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We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic
iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural,
mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects
correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as
the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures.
The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green’s
function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient
level of the moments of the density of states. This makes the BOP an O(N ) method usable for very large numbers
of particles. Only dd bonds are included explicitly, but the effect of s electrons on the covalent energy is
included via their screening of the corresponding dd bonds. The magnetic part of the cohesive energy is included
using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as
in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of
the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates
from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals
squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability
of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried
out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies,
divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to different less
symmetric structures and phonons. The results of these calculations are compared with either experiments or
calculations based on the density functional theory (DFT), and they all show very good agreement. Importantly,
the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an exception within
bcc transition metals controlled by magnetism. Moreover, the migration energy of interstitials is significantly
lower than that of vacancies, which is essential for correct analysis of the effects of irradiation. Finally, the core
structure and glide of 1/2〈111〉 screw dislocations that control the plastic flow in single crystals of bcc metals was
explored. The results fully agree with available DFT based studies and with experimental observations of the slip
geometry of bcc iron at low temperatures.
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I. INTRODUCTION

Computer simulations have become one of the major
methodologies for studying structural, thermodynamic, and
other properties of crystal defects, including their role in
various physical and mechanical properties of materials.
In particular, investigations of extended defects, such as
dislocations, grain and phase boundaries, nanovoids, or cracks
have been very widespread, owing to the important role these
defects play in a broad variety of properties of crystalline
materials. An obvious precursor for such calculations is a
physically justified description of interatomic interactions in
the system studied. The present state of the art calculations
are based on the density functional theory (DFT), and if every
calculation could be carried out in this way there would be
no need for further elaboration on interatomic interactions.
However, this is not the case, owing to rather stringent
limitations on the number of particles that can be used in
DFT calculations and, most importantly, the three-dimensional
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periodic boundary conditions required in practically all the
available DFT codes [1]. This problem can be circumvented
by coarse graining the electronic structure that determines the
cohesion into interatomic potentials describing interactions
between atoms [2]. The crucial property of such potentials
is that they must comprise all the essential aspects of the
cohesion. In the case of transition metals, it means that such
potentials reflect correctly the mixed nearly free electron and
covalent bonding arising from the partially filled d band [3].
This also applies to iron, but an additional important aspect is
the ferromagnetism that is actually responsible for the stability
of the body-centered-cubic (bcc) structure of iron (α-iron) at
low temperatures [4].

In this paper, we present the bond-order potential (BOP)
for iron together with a detailed testing of its transferability
to environments very different from that of the equilibrium
bcc lattice. Iron is indubitably one of the technologically
most important metals involved in a broad variety of struc-
tural applications. Hence, atomic level investigation of the
mechanical behavior of iron and its alloys is of paramount
importance and has been pursued over many years using
various interatomic potentials. First were pair potentials (e.g.,
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Ref. [5]), and in more recent years central-force potentials of
the embedded atom method (EAM) or Finnis-Sinclair (F-S)
type were advanced (e.g., Refs. [6] and [7]). None of these
interatomic potentials includes an appropriate description
of directional bonding of covalent type arising from the
partially filled d band. Bond directionality has been included
empirically in the modified EAM [8], and it is automatically
a part of the empirical potentials proposed in Ref. [9] and
discussed recently in Ref. [10] that employ the functional form
originally developed by Tersoff for Si [11]. These potentials
do not include any interactions arising from ferromagnetism,
and the only attempt to include magnetic effects into the
central force F-S type potential was made in Ref. [12].
The only potential that includes both the directionality of
bonding and magnetism in iron is the BOP proposed in
Ref. [13]. The potential presented in this paper is a significant
enhancement of this model. It employs the same approach
when treating the ferromagnetism, namely the Stoner model
[14,15], but augments considerably the description of bonding
arising from the partially filled d band and includes the
effect of s electrons on the d bonds. Similarly, the repulsion
between atoms, represented in Ref. [13] by a pair potential,
is significantly upgraded by including its dependence on the
local atomic environment, which allows exact reproduction
of all three cubic elastic moduli when parameterizing the
potential. The only empirical data in this development are
the cohesive energy, the lattice parameter, and three second
order elastic moduli of the ideal bcc lattice. These are used
when determining the coefficients of the functional form
describing repulsion between atoms. No empirical data have
been employed in the development of both the attractive
covalent part of the energy and the magnetic contribution, but
some parameters in these parts of the cohesive energy have
been obtained from DFT calculations.

The paper is organized as follows. In Sec. II, we describe in
some detail the attractive covalent part of the cohesive energy
arising from the partially filled d band and the magnetic
contribution, as well as the repulsive part of the cohesive
energy. The important aspect of the covalent part is inclusion
of the effect of s electrons into the calculations in which
only dd bonds are involved explicitly. In the repulsion, the
most important aspect is that it consists of a combination
of environment dependent central force term and a pair
potential. In Sec. III, we present an extensive investigation
of the transferability of the developed BOP. This involves
study of crystal structures and magnetic states alternative to
the ferromagnetic (FM) bcc lattice, vacancies, divacancies,
self-interstitials, paths continuously transforming the bcc
structure to different less symmetric structures, phonons, and
atomistic modeling of the structure and glide of 1/2〈111〉 screw
dislocations that dominate the plastic deformation of single
crystals of all bcc metals.

II. DEVELOPMENT OF THE BOP

The general theory of BOPs, originally advanced by Pettifor
and co-workers [16–18], has been elucidated in several recent
reviews [19–24]. Hence, we summarize only briefly the main
aspects, in particular those important for the bcc iron.

Within BOPs the cohesive energy of the bcc FM iron is
written as

Ecoh = Ecov + Emag + Erep. (1)

The covalent energy arising owing to the partially filled d band
is [25]

Ecov =
∑

σ=↑,↓

∑
i,α

∑
j �=i,β

ρσ
iα,jβHσ

jβ,iα, (2)

where ρσ
iα,jβ is the density matrix element for the bond

between the orbital α centered at atom i and the orbital β

centered at atom j, and Hσ
jβ,iα is the corresponding element

of the Hamiltonian matrix; σ represents the two possible spin
states. In the development of BOPs for transition metals, only
dd bonds are included explicitly (see the above mentioned
reviews and Ref. [26]). Using the Slater-Koster [27] analysis,
the Hamiltonian elements are expressed via bond angles and
corresponding bond integrals (BIs). The Emag is treated within
the Stoner model of itinerant magnetism [15] introduced to
the development of BOPs in Ref. [25]; it is discussed in more
detail below. The repulsive part of the cohesive energy com-
prises two contributions, a pairwise interaction (Epair) and an
environment dependent central force contribution (Eenv), using
the same approach as in Ref. [26] and also summarized below.

A. Covalent part of the cohesive energy: Ecov

The BIs and their dependence on the interatomic distance,
Rij , between atoms i and j were obtained from DFT
calculations via a projection scheme [28,29]. In this scheme,
the DFT calculations are first performed for a variety of atomic
configurations (several diverse crystal structures and volumes)
that correspond to different bonding environments and material
densities. Subsequently, a minimal basis of atomic orbitals
(AOs) is constructed such as to give the best representation of
the wave functions found in the DFT calculations. The Slater-
Koster two-center BIs are then obtained using this basis of the
AOs and the Hamiltonian obtained from the self-consistent
DFT calculations. The dd BIs as functions of interatomic sep-
aration R, obtained from the orthogonalized s and d basis, are
shown in Fig. 1 as empty circles. The important feature is that
different values of BIs, in particular ddπ and ddδ, are found for
the same interatomic spacing attained in calculations for bcc
lattices with different densities as the separation of the nearest

2 3 4
R (Å)

-1.2

-0.8

-0.4

0

B
on

d 
in

te
gr

al
 (e

V
)

2 3 4
R (Å)

0

0.3

0.6

0.9

2 3 4
R (Å)

-0.2

-0.1

0

ddσ ddπ ddδ

FIG. 1. BIs used in BOPs for bcc Fe. Circles: BIs determined
from the sd basis of AOs and the Hamiltonian obtained from the
self-consistent DFT calculations. Solid lines: screened BIs calculated
according to Eq. (3). Dashed lines: βτ (Rij ), given by Eq. (A1). The
red and blue colors correspond to R from regions of the first and
second nearest neighbors in bcc lattices of different densities.
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(red) or the second nearest neighbors (blue), respectively. This
non-uniqueness of the R dependence of BIs, which manifests
itself as discontinuities, results from the environmental depen-
dence of BIs. Such discontinuities, found also in earlier studies
[30,31], originate from screening effects of electrons/orbitals
(primarily of s type) associated with atoms neighboring the
dd bond considered. Instead of including explicitly the full
sd basis, this effect can be taken into account implicitly via
screening of the dd BIs, as proposed in Ref. [32]. The screened
dd BIs of the type τ , where τ = σ, π , or δ, are then

β̃ij
τ = βτ (Rij )

(
1 − Sij

τ

)
, (3)

where Rij is the separation of atoms i and j , Sij
τ is the screening

function, and βτ (Rij ) is the unscreened BI. A detailed
description of these quantities is presented in Appendix A [33].

A crucial requirement imposed in both the development
and use of BOPs is the condition of the local charge neutrality
(LCN), which is a sensible constraint for metals where
any charge variation is rapidly screened. This condition is
written as

∑
α

⎛
⎝ ∑

σ=↑,↓
ρσ

iα,iα − N atom
iα

⎞
⎠ = 0, (4)

where N atom
iα is the occupancy of the atomic-like orbital |iα〉

in the free atom. The number of d electrons on every atom
(Nd = ∑

α N atom
iα ) is set to 7.1 (the same as in Ref. [13]),

which is a reasonable value considering that the electronic
configuration of an isolated Fe atom is [Ar] 3d6 4s2. The
LCN is attained in calculations by adjusting self-consistently
the diagonal elements of the Hamiltonian, Hσ

iα,iα = εσ
iα . As

explained below, this is done in conjunction with the self-
consistent adjustment of the magnetic moment associated with
the atom i. In order to smear the sharp cutoff of the energy at
the Fermi level and to damp down the associated long-range
Friedel oscillations, a fictitious electronic temperature (Tf ) is
introduced [34]; as in the previous paper [13], we set kBTf =
0.1eV, where kB is the Boltzmann’s constant. This method
increases the rate of the convergence of both the energy and
forces when employing BOPs.

Within the BOP scheme, the density matrix ρσ
iα,jβ is

determined by employing the expansion of the local density
of states into its moments [35] and using the method of
continued fractions for the Green’s function of the Schrödinger
equation [36–38]. The continued fractions were limited to
nine moments of the local density of states, which was found
in previous studies to reproduce the density of states with
a satisfactory accuracy when compared to full tight-binding
(TB) calculations [13,30,31]. The limitation to the finite
number of moments of the density of states is the reason that
BOPs are an O(N ) method while full TB is an O(N3) method.
The algorithms for evaluation of the Green’s function elements
are implemented in the Oxford order-N package (OXON)
[17,18,39] that has been used in both the development and
application of BOPs.

B. Magnetic part of the cohesive energy: Emag

Within the Stoner model, different collinear magnetic
states, up and down spins of electrons, are introduced via

different on-site energies, ε
↑,↓
iα , corresponding to two possible

spin states. Since only d electrons are included explicitly in
the BOPs for iron, the corresponding diagonal elements of the
Hamiltonian are [25]

ε
↑,↓
id = ε0

id ± 1
2Imi, (5)

where mi is the magnitude of the difference in the number of
d electrons on site i with spin parallel and antiparallel to the
local magnetic moment, I is the Stoner exchange integral, and
+ and – correspond to spin antiparallel (↑) and parallel (↓)
to the local magnetic moment at site i, respectively. We use
I = 0.8 eV as in Ref. [13], where I was first obtained on the
basis of DFT calculations but slightly readjusted to attain a
correct magnetic behavior within the d-only model. The local
exchange splitting on atom i, 
i = Imi , is determined self-
consistently from calculations of the number of up and down
electronic spins for each site using the spin-polarized version
of the method of continued fractions for the Green’s function of
the Schrödinger equation when evaluating the density matrix
ρσ

iα,jβ . The magnetic contribution to the energy is then [25]

Emag = −1

4

∑
i

I
(
m2

i − m2
atom

)
, (6)

where matom is the magnetic moment of the free atom.
Furthermore, the LCN condition [Eq. (4)] has to be satisfied
concomitantly, and since the diagonal Hamiltonian elements
contain mi [Eq. (5)] both the self-consistency of the local
exchange splitting and charge neutrality have to be attained
concurrently. The corresponding algorithms are all imple-
mented in the OXON package.

C. Repulsive part of the cohesive energy: Erep

In any version of TB, and therefore also in BOPs, the
repulsive part of the cohesive energy is not derived rigorously
using a quantum mechanical treatment. Instead, it is formu-
lated empirically by fitting a physically justified functional
form to reproduce the experimental and/or DFT-calculated
values of some basic properties of the materials studied. In
the current development, we follow the same route as in the
case of nonmagnetic (NM) transition metals, presented in more
detail in Ref. [26]. In this case,

Erep = Eenv + Epair. (7)

Both parts of Erep depend only on the separation of
particles, but Eenv has a many-body character while Epair is a
pairwise repulsion. Our conjecture is that the functional form
for Eenv is analogous to that proposed by Aoki and Kurokawa
[40] in their study of the repulsion in face-centered-cubic
(fcc) solid argon under very high pressure that originates
from overlapping of s and p closed-shell electrons. The
physical reason is that, in transition metals, including iron,
Eenv also arises from the overlap repulsion of s electrons that
are squeezed into the ion core regions under the influence
of the large covalent d-bonding forces [41]. The adjustable
parameters in both Eenv and Epair are determined such that the
resulting BOP reproduces exactly the experimental values of
the lattice constant, cohesive energy, and three elastic constants
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(C11, C12, and C44) of the equilibrium bcc iron. Details of
evaluation of Eenv and Epair are presented in Appendix B.

While both Ecov and Emag contribute to the Cauchy pres-
sure, their contribution is not equal to its experimental value
(1/2[C12 − C44]). However, the presence of the environmental
dependence allows us to attain the experimental value of the
Cauchy pressure by fitting fully the elastic moduli. The same
cannot be achieved using a pairwise potential only since this
does not contribute to the Cauchy pressure [42,43]. In the
earlier development [13], only a repulsive pair potential was
used, and thus the Cauchy pressure was not fully reproduced.

D. Determination of the force on an atom

The force on an atom k, Fk = −gradrk
Ecoh. As shown

in previous studies (see reviews in Refs. [19–22]), the force
arising from Ecov can be determined to a good approximation
using the Hellmann-Feynman theorem [44]. Moreover, it was
proved in Refs. [25] and [45] that the force arising from Emag,
treated within the Stoner model, can also be included into the
Hellmann-Feynman type expression so that

Fcov+mag
k = −

∑
σ=↑,↓

∑
iα �=jβ

ρσ
iα,jβgradrk

(Hσ
jβ,iα). (8a)

Thus, there is no force arising independently from Emag, but, of
course, the effect of local self-consistent magnetic moments is
concealed in ρσ

iα,jβ . The force arising from the repulsive term
is simply

Frep
k = −gradrk

(Erep). (8b)

III. TESTING OF TRANSFERABILITY OF THE
DEVELOPED BOP FOR BCC IRON

The main purpose of the developed BOP is to investigate
structures and properties of atomic ensembles that deviate
significantly from the ideal bcc lattice. Specifically, these
are centers of crystal defects, in particular the extended ones
such as dislocations, grain boundaries, and other interfaces.
Obviously, the crucial requirement for such demanding studies
is the capability of the BOP model to describe accurately dis-
torted environments far away from equilibrium. While this can
never be guaranteed unequivocally, a thorough testing of the
transferability involving a variety of atomic environments that
differ significantly from the equilibrium bcc lattice enhances
considerably our confidence in employing the BOPs. For this
purpose, we investigate the energy of lattice structures other
than the bcc lattice, including alternate magnetic states, the
energy variation when the bcc lattice is deformed along several
transformation paths [46,47], formation energies of vacancies,
divacancies, and self-interstitial atoms (SIAs), phonon spectra,
and γ surface for {101} planes, which relates to the core
structure of 1/2〈111〉 screw dislocations that govern the plastic
deformation of bcc metals [48,49]. Results of these tests can
be compared with those obtained by DFT calculations or
appropriate experiments.

A. Alternate crystal structures and magnetic states

The structures investigated are bcc, fcc, and hexagonal
close packed (hcp), each with three possible magnetic states,

TABLE I. Equilibrium energies (meV atom−1) of bcc, fcc, and
hcp structures in different magnetic states relative to that of FM
bcc structure. All structures were relaxed with respect to the
corresponding lattice parameter.

FM AFM NM

bcc 0 431 498
fcc 99 271 339
hcp 97 197 331

namely NM, FM, and antiferromagnetic (AFM). The results
are summarized in Table I, which shows that the state with
the lowest energy is FM bcc. Importantly, in the NM state,
the fcc and hcp lattices are more stable than the bcc lattice.
Moreover, using the developed BOP we calculated the elastic
moduli for the NM bcc state and found that the shear modulus
1/2(C11–C12) is negative; the shear modulus C44 is positive.
This implies that the NM state is not only a high energy state
but is in fact unstable.

This demonstrates that introducing magnetism into the BOP
for Fe is crucial for attaining the correct ground state, namely
FM bcc (see Ref. [4], which proves that the ferromagnetism
stabilizes the bcc structure of iron at low temperatures).
We have also compared the energy versus atomic volume
dependences calculated using the BOPs to the results of the
DFT calculations carried out in Ref. [50]. These results are
presented in Fig. 2, and it is seen that the BOP results are in
an excellent agreement with the DFT calculation.

B. Vacancies and divacancies

A supercell of dimensions 3a × 3a × 3a, where a is
the equilibrium lattice parameter, was used, and the atomic
arrangement was always fully relaxed. Table II compares the
formation energies of vacancies and divacancies obtained by
the BOP with DFT calculations [51–54] and experimental
measurements [55,56]. Clearly, BOP calculations reproduce
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FIG. 2. Comparison of energies of different magnetic states in
bcc lattice of iron relative to that of the equilibrium FM bcc lattice,
plotted as dependences on the volume per atom. The DFT results are
taken from Ref. [50].
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TABLE II. Formation energies of vacancies (Evac), formation
energies of nearest neighbor (NN) and second nearest neighbor
(2NN) divacancies (Edivac), and migration energies of vacancies
(Emig) calculated using the developed BOP and DFT and measured
experimentally. Units are in eV.

BOP DFT Experiment

Evac 1.99 1.95–2.15a,b 1.6–2.2g,h

Edivac (NN) 3.51 3.85–4.08c,d

Edivac(2NN) 3.61 3.83–4.01c,d

Emig 1.03 0.64–0.67b,c,e,f 0.55g

aReference [51].
bReference [52].
cReference [53].
dReference [54].
eReference [57].
fReference [58].
gReference [55].
hReference [56].

very well the formation energies of both vacancies and
divacancies found in DFT calculations and experiments.
Table II also contains the vacancy migration energy evaluated
using the nudged elastic band (NEB) method [57]. In this case,
the agreement with DFT calculations is only tentative but the
important point is the comparison with the migration energy
of interstitials discussed below.

C. Self-interstitial atoms

Based on the crystallography and symmetry of the bcc lat-
tice, Johnson [5] proposed six possible configurations of SIAs:
〈111〉 dumbbell, 〈111〉 crowdion, 〈110〉 dumbbell, tetrahedral
interstitial, 〈100〉 dumbbell, and octahedral interstitial. These
configurations were used as the starting configuration in the
relaxation calculations determining their final configurations
and corresponding energies. The calculations were always
started with the supercell composed of 4 × 4 × 4 ideal
bcc lattice unit cells with the equilibrium lattice parameter
containing one SIA; the number of atoms in the supercell
was 129. The periodic boundary conditions were applied in
all three dimensions. The energy was then minimized with
respect to both the positions of atoms using a steepest descent
method and the volume of the supercell. The latter allows for
the volume expansion/contraction associated with SIAs.

In starting configurations, the separations between the
interstitial atoms and other atoms of the ideal lattice (or the
separations between interstitial atoms) is often much smaller
than the nearest neighbor spacing in the ideal lattice. This is
seen in Table III, which summarizes the minimum interatomic
separations, R0

min, found in each unrelaxed SIA configurations.
These separations range from 0.5–0.7 of the first nearest
neighbor spacing in the ideal bcc lattice.

Formation energies of SIAs calculated using the developed
BOP and using a DFT method [53], respectively, are presented
in Table IV together with minimum interatomic separations,
Rmin, in the relaxed structures obtained using the BOP.
Formation energies of 〈111〉 dumbbell and 〈111〉 crowdion
were always found to be within the numerical errors the

TABLE III. The minimum interatomic separations, R0
min, in the

units of the first nearest neighbor spacing of the ideal bcc lattice (D),
in the unrelaxed configurations of SIAs.

〈111〉 〈111〉 〈110〉
dumbbell crowdion dumbbell

R0
min (D) 0.567 0.500 0.693

Tetrahedral 〈100〉 Octahedral
interstitial dumbbell interstitial

R0
min (D) 0.645 0.722 0.577

same and are not, therefore, presented separately. Relaxations
generally lead to an increase of the minimum interatomic
separations associated with SIAs, which, presumably, results
from the expansions in their vicinity as can be expected.

The formation energies of SIAs found using the developed
BOP are close to those found in DFT calculations [53].
The most important is that the configuration with the lowest
formation energy is the 〈110〉 dumbbell, as predicted by
DFT calculations. In contrast, in NM transition metals DFT
calculations predict the lowest energy structure to be the
〈111〉 dumbbell [51]. Liu et al. [25] employed a TB model
enhanced by the Stoner model of magnetism, and their results
qualitatively reproduce prediction of DFT calculations, in
particular the order of formation energies for various structures
of SIAs. This suggests that it is the magnetism that is
responsible for the lowest energy interstitial configuration
in Fe to be different than in NM bcc transition metals.
The constructed BOP that includes the magnetism in the
same way clearly leads to the same finding for the lowest
energy structure of SIAs. Additionally, the order of increasing
formation energies with different configurations found by BOP
is the same as that found using DFT.

In order to further demonstrate that it is the magnetism
that governs the structure and energy of SIAs in bcc iron, we
removed Emag from evaluation of the cohesive energy while
keeping Ecov the same and readjusting Erep so as to reproduce
the five fitting parameters as in the developed BOP. For this
BOP that does not contain magnetism, the lowest energy
configuration was found to be the 〈111〉 dumbbell with the
energy of 1.22 eV, while the 〈110〉 dumbbell has appreciably

TABLE IV. Formation energies of SIAs (eV) together with
minimum separations of atoms, Rmin, in the structures relaxed using
the BOP. In the calculations of Rmin, only atomic relaxation was
carried out without any total volume relaxation.

Formation
energies (eV)

BOP DFTa Rmin (D)

〈111〉 dumbbell 4.22 4.61 0.801
〈110〉 dumbbell 3.87 3.93 0.813
Tetrahedral interstitial 4.24 4.32 0.836
〈100〉 dumbbell 4.44 5.05 0.797
Octahedral interstitial 5.05 5.21 0.817

aRef. [53].
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higher energy 2.14 eV. Thus, the lowest energy structure for
NM iron is the same as in all NM transition metals.

Using the NEB method, the migration energy of the [110]
dumbbell between two nearest positions along the [110]
direction was found to be 0.28 eV. The DFT calculations
give 0.34 eV [58], and the experimental values are in the
range 0.27–0.33 eV [59]. Again, the agreement between BOP
calculations, experiments, and DFT calculations is very good.
However, the most important result is that the migration energy
of SIAs is about a quarter of the migration energy of vacancies.
This implies that SIAs migrate much faster than vacancies,
which is a well-known phenomenon in irradiated materials in
which vacancies and interstitials annihilate only partially and
a surplus of vacancies ensues [60,61].

D. Transformation paths

The transformation paths studied connect the bcc lattice
with fcc, simple cubic (sc), hcp, and body centered tetragonal
(bct) structures via continuously distorted configurations. The
four paths investigated are tetragonal, trigonal, hexagonal,
and orthorhombic. The tetragonal path, also known as the
Bain path [62], corresponds to extending the lattice along
the [001] direction while keeping the volume per atom fixed.
On the trigonal path, the lattice is deformed by extending
along the [111] direction while keeping the volume per atom
fixed. During the orthorhombic path, the lattice is deformed
by extending in the [001] direction while compressing in the
[110] direction. The hexagonal path is qualitatively different
from the previous three paths in that it does not correspond
only to a homogeneous straining but to straining accompanied
by simultaneous shuffling of alternative close packed atomic
planes in opposite directions; these shuffles are linearly
coupled to the strain. A rigorous definition of tetragonal,
trigonal, and hexagonal paths, using the Lagrange strain tensor,
is found in Ref. [46], and the orthorhombic path is defined in
the same way in Ref. [31].

All four paths can be characterized by one parameter p. We
calculated for these paths the energy as a function of p using
both the developed BOP and spin polarized DFT as included in
the Vienna Ab initio Simulation Package (VASP) code [63–65].
Results of these calculations are presented in Fig. 3. In general,
the agreement between BOP and DFT calculations is very
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FIG. 3. Deformation paths calculated using the constructed BOP
(full curves) and DFT (circles). The positions (values of p) for which
the structures are bcc, fcc, sc, bct, and hcp are marked.
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FIG. 4. Phonon dispersion curves. Lines: calculations using the
constructed BOP. Circles: experimental data from Ref. [67]. The black
color corresponds to the longitudinal mode L, red to the transversal
modes T and T1, and green to the transversal mode T2 for both the
BOP results and the experimental data.

good, which demonstrates that the BOP describes with a good
precision the interaction between atoms for structures that
deviate very significantly from the ideal bcc lattice.

E. Phonon dispersions

The phonon dispersion curves for the equilibrium bcc
lattice of iron were calculated using the constructed BOP by
employing the frozen phonons method [66]. The calculations
were done for �-H, H-P-�, and �-N cross sections of the
Brillouin zone. The results, compared with the available
experimental data [67], are presented in Fig. 4. The calculated
dispersion curves are in an excellent agreement with experi-
ments. They do not show any tendency towards soft phonons,
which would indicate possible instabilities. This demonstrates
the robustness of the developed BOP since no information
associated with the phonon spectra (besides elastic moduli)
has been included into the fitting database when developing
the BOP.

F. Core structure and glide of 1/2〈111〉 screw dislocations

It is now firmly established that the plastic deformation
of pure single crystals of all bcc metals is governed by
1/2〈111〉 screw dislocations that possess nonplanar cores (for
reviews see Refs. [48], [49], and [68]). The most important
features of these cores can be assessed using the concept of γ

surfaces that are plots of energies of single layer generalized
stacking faults formed by displacing relative to each other
two parts of a crystal cut along a crystallographic plane.
When calculating a γ surface, the relaxation of atomic planes
perpendicular to the plane of the fault has to be carried out.
Such calculations were made for many bcc crystals using a
variety of interatomic potentials as well as DFT. For bcc
iron, the latter was used, for example, in Refs. [69–71]. In
all these studies, γ surfaces do not display any minima that
would indicate existence of metastable stacking faults. Calcu-
lations employing the constructed BOP for bcc iron give the
same results. Comparison between the BOP and DFT [69]
calculated [111] cross-sections of γ surfaces for the (1̄01)
plane, shown in Fig. 5, demonstrates that the two calculations
are very close to each other even numerically. Nonexistence of
metastable stacking faults is, of course, a general characteristic
of all bcc metals [68].
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FIG. 5. [111] cross-sections of γ surfaces for the (1̄01) plane
calculated by BOP and DFT. Lines: BOP; dashed and solid lines
correspond to calculations with and without the relaxation perpen-
dicular to the (1̄01) plane, respectively. Filled and open circles are
results of DFT calculations (Ref. [69]) with and without the relaxation
perpendicular to the (1̄01) plane, respectively.

The core structure of the 1/2[111] screw dislocation was
computer modeled using the constructed BOP in the same
way as in a number of previous studies (see, for example,
Ref. [72]). The relaxed block of atoms consisted of three
consecutive, periodically repeated, (111) planes of the bcc
lattice. It comprised two regions: An active region in the
center surrounded by an inert region. The dislocation was
centered in the active region in which all the atoms are relaxed
using the steepest decent molecular statics method, while the
atoms in the inert region are fixed but displaced away from
the ideal bcc lattice in accordance with the elastic anisotropic
displacement field of the dislocation studied. This arrangement
corresponds to the simulation of an infinitely long 1/2[111]
screw dislocation located in the bulk of the material [73].
Within the core, the largest displacements in the [111] direction
are confined to three intersecting {101} planes of the [111]
zone. The core structure is invariant with respect to the [111]
threefold screw axis and also with respect to the [1̄01] diad
(reflection in the (111) plane followed by reflection in the (1̄21̄)
plane). This core structure is unique and called nondegenerate.
(More details about the depiction of the core structure can be
found in the review [68].) The same core structure was found
for bcc iron in several DFT studies [69,74–76]. In fact, the
same core structure was also found in NM bcc metals studied
using DFT and/or BOPs (for references, see Refs. [72] and
[77]), and thus the principal aspects of the structure of the core
of 1/2〈111〉 screw dislocations are the same in the bcc iron as
in NM bcc transition metals.

The motion of the dislocation under the effect of an applied
stress at 0 K was investigated as follows. We applied the
chosen stress to the block with the relaxed atomic configuration
of the 1/2[111] screw dislocation by imposing on all the atoms
of the block the displacement evaluated for the given applied
stress tensor via the corresponding strain tensor using the
anisotropic Hook’s law. The level of the applied stress always
started well below the stress at which the dislocation moved.
The stress was then increased incrementally, and at each stress
level the atoms in the active region were fully relaxed as in

TABLE V. Glide planes of the 1/2[111] screw dislocation for pure
shear stress applied in the [111] direction in different MRSSPs and
tension/compression applied for eight different loading axes. In each
case, the MRSSP is characterized by the angle χ .

Pure shear Tension Compression

χ (deg) Glide plane Axis Glide plane Axis Glide plane

−26.33 (1̄01) [0 1 14] (1̄01) [5̄ 8 9] (1̄01) and (1̄10)
−19.11 (1̄01) [1̄ 6 34] (1̄01) [8̄ 20 27] (1̄01)
−8.95 (1̄01) [1̄ 3 10] (1̄01) [5̄ 9 17] (1̄01) and (1̄10)
0.00 (1̄01) [2̄ 3 8] (1̄01) [0 1 2] (1̄01)
0.00 – [0 1 2] (1̄01) [2̄ 3 8] (1̄01) and (1̄10)
8.95 (1̄01) [5̄ 9 17] (1̄01) [1̄ 3 10] (1̄01)
19.11 (1̄01) [8̄ 20 27] (1̄01) [1̄ 6 34] (1̄01)
26.33 (1̄01) [5̄ 8 9] (1̄01) [0 1 14] (1̄01)

the unstressed case. The stress level keeps increasing until the
dislocation starts to glide at a critical stress.

The stresses we imposed were pure shear stress in the
direction of the Burgers vector in several planes, called
maximum resolved shear stress planes (MRSSPs), making
an angle χ with the (1̄01) plane and tensile/compressive
stresses for a number of loading axes within the standard
stereographic triangle with the corners [001], [011], and [1̄11].
In all cases, the {101} plane most highly stressed by the
shear in the [111] direction was the (1̄01) plane. The shear
stress driving the dislocation attains in each case a maximum
at a MRSSP making an angle χ with the (1̄01) plane. The
corresponding shear stress at which the dislocation starts to
move is called the critical resolved shear stress (CRSS). For
crystallographic reasons, all nonequivalent angles χ are in the
range −30◦ � χ � +30◦. The procedure of stress applications
is described in more detail in Ref. [72].

Table V summarizes the glide planes of the 1/2[111] screw
dislocation found when applying the pure shear stress in the
[111] direction in different MRSSPs and tension/compression
for eight different loading axes. The dependence of the
CRSS (normalized by C44) on the angle χ is presented in
Fig. 6. Similarly, as for NM bcc transition metals [72,77], the

-30 -20 -10 0 10 20 30
χ (deg)
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0.012

C
R

SS
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T[1 3 10]
T[2 3 8]
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C[0 1 14]

C[1 3 10]
C[2 3 8]

C[0 1 2]
C[5 9 17]

C[8 20 27]
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FIG. 6. The dependence of the CRSS on χ calculated using the
developed BOP for the bcc iron. Loading axes are shown and marked
by subscripts T and C for tension and compression, respectively.
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Schmid law breaks down for all loadings, and the orientation
dependence of the CRSS always displays the asymmetry
between twinning (χ < 0) and antitwinning (χ > 0) sense
of shearing. Moreover, there is also a significant difference
between tension and compression for a fixed χ that cannot be
related just to the effect of pure shear in the direction of the
Burgers vector, and it was shown in Refs. [72] and [77] that the
shear stress components perpendicular to the Burgers vector
are likely to play an important role in this asymmetry [78].
Hence, the CRSS versus χ dependence and the asymmetries
this dependence demonstrates are in the bcc iron very similar
to those in NM bcc transition metals [30,31,72,77]. However,
a noticeable difference is found in the case of the slip planes.
In NM bcc transition metals, the slip planes are {101} planes
of the [111] zone that may but need not be most highly stressed
[72,77], depending on loading conditions. In contrast, for bcc
iron the slip plane is almost always the (1̄01) plane, which is the
most highly stressed {101} plane. Only for some orientations
of the compressive axis, the combination of (1̄01) and (1̄10)
is found, which represents effectively the slip along the (2̄11)
plane sheared in the twinning sense.

The general experimental finding is that, in single crystals
of bcc iron, the preferred slip planes at low temperatures
are {101} planes and, just like in NM transition metals,
the CRSS always shows a significant twinning-antitwinning
asymmetry (see, for example, Refs. [79–84]). Moreover, for
some orientations of the loading axes, when χ < 0, the
slip plane for the [111] slip direction is the (2̄11) plane.
Our calculations of the glide of ½[111] screw dislocation
fully support these experimental observations. Furthermore,
the anomalous slip, i.e., the slip on a system with a very
low Schmid factor, has been observed to various extent,
sometimes even as dominating, in NM bcc transition metals
deformed at cryogenic temperatures [85–87]. This aspect of
the low temperature behavior is supported by recent atomistic
calculations of the glide of the screw dislocation in NM bcc
transition metals [77]. However, calculations of the glide of
½[111] screw dislocation in the bcc iron do not indicate
existence of such slip. Indeed, the anomalous slip has never
been observed in the bcc iron. This demonstrates that atomistic
studies using the developed BOP for the bcc iron are correctly
reproducing the experimentally observed dislocation behavior.

IV. CONCLUSIONS

In this paper, the BOP for FM bcc iron (α-iron) was
developed that comprises the most important aspects of
bonding in this important metal. In the attractive part of
the cohesive energy, it is the mixed nearly free electron and
covalent bonding, the former mainly due to s electrons and the
latter owing to a partially filled d band. The ferromagnetism,
which is essential for the stability of the bcc structure [4],
is taken into account aptly within the Stoner model of
itinerant magnetism [14,15] and, importantly, the repulsive
part of the cohesive energy, albeit principally empirical,
contains an environmentally dependent term that is essential
for exact reproduction of the elastic moduli. While only dd

bonding is considered explicitly, the influence of s electrons is
included implicitly via screening of dd bonds [32]. Neither the
influence of s electrons on dd bonds nor the environmental

dependence of the repulsion was included in the earlier
development of the BOP for the bcc iron [13]. Naturally, none
of these aspects is captured by any potentials that include
only central-force interactions even if these potentials have a
many-body character, as in EAM or F-S potentials.

The testing of the transferability of the developed BOP to
atomic environments that are significantly different from those
of the ideal bcc lattice, compared either with experiments
or analogous DFT calculations, shows indubitably that the
potential can be employed with high confidence in large-scale
atomistic computer modeling of crystals with defects. The
most important aspect is that its applicability extends from
simplest point defects to large extended defects. Thus, it is
possible to model the glide of individual dislocations as well
as their mutual interactions and interactions with interfaces
equally well as with localized defects such as interstitials and
vacancies. This implies, for example, that the developed BOP
may be employed equally in studies of plastic deformation,
grain boundary migration or sliding, effects of radiation
damage associated with formation and movement of SIAs
and vacancies, and other defects in the crystalline structure.
While no empirical or semiempirical potential can be entirely
all-embracing and some limits of its applicability always
exist, the present paper suggests that the applicability of the
developed BOP for bcc iron is, indeed, very wide-ranging.
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APPENDIX A: SCREENED BIs

In Eq. (3),

βτ (Rij ) = βτ (R0) exp

(
R0

Rc

− Rij

Rc

)
. (A1)

This is a simplified form of the more general Goodwin,
Skinner, and Pettifor (GSP) [88] form that was used in previous
developments of BOPs. Both R0 and Rc, as well as βτ (R0),
are adjustable parameters used when fitting the R dependence
of the BIs shown in Fig. 1. The screening function is taken as

Sij
τ =

(
c
ij

1

)
τ
− (

μ̄
ij

2

)
τ

1 + O2
τ (Rij ) − 2

(
μ̄

ij

2

)
τ

, (A2)

which is a simplified form of S
ij
τ derived in Ref. [32]. The

Oτ (Rij ) is the dd overlap integral of the type τ between
atoms i and j ; it is assumed to have the same functional form
as βτ . The Oτ (R0) is then one of the adjustable parameters
used to reproduce both the environmental (discontinuities)
and R dependence of the BIs of the dd type. The (cij

1 )τ is
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TABLE VI. Parameters entering equations for screened bond
integrals for bcc Fe. For all four BIs (ddσ , ddπ , ddδ, and sdσ ),
R0 = 2.4825 Å, RBI

1 = 2.6 Å, and RBI
cut = 4.0 Å. Units of βτ (R0) and

Oτ (R0) are eV; Rc is in Å.

βτ (R0) Oτ (R0) Rc

ddσ − 0.620 0.040 0.71
ddπ 0.410 − 0.030 0.47
ddδ − 0.062 0.020 0.31
sdσ 0.845 − 0.045 0.71

the contribution of the interference between atoms i and j that
results from the electrons hopping between d orbitals on atoms
i and j through the s orbital centered on a neighboring atom
k. Following Ref. [32], it is

(
c
ij

1

)
τ

=
∑
k �=i,j

(1 + δτ0)

4βτ (Rij )
{[βdsσ (Rik)Osdσ (Rkj )

+Odsσ (Rik)βsdσ (Rkj )]gτ (θjik)gτ (−θijk)

−βdsσ (Rik)Osdσ (Rki)Oτ (Rij )g2
τ (θjik)

−Oτ (Rij )Odsσ (Rjk)βsdσ (Rkj )g2
τ (θijk)},

where δτ0 is 0 when τ = π or δ and 1 when τ = σ . The
functional dependence on R of the BI βsdσ is determined
from DFT calculation similar to that used for dd integrals,
but it is further modified when fitting dd BIs. The overlap
integral Osdσ is again assumed to have the same functional
dependence on R as βsdσ , and Osdσ (R0) is then used as an
adjustable parameter when fitting dd BIs. Moreover, the BI
βdsσ and the overlap integral Odsσ are assumed to be the
same as βsdσ and Osdσ , respectively. The screening function
of BIs not only contains a many-body character, but it also
depends explicitly on bond angles θijk and θjik via angular

functions [32] gσ (θ ) = 1
4 (1 + 3 cos 2θ ), gπ (θ ) =

√
3

2 sin 2θ ,

and gδ(θ ) =
√

3
4 (1 − cos 2θ ). The (μ̄ij

2 )τ is the average second
moment contribution, and it is [32](

μ̄
ij

2

)
τ

= O2
τ (Rij ) +

∑
k �=i,j

(1 + δτ0)

4

[
O2

dsσ (Rik)g2
τ (θjik)

+O2
dsσ (Rjk)g2

τ (θijk)
]
.

The parameters Oτ (R0) and Osdσ (R0) in the overlap
integrals, together with a modification of parameters in βτ (R)
and βsdσ (R) [all represented by the functional form of the
type as in Eq. (A1)], are used to reproduce the R dependence
and the environmental dependence (discontinuities) of the
DFT determined BIs of dd type shown in Fig. 1. The solid
lines in this figure show BIs calculated analytically using
Eq. (3). Parameters entering Eq. (A1) and quantities entering

TABLE VII. Experimental values [89,90] to which the BOP is
fitted. The lattice parameter (a) is in Å, the cohesive energy (Ecoh) in
eV, and elastic moduli in 1011 Pa.

a Ecoh C11 C12 C44

2.866 4.28 2.431 1.381 1.219

TABLE VIII. Parameters used in the environment dependent
repulsion (Eenv), given by equations (B1) and (B2), when Rij is
in units of the lattice parameter a. A is in eV; μ, g, and ν are
dimensionless; Rs is in units of a; R

rep
1 and R

rep
cut are in Å.

A μ g ν Rs R
rep
1 R

rep
cut

1.297 × 102 7.0 20.0 6.0 0.52 3.0 4.0

the screening function given by Eq. (A2) are summarized in
Table VI.

In order to ensure that no nonphysical discontinuity occurs
when calculating the energy and forces for a finite range of R

values, it is important that the R dependence of BIs converges
smoothly to zero at a cutoff distance RBI

cut. This is achieved by
replacing βτ (R) by a fifth-order polynomial when RBI

1 < R <

RBI
cut. The coefficients of this polynomial are determined such

that βτ (R) and the polynomial have the same values and the
same first and second derivatives at R = RBI

1 and that at R =
RBI

cut the value, the first derivative, and the second derivative
of the polynomial become zero; RBI

cut is between the second
and third nearest neighbors, which is a sufficient interaction
range. The values of RBI

1 and RBI
cut are chosen carefully to

avoid any unphysical bump of the polynomial in the interval
RBI

1 < R < RBI
cut, and their values are also presented in the

caption of Table VI.

APPENDIX B: REPULSIVE PART OF THE COHESIVE
ENERGY: Eq. (7)

The functional form for the environment dependent repul-
sion (for more details see Ref. [26]) is

Eenv = 1

2

∑
i,j �=i

A exp(−μRij )e−(λi+λj )(Rij −Rs ), (B1)

with

λi =
∑
k �=i

g exp(−νRik), (B2)

where A, μ, g, ν, and Rs are adjustable parameters. The
pairwise repulsion

Epair = 1

2

∑
i,j �=i

�(Rij ), (B3)

where �(Rij ) is a pair potential taken in the form

�(Rij ) =
4∑

k=0

Bk(Rk − Rij )3H (Rk − Rij ), (B4)

TABLE IX. Parameters used in the pair potential (�), given by
Eq. (B4), when Rij is in Å. Rk is in Å; Bk is in eV Å−3.

k Rk Bk

0 2.23 30.0
1 2.75 −0.972 681 58
2 2.90 2.516 912 64
3 3.50 0.693 543 45
4 3.80 −0.412 698 08
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where Bk and Rk are adjustable parameters, H is the Heaviside
step function, and R4 is the cutoff of the pair potential.
For computational reasons, Eenv needs to be cut off at a
certain interatomic distance, R

rep
cut , which is chosen to be in

the vicinity of the third nearest neighbors. This is achieved
by replacing A exp(−μR) in Eq. (B1) and g exp(−νR) in
Eq. (B2) by fifth-order polynomials when R

rep
1 < R < R

rep
cut ;

the coefficients of these polynomials are determined such that
their values and first and second derivatives are continuous
at R = R

rep
1 with A exp(−μR) and g exp(−νR), respectively,

and zero at R = R
rep
cut . The R

rep
1 is chosen such that there are

no unphysical bumps occurring in the polynomials in the
range R

rep
1 < R < R

rep
cut . The adjustable parameters in both

Eenv and Epair are determined such that the resulting BOP
reproduces the experimental values of the lattice constant (a),
cohesive energy (Ecoh), and three elastic constants (C11, C12,
and C44) of the equilibrium bcc phase. These are summarized
in Table VII. Parameters entering Eenv are summarized in
Table VIII, and those entering the pairwise repulsion are
summarized in Table IX.
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