

dss ′
(�r,�r ′,t) � dss ′

(�r − �r ′,{ρs(�r,t)}). (29)

Now, using again the short-range nature of the correlations
discussed above, we note that ρs ′

(�r ′,t) in Eq. (24) may be

expanded to first order around �r . The local stress defined in
Eq. (24) is then split into two terms:

τ s
corr(�r,t) = −τ s

b (�r,t) − τ s
f (�r,t) (30)

with

τ s
f (�r,t) = −

∑
s ′

s ′ρs ′
(�r,t)

×
∫

�r ′ �=�r
τind(�r − �r ′) dss ′

(�r − �r ′,{ρs(�r,t)}) d�r ′

(31)

and

τ s
b (�r,t) = −

∑
s ′

s ′ ∂ρ
s ′

(�r,t)
∂�r ·

∫
�r ′ �=�r

(�r ′ − �r) τind(�r − �r ′)

× dss ′
(�r − �r ′,{ρs(�r,t)}) d�r ′. (32)

At this stage, the coarse-grained kinetic equation given in
Eq. (22) reads:

− ∂

∂t
ρs(�r,t) = sM �b · ∂

∂�r
[
ρs(�r,t){τext + τsc(�r,t)

−τ s
f (�r,t) − τ s

b (�r,t)}], (33)

where the local stresses τsc(�r,t), τ s
f (�r,t), and τ s

b (�r,t) are
defined in Eqs. (23), (31), and (32). Next, we discuss the
physical meaning of the correlation-induced stresses τ s

f and
τ s
b .

E. Physical meaning of the correlation-induced stresses
τ s

f and τ s
b

The physical meaning and properties of these local stresses
will of course be inherited from the symmetry properties of
the correlations. It should also be clear that these correlations
depend on the stress experienced by the dislocations. Within
the spirit of the present coarse-graining procedure, which
inevitably leads to a hierarchy of independent and successive
many-body densities, we consider that the stress dependence
of the k-body densities is due to the stress generated by
the correlations up to order (k − 1). Therefore, the stress
dependence of the correlations dss ′

is due to the sum of
the external stress and the mean-field stress τsc(�r,t). We call
τlo(�r,t) this low-order stress: τlo(�r,t) = τext + τsc(�r,t).

Using the discrete kinetic equation (1) and its symmetry
properties, it is easy to show that the correlations display the
following property:

dss ′
(x − x ′,y − y ′,{ρs(�r,t)},τlo(�r,t))

= dss ′
(x ′ − x,y − y ′,{ρs(�r,t)}, − τlo(�r,t)) (34)

where the dependence of the correlations on the low-order
stress τlo(�r,t) has been explicitly pointed out. Also, according
to their very definition Eq. (12), we obviously have

dss ′
(x − x ′,y − y ′,{ρs(�r,t)},τlo(�r,t))

= ds ′s(x ′ − x,y ′ − y,{ρs(�r,t)},τlo(�r,t)). (35)
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For later use, we also note that, if the local GND density
κ(�r,t) is equal to zero, correlations d++ and d−− display the
following symmetry:

κ(�r,t) = 0 → d++(x − x ′,y − y ′,{ρs(�r,t)},τlo(�r,t))
= d−−(x − x ′,y − y ′,{ρs(�r,t)},τlo(�r,t)). (36)

Using the symmetry properties given in Eq. (34), it is
straightforward to show that the local stresses τ s

f and τ s
b defined

in Eqs. (31) and (32) display the following properties:

τ s
f (�r,{ρs(�r,t)}, − τlo(�r,t)) = −τ s

f (�r,{ρs(�r,t)},τlo(�r,t))
(37)

τ s
b (�r,{ρs(�r,t)}, − τlo(�r,t)) = τ s

b (�r,{ρs(�r,t)},τlo(�r,t)),
(38)

where the one-body dislocation densities {ρs(�r,t)} and local
stress τlo(�r,t) dependencies have been explicitly added and
the explicit time dependence suppressed, because τ s

f and τ s
b

inherit this time dependence precisely through τlo(�r,t) and
{ρs(�r,t)}. These properties clarify the physical meaning of
the local stresses τ s

f and τ s
b . The stresses τ s

f change their
signs with the sign of the local low-order stress τlo and, as
shown below in Sec. IV, they are positive when τlo is positive.
In contrast, the stresses τ s

b are invariant upon a change of

sign of τlo. As a consequence, the stresses τ s
f , which always

oppose the low-order stress τlo = τext + τsc [see Eq. (33)],
play the role of friction stresses whereas the stresses τ s

b , which
are invariant upon a reversal of the local stress τlo, may generate
a Bauschinger effect and a translation of the elastic domain.
Therefore, the stresses τ s

b play the role of back stresses.

III. BROKEN SYMMETRY IN THE KINETICS OF THE
COARSE-GRAINED SIGNED DISLOCATION DENSITIES

It is important to note that, according to Eq. (33), the local
stress fields experienced, respectively, by the positive and
negative dislocation densities are different: The correlation-
induced stress components τ s

f and τ s
b depend on the sign

s. In other words, the symmetry that exists at the discrete
scale (positive and negative discrete dislocations at the same
point �r have opposite velocities) is broken at mesoscale: The
velocities of positive and negative dislocation densities are not
simply of opposite sign. This broken symmetry is the direct
consequence of a mesoscale description and its associated
coarse-graining procedure: The averaging process required
to build a continuous description generates kinetic equations
for one-body densities that inevitably incorporate two-body
correlations which, in all generality, break the lower-scale
symmetry.

In order to be more specific, we analyze explicitly the
friction stresses τ+

f and τ−
f experienced by the positive

and negative dislocation densities, respectively. According to
Eqs. (31), we have:

τ+
f (�r) = −ρ+(�r)

∫
�r ′ �=�r

τind(�r − �r ′) d++(�r − �r ′) d�r ′ + ρ−(�r)
∫

�r ′ �=�r
τind(�r − �r ′) d+−(�r − �r ′) d�r ′ (39)

τ−
f (�r) = −ρ+(�r)

∫
�r ′ �=�r

τind(�r − �r ′) d−+(�r − �r ′) d�r ′ + ρ−(�r)
∫

�r ′ �=�r
τind(�r − �r ′) d−−(�r − �r ′) d�r ′ (40)

where, because they are not needed for the present argument,
the low-order stress and dislocation density dependencies of
the correlations and friction stresses have been omitted, as well
as the time dependencies. Using the symmetry property given
in Eq. (35), it is easy to show that the terms that depend on d++
and d−− are equal to zero. Therefore, the previous equations
reduce to:

τ+
f (�r) = ρ−(�r)

∫
�r ′ �=�r

τind(�r − �r ′) d+−(�r − �r ′) d�r ′ (41)

τ−
f (�r) = −ρ+(�r)

∫
�r ′ �=�r

τind(�r − �r ′) d−+(�r − �r ′) d�r ′. (42)

Again, using the symmetry properties of Eq. (35), it is easy
to show that the integrals in Eqs. (41) and (42) differ only by
their sign. Thus, we have:

τ+
f (�r) = ρ−(�r)A(�r) (43)

τ−
f (�r) = ρ+(�r)A(�r) (44)

with

A(�r) =
∫

�r ′ �=�r
τind(�r − �r ′) d+−(�r − �r ′) d�r ′. (45)

When the signed densities ρ+(�r) and ρ−(�r) are different, which
is the generic situation, the friction stresses τ+

f and τ−
f are

different, which is sufficient to break the symmetry between
the velocities of the positive and negative dislocation densities.
To better understand this broken symmetry in physical terms,
we note that ρ−(�r)d+−(�r − �r ′) may be interpreted as the
excess (with respect to the uncorrelated state) of negative
dislocations in the surrounding of a positive dislocation that
sits at point �r . Equation (41) tells us that this excess of
negative dislocations at �r is at the origin of the friction stress
τ+
f experienced by a positive dislocation. There is of course

no reason for this excess of negative dislocations around a
positive dislocation to be exactly the opposite of the excess
of positive dislocations around a negative one. Therefore, the
friction stresses τ+

f and τ−
f ought to be different [30].

Now, to better visualize this broken symmetry in the
signed kinetic equations, we introduce the half sums and half
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differences of the friction and back stresses:

τf (�r) = (τ+
f (�r) + τ−

f (�r))/2

τ̃f (�r) = (τ+
f (�r) − τ−

f (�r))/2

τb(�r) = (τ+
b (�r) + τ−

b (�r))/2

τ̃b(�r) = (τ+
b (�r) − τ−

b (�r))/2

. (46)

Using Eqs. (31) and (32), we see that these stresses are linked to the correlations dss ′
(�r − �r ′) as follows:

τf (�r) = 1

2
ρ(�r)

∫
�r ′ �=�r

τind(�r − �r ′) d+−(�r − �r ′) d�r ′, (47)

τb(�r) = −1

4

∂ρ(�r)

∂�r
∫

�r ′ �=�r
(�r ′ − �r) τind(�r − �r ′){d++(�r ′ − �r) − d−−(�r ′ − �r)}d�r ′

− 1

4

∂κ(�r)

∂�r
∫

�r ′ �=�r
(�r ′ − �r) τind(�r − �r ′){d++(�r ′ − �r) + d−−(�r ′ − �r) + d−+(�r ′ − �r) + d+−(�r ′ − �r)}d�r ′, (48)

τ̃f (�r) = −1

2
κ(�r)

∫
�r ′ �=�r

τind(�r − �r ′) d+−(�r − �r ′)d�r ′, (49)

τ̃b(�r) = −1

4

∂κ(�r)

∂�r
∫

�r ′ �=�r
(�r ′ − �r) τind(�r − �r ′){d++(�r ′ − �r) − d−−(�r ′ − �r)}d�r ′

−1

4

∂ρ(�r)

∂�r
∫

�r ′ �=�r
(�r ′ − �r) τind(�r − �r ′){d++(�r ′ − �r) + d−−(�r ′ − �r) − d+−(�r ′ − �r) − d−+(�r ′ − �r)}d�r ′, (50)

where κ(�r) is the GND density defined in Eq. (27) and ρ(�r) the total dislocation density:

ρ(�r) =
∑

s

ρs(�r). (51)

For the sake of compactness of Eqs. (47)–(50), the dependencies of the correlations on the local dislocation densities and
low-order stress τlo(�r) = τext + τsc(�r) have been omitted. For latter reference, we note that Eqs. (47) and (49), which implies
that τ̃f = − κ

ρ
τf , together with Eq. (46) lead to the following relation between the sign-dependent friction stresses τ s

f and their
sign-independent component τf :

s = ±1 : τ s
f (�r) = 2

ρs(�r)

ρ(�r)
τf (�r). (52)

By definition, τf (�r) and τb(�r) are the components of the friction and back stresses experienced by a dislocation independently
of its sign, whereas τ̃f (�r) and τ̃b(�r) are their symmetry-breaking counterparts. Indeed, using these stresses, Eqs. (33) become

− ∂ρ+(�r)

∂t
= +M �b · ∂

∂�r [ρ+(�r){τext + τsc(�r) − τf (�r) − τb(�r) − τ̃f (�r) − τ̃b(�r)}] (53)

− ∂ρ−(�r)

∂t
= −M �b · ∂

∂�r [ρ−(�r){τext + τsc(�r) − τf (�r) − τb(�r) + τ̃f (�r) + τ̃b(�r)}], (54)

where we clearly see that τf and τb drive dislocations with opposite Burgers vector along opposite directions, whereas the
symmetry-breaking stresses τ̃f and τ̃b drive dislocations of opposite signs along the same direction.

Similar equations have already been proposed [22,23] (see also Refs. [31] and [32]), but without the symmetry-breaking
stresses τ̃f (�r) and τ̃b(�r) (the sum of these two terms was supposed to be equal to zero because of an incorrect symmetry
argument) and with a sign-independent back stress τb(�r) limited to the term that depends on the gradient of the polar (GND)
density κ(�r), i.e., to the second term in the right-hand side of Eq. (48).

Finally, we mention that, in the limit κ(�r) 	 ρ(�r), the back stresses that enter into kinetic equations (53) and (54) may
be simplified. More precisely, using the fact that the difference d++(�r ′ − �r) − d−−(�r ′ − �r) is, to the lowest order, linear in
κ(�r)/ρ(�r) [consequence of the property given in Eq. (36)], an analysis of the kinetic equations, to the lowest order in fluctuations
of the dislocation densities around an homogeneous state with no GND, shows that we can neglect the terms that depend on the
difference (d++ − d−−) and approximate the back stresses by:

τb(�r) � −1

4

∂κ

∂�r
∫

�r ′ �=�r
(�r ′ − �r) τind(�r − �r ′){d++(�r ′ − �r) + d−−(�r ′ − �r) + d−+(�r ′ − �r) + d+−(�r ′ − �r)}d�r ′, (55)

τ̃b(�r) � −1

4

∂ρ

∂�r
∫

�r ′ �=�r
(�r ′ − �r) τind(�r − �r ′){d++(�r ′ − �r) + d−−(�r ′ − �r) − d+−(�r ′ − �r) − d−+(�r ′ − �r)}d�r ′. (56)

Of course, these approximations are valid provided the kinetics preserve the constraint κ(�r) 	 ρ(�r), which is certainly not a
generic situation, in particular in situations where the plastic strain develops strong heterogeneities.
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IV. NUMERICAL COARSE-GRAINING PROCEDURE

Transport equations of a mesoscale dislocation density the-
ory contain correlation induced stresses, specifically friction
and back-stress terms. These terms depend on the correlation
functions dss ′

, which must be computed through a coarse-
graining procedure. As explained in Sec. II D, if the width L

of the spatial convolution window is large enough and the time
convolution window appropriately chosen, the correlations
dss ′

(�r,�r ′,t) may be considered as functions of (�r − �r ′) and
of the local densities ρs(�r,t).

We focus here on the sign-independent friction stress
τf defined in Eq. (47). Due to the local character of the
correlations, which is a direct consequence of the underlying
coarse-graining procedure, Eq. (47) may be written as

τf (�r) = 1

2
ρ(�r)

∫
(x,y)�=(0,0)

τind(x,y)

× d+−(x,y,ρ(�r),κ(�r),τlo(�r),L) dxdy, (57)

where the origin of the coordinates (x,y) is located at point �r .
The dependencies of the correlations with the local one-body
densities and low-order stress τlo(�r) = τext + τsc(�r), sum of
the applied stress and long-ranged mean-field stress, have been
reintroduced. A L dependency has been also explicitly pointed
out because the length L, together with the associated time
window T (L) and the statistical ensemble of initial conditions,
characterizes the coarse-graining procedure used to define
the mesoscale one- and two-body dislocation densities and,
consequently, the correlations.

Here, we recourse to 2D discrete dislocation dynamics
(DDD) to compute numerically the correlations. In principle,
for a given coarse-graining length L, correlations at point �r
and their variations with the local dislocation densities κ(�r)
and ρ(�r) and the low-order stress τlo(�r) should be analyzed
in the context of a system whose linear dimensions are much
larger than L, keeping in mind that the dislocation densities
should still be defined and homogeneous at scale L. Due to
their local character and short-range nature, correlations dss ′

in the neighborhood of point �r depend only on the local values
of the one-body densities κ(�r) and ρ(�r) [see Eq. (29)]. We may
therefore consider a situation where the densities κ(�r) and ρ(�r)
are uniform within the system and equal to the values we want
to investigate. In that case, due to the symmetry property of
τind(�r), see Eq. (2), the self-consistent stress τsc(�r) vanishes
and the low-order stress τlo(�r) is simply equal to the applied
stress τext. Next, using again the fact that the correlation length
is of the order of the average dislocation spacing 1/

√
ρ, we

may safely replace the large system by a minimal finite box
of linear dimension equal to the coarse-graining length L,
supplemented by periodic boundary conditions, provided of
course L is sufficiently larger the 1/

√
ρ.

As a result, the spatial convolution window is simply a
constant window function of size L, the linear size of the
DDD simulation box. L should be of the order of the spatial
resolution of the continuous model we want to develop and,
as just recalled, sufficiently larger than 1/

√
ρ, the average

distance between dislocations. This guaranties that L will
always be significantly larger than the range of the correlations
dss ′

. As explained in Sec. II D, the relevant choice for the

time window, that in all generality should depend on L,
is to select T (L) of the order of the average time needed
by the dislocations to reach a stationary or a steady state,
depending on whether the dislocations adopt a quasistatic or
a flowing state. This guaranties that T (L) is long enough but
still smaller than the characteristic time of the evolution of the
one-body densities. Finally, this space and time convolution
is supplemented by a statistical average over an ensemble
of random initial dislocation configurations, as explained in
Sec. II A. In line with the argument developed there, which
states that no more information than the one embedded in
the initial one-body dislocation densities should be used, this
statistical ensemble should simply be defined by uniform
distribution functions fs . As the mesoscopic densities read
ρs = Ns/L2, where Ns is the number of dislocations of sign
s, and taking into account that the spatial convolution window
is constant within the simulation box, Eq. (19) leads simply to
f+ = f− = 1/L2.

Prior to its numerical analysis, we exhibit the scaling
behavior of the friction stress. We note that the dislocation
kinetics given in Eq. (1) is invariant upon rescaling the
lengths by 1/

√
ρ, the applied stress by μb

√
ρ/2π (1 − ν)

and the time by 2π (1 − ν)/ρMμb2, where ρ is the total
dislocation density. We naturally extend this rescaling to the
choice of the spatial and temporal widths L and T (L) of the
coarse-graining convolution window w(�r,t) defined in Eq. (6).
Hence, the overall scale invariance of the kinetics and of the
coarse-graining procedure implies that the correlations follow
scaling forms

dss ′
(x,y,ρ,κ,τ,L)

= f s,s ′
(

x
√

ρ,y
√

ρ,
κ

ρ
,
2π (1 − ν)τext

μb
√

ρ
,L

√
ρ

)
, (58)

where, as we consider here a single finite system of linear size
L, there is no need to specify a �r dependence of the local
mesoscopic quantities. This scale invariance, in turn, implies
that the friction stress given in Eq. (57) follows the scaling
form

τf = μb
√

ρ

2π (1 − ν)
f

(
κ

ρ
,
2π (1 − ν)τext

μb
√

ρ
,L

√
ρ

)
, (59)

where the scaling function f is defined by:

f

(
κ

ρ
,
2π (1 − ν)τext

μb
√

ρ
,L

√
ρ

)
= 1

2

∫
(x̃,ỹ)�=(0,0)

x̃(x̃2 − ỹ2)

(x̃2 + ỹ2)2

×f +−
(

x̃,ỹ,
κ

ρ
,
2π (1 − ν)τext

μb
√

ρ
,L

√
ρ

)
dx̃dỹ, (60)

where x̃ and ỹ are the Cartesian coordinates in units of 1/
√

ρ.
We note that, because of the ρ dependence of the scaling
function f , the friction stress does not simply scale as

√
ρ.

The coarse-grained scaling function f needs now to be
estimated numerically. Generally speaking, we may expect that
the coarse-graining length L will show up in the coarse-grained
quantities that result from the averaging procedure. Such a
scale dependence resulting from a coarse-graining procedure
has already been observed in other contexts pertaining to the
field of statistical physics [33,34]. The important point is that
we are dealing here with a situation where many length scales

214111-8



DENSITY-BASED CRYSTAL PLASTICITY: FROM THE . . . PHYSICAL REVIEW B 93, 214111 (2016)
2π

(1
−

ν
)τ

f

μ
b√

ρ

L
√

ρ = 10
L
√

ρ 14.1
L
√

ρ = 20

2π(1 − ν)τ
μb

√
ρ

0
0

2 4 6 8 10 12

0.5

1.0

1.5

2.0

2.5

FIG. 1. Numerical results for the friction stress τf as a function
of the applied stress and for different dimensionless coarse-graining
length L

√
ρ.

may emerge from the complex spatial and dynamical coupling
that governs the dislocation dynamics. It is indeed well known
that, most often, dislocations self-organized themselves into
complex patterns that display length scales much larger than
the average dislocation spacing, such as dislocation walls in
cyclic loading [35] or even seemingly fractal structures [36]
with no characteristic length scale [37,38]. In such situations,
when many different large length scales are physically present,
an averaging procedure at a given intermediate length scale
will generate a continuous theory which is scale dependent.
In the present context, it means that the correlation-induced
stresses generated by coarse graining may definitely display
an L dependence [39].

Therefore, in order to investigate this important feature,
we consider below different values of L. In fact, as the only
pertinent quantity is L

√
ρ, we analyze different values of√

N = L
√

ρ, where N is the total number of dislocations.
The analysis is restricted to situations where the number
of positive and negative dislocations are equal. Therefore,
the GND density κ is set to zero and the computations are
performed for different values of the applied stress. The results
for three different values of the parameter

√
N = L

√
ρ are

presented in Fig. 1.
First, we observe that the stress τf is positive when

the applied stress τext is positive. This property could have
been qualitatively anticipated. Indeed, when the applied stress
in nonzero, the average 45◦-alignment of the short-ranged
dipoles, observed in the absence of applied stress, is modified:
A simple analysis of the profile along the glide direction
x of the dislocation-dislocation interaction τind(x,y) given
in Eq. (2) shows that, for τext > 0, the correlation function
d+−(x,y) (which is proportional to the excess probability of
having a positive dislocation at (x,y) if a negative one sits at the
origin) displays maxima (xm,ym) characterized by |xm| < |ym|
(respectively, xm > |ym|) in the half-plane x < 0 (respectively,
x > 0). These maxima lie in regions where the function
τind(x,y) is positive. This makes the integral that enters the

r.h.s. of Eq. (57) positive. Therefore, the correlation-induced
stress τf should be positive when the applied stress is positive.
This is indeed what we observe in Fig. 1. Now, we note that,
according to Eq. (52), the sign-dependent stresses τ s

f (s = ±1)
and τf have the same sign. In conclusion, as stated in Sec. II E,
the stresses τ s

f are positive when the local low-order stress τlo

(here reduced to τext) is positive and they change their signs
with the sign of τlo. In other words, the stresses τ s

f always
oppose τlo: They act as friction terms.

Second, we observe that the friction stress τf vanishes with
the applied stress τext and decreases for large τext. These limits
are in fact easily predictable. First, when τext is equal to zero,
correlations d+−, and therefore their scaling form f +−, display
an axial symmetry with respect to the y axis. Consequently, f ,
which is the integral of an odd function [see Eq. (60)] is equal
to zero, which implies that τf is also equal to zero. Second,
when the stress τext is large enough, the individual dislocation-
dislocation interactions become negligible compared to τext.
Consequently, dislocations with opposite Burgers vectors
become less correlated contrary to dislocations of the same
sign. Therefore, when τext is large enough, the amplitude
of the correlations d+− decreases when τext increases and,
consequently, the friction stress τf also decreases.

In fact, the friction stress displays two different regimes.
For small applied stresses (up to approximately 0.3 in dimen-
sionless units), the friction term is approximately linear with
a slope close to 1. Therefore, the friction term opposes almost
totally the applied stress. This is associated to a quasistatic state
where there is no effective dislocation flow. For higher applied
stresses, the friction stress becomes smaller than the applied
stress. This regime is associated to a permanent dislocation

FIG. 2. Zooms of correlation maps d+− for different sizes of the
total simulation box. Left column: Lx

√
ρ = 10 and Ly

√
ρ = 20, right

column: Lx

√
ρ = Ly

√
ρ = 20. Two different values of the applied

stress τ̃ext = 2π (1 − ν)τext/(μb
√

ρ) are considered: top row, τ̃ext =
0.63; bottom row, τ̃ext = 1.26. The linear dimension of the zooms is
d
√

ρ = 4. We observe that the correlation length is of the order of a
few average dislocation spacings and that the correlation amplitude
increases when we double the size along x of the simulation box.

214111-9



VALDENAIRE, LE BOUAR, APPOLAIRE, AND FINEL PHYSICAL REVIEW B 93, 214111 (2016)

flow. This behavior is in agreement with the direct observation
of the DDD simulations.

Now, we comment on the dependence of the friction stress
τf with the parameter L

√
ρ. Figure 1 shows that, for a

given density ρ, the stress is scale dependent. In light of
the previous discussion, this is not surprising. Examination
of the simulated dislocation configurations indicates that this
is due to the increase with L of the number of very short-range
dipoles formed by two dislocations of opposite sign. This is
quantitatively confirmed by the correlation maps (see Fig. 2),
where we observe that the correlation function d+−, in a very
close neighborhood of the origin, increases significantly when
we double the size along x of the simulation box, keeping the
same density ρ.

The physical origin of the increase of the number of dipoles
with L (at constant dislocation density) is that the coarse-
graining procedure involves a time convolution with a temporal
width T (L) that, when the dislocations adopt a flowing

state, is of the order of the traveling time over the length
L. Therefore, the probability that a given dislocation meets
another dislocation of opposite sign during the time T (L)
increases with L. In brief, the longer L, the higher the number
of dipole that have the time to form. However, we note that
this physical phenomena may be here disturbed by the use of
periodic boundary conditions because a dislocation may travel
through the simulation box more than once. This undesirable
effect may be avoided with a careful numerical monitoring
of T (L), which has not been done here. Therefore, the L

dependence observed in Fig. 1, even if it has a true physical
origin, may not be perfectly quantitative.

Before concluding, we briefly extend to all the correlation-
induced stresses the scaling form presented above for the sign-
independent friction stress τf . Using the scaling forms of the
correlations dss ′

given in Eq. (58), the correlation-induced
stresses given in Eqs. (47)–(50) adopt the following scaling
forms:

τf = Gb
√

ρ f

(
κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)
(61)

τb = Gb
κ

ρ2

∂ ρ

∂x
h

(
τext

Gb
√

ρ
,L

√
ρ

)
+ Gb

1

ρ

∂ κ

∂x

{
C++

(
κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)
− C+−

(
κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)}
(62)

τ̃f = −Gb
κ

ρ

√
ρ f

(
κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)
(63)

τ̃b = Gb
κ

ρ2

∂ κ

∂x
h

(
τext
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√

ρ
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ρ
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1

ρ
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(
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ρ
,
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(
κ

ρ
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τext
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, (64)

where, for simplicity, the �r dependencies of the local stresses and dislocation densities have been omitted. Function f has been
given above in Eq. (60). The scaling functions C++ and C+− are given by

C++

(
κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)
= +1

2

∫
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x̃2(x̃2 − ỹ2)
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ρ
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√

ρ
,L

√
ρ

)
dx̃dỹ (65)
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√
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κ

ρ
,
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√

ρ
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dx̃dỹ. (66)

The scaling function h, which does not depend on the ratio κ/ρ, is given by the relation

H

(
κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)
� κ

ρ
h

(
τext

Gb
√

ρ
,L

√
ρ

)
(67)

where the scaling function H is given by

H

(
κ

ρ
,

τext
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√

ρ
,L

√
ρ

)
= 1

4

∫
(x̃,ỹ)�=(0,0)

x̃2(x̃2 − ỹ2)
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f ++
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x̃,ỹ,

κ

ρ
,

τext
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√

ρ
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− f −−

(
x̃,ỹ,

κ

ρ
,

τext

Gb
√

ρ
,L

√
ρ

)}
dx̃dỹ.

(68)

This approximation used in Eq. (67) results from a first order
expansion in κ/ρ of H , which, according to the property
given in Eq. (36), vanishes when the GND density κ vanishes.
Functions f ss ′

that appear in the previous equations are the
scaling forms of the correlations dss ′

, as defined in Eq. (58).
The first term on the r.h.s. of Eq. (62), which concerns the
sign-independent back stress τb, has been recently discussed
by T. Hochrainer within the context of a thermodynamics
approach of the continuum dislocation dynamics [40] that,
in its present form, does not include any reference to the
symmetry-breaking stresses τ̃f and τ̃b introduced here and
given in Eqs. (63) and (64), respectively.

V. SUMMARY

We have clarified the mathematical procedure needed to
coarse-grain dislocation dynamics from the discrete to the
continuum. In particular, we have emphasised that the coarse-
graining procedure requires a space and time convolution,
supplemented by an average on a statistical ensemble. We
also argued that, if the width L of the spatial correlation and
the width T (L) of the associated time convolution are both
large enough, the mesoscopic two-body correlations may be
considered locally invariant by translation and stationary at
the scale of the characteristic evolution time of the one-body
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densities. In other words, we may use a local density
approximation and write dss ′

(�r,�r ′,t) � dss ′
(�r − �r ′,{ρs(�r,t)}).

We have explained that the coarse-graining procedure
generates correlation-induced stresses τ s

f and τ s
b that have

specific physical interpretations. The stresses τ s
f change their

signs with the sign of the local low-order stress τlo (sum of
the applied stress and the mean-field stress) and are positive
when τlo is positive. Therefore, the stresses τ s

f always oppose
the local stress τlo: They act as friction stresses. In contrast,
the stresses τ s

b are invariant upon a reversal of the local
stress τlo. Therefore, they may generate a Bauschinger effect
and a translation of the elastic domain: They act as back
stresses.

The friction and back stresses τ s
f and τ s

b that depend on
the sign s of the Burgers vector can be further separated into
sign-independent and symmetry-breaking contributions. We
have shown that the sign-independent back stress τb, which
has been usually limited to a term that depends on the gradient
of the GND density, contains also a term that depends on the
gradient of the total density.

We have also shown that the symmetry-breaking compo-
nents of the friction and back stresses, τ̃f and τ̃b, break the
symmetry of the kinetic equations: They drive dislocations of
opposite Burgers vectors along the same direction. In other
words, within the mesoscopic transport equations, positive
and negative dislocation densities do not experience the same
local stress: They display velocities which are not strictly
opposite. These newly identified symmetry-breaking stresses
may play an important role in the mesoscale dynamics. For

example, as shown in Ref. [41], one of these terms, namely
the symmetry-breaking back stress component τ̃b [limited to
its approximate form given in Eqs. (56) and valid when the
GND density is small enough] plays a determinant role in the
emergence of dislocation patterns.

Using 2D simulations of the discrete dislocation dynamics,
we observed an L dependence of the coarse-grained friction
stress. This length-scale dependence is not surprising, regard-
ing the frequently observed patterns that dislocation dynamics
often generate. These patterns generally exhibit characteristic
length scales much larger than the average distance between
dislocations. Therefore, a coarse-graining procedure based on
a length scale L smaller than these configurational length
scales will inevitable lead to correlation-induced stresses that
are L dependent. In the present oversimplified situation, where
parallel dislocations are limited to a single glide system, the
L dependence has been linked to the dynamical formation of
short-range dipoles associated to the spatial and time scales of
the coarse-graining procedure.

Finally, even though we perform the analysis for an
over simplified model, these results may be easily (at least
formally) extended to more realistic situations where several
glide systems are simultaneously active. Also, our result,
concerning in particular the existence of symmetry-breaking
stress components and a more general expression of the
back stress, give strong indications on how to improve the
existing 3D dislocation density-based model already proposed
in the literature and for which no systematic coarse-graining
procedure has ever been performed.
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