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Towards nanoscale multiplexing with parity-time-symmetric plasmonic coaxial waveguides
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We theoretically investigate a nanoscale mode-division multiplexing scheme based on parity-time- (PT )
symmetric coaxial plasmonic waveguides. Coaxial waveguides support paired degenerate modes corresponding
to distinct orbital angular momentum states. PT -symmetric inclusions of gain and loss break the degeneracy
of the paired modes and create new hybrid modes without definite orbital angular momentum. This process
can be made thresholdless by matching the mode order with the number of gain and loss sections within the
coaxial ring. Using both a Hamiltonian formulation and degenerate perturbation theory, we show how the wave
vectors and fields evolve with increased loss/gain and derive sufficient conditions for thresholdless transitions.
As a multiplexing filter, this PT -symmetric coaxial waveguide could help double density rates in on-chip
nanophotonic networks.
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I. INTRODUCTION

The increasing size and sophistication of supercomputers
and server farms have necessitated the development of new
high data-rate, high efficiency, and compact devices for
the transfer of information across a variety of distances
from cross-chip to cross-warehouse. Compared to electronic
interconnects, a single optical interconnect can carry extremely
high data rates via a number of alternative and complementary
multiplexing schemes. For example, IBM’s silicon photonics
chip enables data rates up to 100 Gb/s using wavelength-
division multiplexing with a demonstrated error-free operation
at 32 GB/s [1]. The inclusion of multiple systems of multi-
plexing, e.g., time and mode-division multiplexing, could offer
an additional significant increase to the data flux per optical
channel, since multiplexing schemes are multiplicative in data
rate.

While wavelength- and time-division multiplexing are
the most mature technologies for increasing data rates,
mode-division multiplexing (MDM) has gained increasing
attention [2]. With this scheme, information is encoded within
specific spatial eigenmodes. Recently, terabit-scale data rates
have been demonstrated with MDM using two modes with
different orbital angular momentum (OAM) at ten wave-
lengths [3]. However, existing demonstrations of MDM have
mostly relied on free space or fiber transmission and bulky mul-
tiplexing/demultiplexing components [4–6]. On-chip MDM
is possible, but still requires relatively large resonators and
filters for the different modes [7–9]. Plasmons may prove to
be a suitable alternative to photons for MDM because they
offer substantial confinement and concentration of fields while
maintaining modest mode propagation lengths [10–13].

Plasmonic coaxial metal-insultator-metal structures in par-
ticular have shown promise as concentrators of field intensity
while maintaining high transmission efficiencies in waveg-
uides and apertures [14–17]. When gain is introduced to a
coaxial structure, the large modal gain can further mitigate
Ohmic losses in waveguides or even result in thresholdless
lasing [18–20]. In this work, we build on these successes
and propose a scheme for multiplexing with plasmonic

coaxial waveguides based on parity-time (PT ) symmetry
breaking.

Plasmonic coaxial waveguides possess a number of paired
degenerate modes, corresponding to clockwise (CW) and
counterclockwise (CCW) OAM states, which undergo spatial
transformations with the introduction of PT symmetry. By
designing a PT -symmetric azimuthally-periodic perturbation
within the waveguide, one can lift the OAM mode degeneracy,
and create new hybrid modes. These modes lose their OAM
and become amplifying or attenuating. This effect could
therefore be used as a PT -symmetric filter for a coaxial
waveguide multiplexing system. An input data stream would
be converted by the filter to an amplified hybrid mode, and
fed to a passive coaxial waveguide. A second data stream
would be converted to a perpendicular amplified hybrid
mode through a 90◦-rotated PT -symmetric filter and also fed
into a passive coaxial waveguide. Demultiplexing would be
achieved by splitting the passive coaxial waveguide’s output
and filtering the two independent spatial modes with the
same PT -symmetric filters. Control over the filter’s mode
selectivity is achieved by perturbing the insulator within the
coaxial waveguide with rotationally periodic gain and loss
media with the same real refractive index and equal magnitude
imaginary index (which is the necessary condition to possess
PT symmetry in optical systems).

In one-dimensional PT -symmetric systems, as the amount
of gain and loss increases in the system, an exceptional
point (EP) is reached beyond which the eigenvalues and
eigenvectors of the system markedly shift, and modes will
pair off and become complex conjugates (same real wave
vector, but equal and opposite imaginary wave vector) of
each other. This phenomenon has been used to great effect to
design waveguides [21–29], resonators [30–33], and periodic
structures exhibiting asymmetric transmission [34–36]. Fur-
ther, low threshold single mode lasing has been demonstrated
for micron-scale PT -symmetric ring resonators [37]. In our
system, the well-defined and azimuthally-localized field distri-
butions in coaxial geometries make them an ideal candidate for
the exploration of more sophisticated PT -symmetric devices
as a means of mode filtering and shaping.
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In addition to the more common PT -symmetric EP
behavior, we show it is possible to break the modal de-
generacy with arbitrarily small PT -symmetric perturbations
in our plasmonic coaxial waveguide, thereby enabling the
differentiation between a pair of modes that share the same
real part of the wave vector. We also show how the gain/loss
arrangements can be used to design new hybrid modes from the
modes of a uniform coaxial waveguide. Using a Hamiltonian
formulation and degenerate perturbation theory, we investigate
the evolution of the modes as a function of the gain/loss value
and the number of gain/loss sections in the waveguide; we
obtain the sufficient conditions to achieve both thresholdless
PT -symmetry breaking as well as classic EP behavior. In
addition to mode selection for MDM, the results of this study
in general shed light on the mode morphology and evolution
in PT -symmetric systems with degeneracy.

II. THEORETICAL FORMULATION

As shown in Fig. 1(a), our structure is a three-layer coaxial
waveguide consisting of a dielectric ring and silver core
embedded in a silver cladding. The silver core has a radius
of 60 nm and the permittivity is described with a Drude model
as εAg = 1 − (ωp

ω
)2, where ωp = 8.85 × 1015 Hz (discussion

of a more realistic metal including Ohmic loss is given in
Appendix A). The dielectric channel is 25 nm thick and
characterized by a real refractive index of n = 1.5. The channel
is filled with alternating sections of gain and loss, which can
be represented as

�n =
{

ngain = −iκ, lπ/N � φ � (l + 1/2)π/N

nloss = +iκ, (l + 1/2)π/N � φ � (l + 1)π/N.

(1)

Here, κ is the magnitude of the gain/loss, 2N is the number of
loss (or gain) segments, φ is the azimuthal angle around the
coaxial channel, and l is an integer spanning 0,1, . . . ,2N − 1.
The presence of gain and loss makes the system non-
Hermitian, so κ can be considered the non-Hermiticity
parameter. In this geometry, the parity operator is defined
as P(φ) → −φ. The refractive index profile and permittivity
of the coaxial waveguide therefore satisfy the PT -symmetry
condition [ε(r,φ) = ε∗(r, − φ)]. While a closed-form solution
to this PT coaxial waveguide does not exist, a Hamiltonian
formulation [38] and degenerate perturbation theory can be
used to investigate the modal properties.

Due to the axial symmetry of the waveguide, the modes
vary azimuthally as eimφ ; in other words, they have well-
defined angular momenta parametrized by m. For a peri-
odic refractive index distribution as in Eq. (1), the index
can also be expanded in the harmonic basis of eimφ . The
overall symmetry of the waveguide’s cross section can be
categorized based on whether N is an integer or half integer.
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FIG. 1. (a) Schematic of the PT -symmetric coaxial waveguide
where the channel is perturbed with alternating sections of gain
(yellow) and loss (red). (b) The Fourier coefficients describing �n

for each distribution N = 0.5,1,1.5,2. Due to the symmetry only
positive-order coefficients are shown.

N (half-integer): the distribution possesses antisymmetry
with respect to the center of the coaxial waveguide [ε(r,φ) =
ε∗(r,φ + π )], so even-order Fourier coefficients vanish.

N (integer): the distribution has inversion symmetry with
respect to the center of the coaxial waveguide [ε(r,φ) =
ε(r,φ + π )], so odd-order Fourier coefficients vanish.

Figure 1(b) shows the Fourier coefficients for the distribu-
tion of �n of four different PT -symmetric distributions. In
each case the inset shows a cross section of the waveguide. Due
to the symmetry condition of Cm = C∗

−m, only positive-order
Fourier coefficients (i.e., m � 0) are shown in each case.
The transverse electric and magnetic fields, �Et and �Ht , and
corresponding propagation constants β of the waveguide
modes are determined via

Ĥ

[ �Et

�Ht

]
= β

[
0 −ẑ×

ẑ× 0

][ �Et

�Ht

]
. (2)

Here, the subscript t refers to the transverse components of the
fields and ẑ is the direction of propagation. The Hamiltonian
Ĥ depends on the waveguide geometry, as well as the material
properties, and is given by

Ĥ =
[
ωε0ε − 1

ωμ0
∇t × [ẑ(ẑ · ∇t×)] 0

0 ωμ0 − 1
ωε0

∇t × [
ẑ 1

ε
(ẑ · ∇t×)

]
]
, (3)

where ε0 and μ0 are the permittivity and permeability of
free space, ε is the material permittivity, and ω is the

angular frequency. By choosing a complete basis | �Fn〉, the
matrix elements of the Hamiltonian Ĥ can be determined
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as

Hmn = 〈 �Fm|Ĥ | �Fn〉
= ωε0

∫
WG

ε(r) �E∗
mt · �Entds + ωμ0

∫
WG

�H ∗
mt · �Hntds

−ωε0

∫
WG

ε(r)∗E∗
mzEnzds − ωμ0

∫
WG

H ∗
mzHnzds,

(4)

where subscripts m and n refer to the mth and nth modes,
respectively; subscript z denotes the longitudinal direction;
and the integral

∫
WG

ds indicates an integration over the cross
section of the waveguide. From this last equation it can be
inferred that Ĥ is Hermitian if and only if ε(r) is real, i.e., all
the materials are lossless.

For κ 	= 0, the Hamiltonian can be written as Ĥ = ĤR +
iĤI . When κ 
 n, ĤR of the PT -symmetric and the uniform
waveguide are nearly equal—hence ĤR is diagonal in the basis
of the homogeneous waveguide modes. Using Eq. (4) we have

Hmn = 〈 �Fm|ĤR + iĤI | �Fn〉 = 〈 �Fm|ĤR| �Fn〉 + i 〈 �Fm|ĤI | �Fn〉
= βnδmn + i 〈 �Fm|ĤI | �Fn〉 . (5)

The matrix elements of the perturbing Hamiltonian are
determined as

HImn
= 〈 �Fm|ĤI | �Fn〉 = ωε0

∫
WG

εi(r) �E∗
m · �Ends. (6)

Here εi(r) is the imaginary part of the dielectric constant
spatially modulated as in Eq. (1) [39]. Considering the
azimuthal variation of the modes in a uniform waveguide,
the above equation can be simplified to

HImn
= 〈 �Fm|ĤI | �Fn〉 = ωε0

∫ Rout

Rin

dr r �R∗
m(r) · �Rn(r)

×
∫ 2π

0
dφ εi(φ)i(n−m)φ = 2πωε0Cm−n

×
∫ Rout

Rin

dr r �R∗
m(r) · �Rn(r), (7)

where �R(r) is the radial distribution of the modes and Cm−n is
the (m − n)th Fourier coefficient of the gain/loss arrangements
in the channel given in Eq. (1). Since Cm−n describes the gain
and loss, it is linearly proportional to κ . As shown in Fig. 1(b),
the Fourier coefficients can be largely controlled via N . The
modal properties of each case can be determined by solving
for the eigenvalues and eigenfunctions of the H matrix given
by Eq. (5).

III. DISPERSION AND FIELDS

We first apply this formalism to a coaxial waveguide with
a uniform channel (κ = 0). Figure 2(a) plots the dispersion
for this coaxial structure, where mode orders up to m = 6
are found below 3 eV. Note that the dispersions of all modes
diverge for energies close to the surface resonance frequency
of the silver-dielectric interface (ωsp ≈ 3.1 eV). The modes
of the uniform waveguide (κ = 0) form a complete set,
so they can be used as a basis | �Fn〉 to find the modes
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FIG. 2. (a) Modes of the uniform coaxial waveguide numbered
according to the azimuthal order m. For the rest of the paper, we
focus on E = 2 eV, which is marked on the first three modes as
black circles. (b) Distribution of the Poynting vector component Pz

for m = 0,1,2 at E = 2 eV.

of the PT -symmetric waveguides of Fig. 1(b). Figure 2(b)
shows the distribution of the longitudinal power Pz of the
zeroth-, first-, and second-order modes. Note that these modes
all have azimuthally symmetric power distributions as a result
of possessing well-defined angular momenta.

To investigate the effect of loss and gain inclusions on the
modal properties, we consider a fixed energy, E = 2 eV. As
seen in Fig. 2, the uniform waveguide supports five modes at
this energy, namely, β0, β±1, and β±2. β± represents a pair
of degenerate modes, corresponding to CW and CCW OAM.
E = 2 eV therefore limits the total number of modes to a
representative set, and the results below can be extended to any
energy for which the modes of interest exist. Utilizing these
modes as the basis of expansion in Eq. (4), one can investigate
the mode morphology as a function of both N and κ . Figure 3
shows the modal properties of a coaxial waveguide with N =
0.5 at E = 2 eV. Panels (a) and (b) show the variation of the
real and imaginary parts of the propagation constants of the
five lowest order modes as a function of κ . To differentiate the
new modes that appear when κ 	= 0 from the κ = 0 modes,
superscript indexing has been used. At κ = 0 in Fig. 3, all
modes possess the same propagation constants as in Fig. 2, and
the superscript notation eigenvalues can therefore be matched
to the unperturbed subscript eigenvalues. The β(0) branch has
the largest propagation constant and at κ = 0 corresponds to
the m = 0 mode β0. The degenerate pair β±1 becomes β(1) and
β(2) for κ 	= 0. Similarly, the degenerate pair β±2 becomes β(3)

and β(4) for κ 	= 0.
As κ increases, the real(β) of degenerate modes separate

from one another (i.e., β(1) from β(2), β(3) from β(4)) and at
κ = 0.05, β(0) and β(1) reach an EP and real(β) coalesce. β(2)

and β(3) form a similar pair and coalesce at an EP at κ = 0.13.
As discussed in Appendix B, the propagation constants of the
PT -symmetric waveguide’s modes are always either real or
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FIG. 3. (a) Real and (b) imaginary parts of the propagation
constant of the five lowest order modes of a PT -symmetric
coaxial waveguide when N = 0.5 at E = 2 eV. The inset shows the
schematic of the waveguide cross section.

complex conjugates of each other. To clarify this feature, we
present the imaginary parts of the propagation constants in
Fig. 3(b). Note that where the real wave vectors converge
[Fig. 3(a)], the imaginary parts diverge. The expansion

coefficients of these modes in the OAM basis before and
beyond their EPs are given in Appendix C.

Figure 4 shows the spatial distribution of the longitudinal
component of the Poynting vector Pz of the modes at small
and large values of κ . For small values of non-Hermiticity and
before all EPs (κ = 0.02), the propagation constants of all the
modes are real, since the power is symmetrically distributed
in the gain and loss sections. As seen in Fig. 4(a), the power
distributions of all modes are symmetric with respect to the
x axis; however, in contrast to the uniform waveguide, the
power is no longer azimuthally symmetric. When the non-
Hermiticity factor is increased to a value beyond both EPs
(κ = 0.2), new complex conjugate modes are formed. These
modes, on display in Fig. 4(b), lose their symmetry with respect
to the x axis and are either localized mainly to the loss or gain
half of the waveguide. The only mode of this set which does
not lose its x-axis symmetry is β(4). At higher values of κ and
for E > 2 eV, this mode would also eventually reach an EP
and lose its symmetry. To better visualize the imaginary part of
the propagation constants of these modes, Figs. 4(c) and 4(d)
show radial slices within the dielectric ring 5 nm from the
core interface. Before the EP, all modes show unchanging Pz

along the propagation direction. Beyond the EP, Pz drastically
increases for β(1) and β(3), and diminishes for β(0) and β(2).

The results for N = 0.5 are reminiscent of classical
EP behavior in one-dimensional systems: namely, a finite
value of κ is required to induce mode coalescence and
enter the broken-phase regime. However, because the coaxial
waveguide supports degenerate modes, thresholdless behavior
can be achieved provided the PT symmetry is engineered
correctly as has been investigated in cylindrical and plaquette
geometries [21,40]. Such behavior requires that the mode
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FIG. 4. (a) The out-of-plane component of the Poynting vector Pz for the five lowest order modes of a PT -symmetric coaxial waveguide,
when N = 0.5 at E = 2 eV is plotted for each mode of the perturbed waveguide at κ = 0.02 and (b) κ = 0.2. (c) and (d) show Pz along the
propagation direction for the different modes for a slice in the ring 5 nm from the core interface. The rings are rotated by 5◦ for clarity. The
length of the propagation direction in (c,d) is 200 nm.
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FIG. 5. (a) Real and (b) imaginary parts of the propagation
constant of the five lowest order modes of a PT -symmetric coaxial
waveguide when N = 1 at E = 2 eV. The inset shows the schematic
of the waveguide cross section.

symmetry match the distribution of loss and gain—a condition
that can be met when N = 1, but which can also be satisfied
for higher order modes with higher values of N , as will be
discussed. The variations of the propagation constants as well
as the corresponding power distributions for this structure are

given in Figs. 5 and 6 for E = 2 eV. For this case, modes
β(1) and β(2) possess a constant real propagation constant. The
imaginary parts of these modes separate from each other for
κ 	= 0 and therefore have no EP. This behavior exists for all
energies above cutoff for β(1) and β(2) at approximately 0.9 eV.
We also witness a new pairing between β(0) and β(3), which
reach an EP at κ = 0.175. We note this EP occurs at a higher κ

than both the pairing of β(0)-β(1) and β(2)-β(3) for the N = 0.5
coaxial waveguide because β0-β±2 have a greater separation
than β0-β±1 and β±1-β±2. The mode with the smallest wave
vector, β(4), remains unaffected by the inclusion of gain and
loss and possesses a constant real propagation constant with
no imaginary part.

Figure 6 shows the power distribution for this N = 1
coaxial waveguide, again at κ = 0.02 (a) and 0.2 (b). Unlike
the N = 0.5 geometry, β(1) and β(2) show an unbalanced
power distribution even at the small value of κ = 0.02. The
splitting of these two modes is thresholdless (i.e., κth = 0),
and for any non-Hermiticity parameter greater than zero the
power of these modes will be unequally distributed in the
gain and loss sections. This phenomenon can be considered
spontaneously brokenPT symmetry without a regime of exact
(i.e., unbroken) PT symmetry, as the propagation constant
becomes complex for any nonzero value of κ . Two additional
modes (β(0) and β(3)) reach the broken phase, but these modes
possess a classic EP. One can see the power is amplified and
attenuated for β(1) and β(2) in Fig. 6(c), while all other modes
show no variation in magnitude along the propagation direction
for κ = 0.02. At κ = 0.2, β(1–4) are all in the broken phase
and exhibit changes in mode power along the direction of
propagation in accordance with the localization of intensity in
the gain or loss quadrants [Fig. 6(d)].
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FIG. 6. (a) The out-of-plane component of the Poynting vector Pz for the five lowest order modes of a PT -symmetric coaxial waveguide,
when N = 1 at E = 2 eV is plotted for each mode of the perturbed waveguide at κ = 0.02 and (b) κ = 0.2. (c) and (d) show the Pz along the
propagation direction for the different modes for a slice in the ring 5 nm from the core interface. The rings are rotated by 5◦ for clarity. The
length of the propagation direction in (c,d) is 200 nm.
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IV. DEGENERATE PERTURBATION THEORY

As discussed in the previous section, the modes of the
coaxial waveguide have twofold degeneracy for any m 	= 0.
In other words, both ±m modes have the same propagation
constants. In this section, we use first-order degenerate
perturbation theory to investigate the effect of aPT -symmetric
perturbation on the waveguide modes and their propagation
constants. This analysis provides a fundamental explanation
for the thresholdless behavior of the N = 1 waveguide and
the absence of this behavior in the N = 0.5 waveguide.
More specifically, it provides the sufficient conditions for
thresholdless transitions which we extend to larger values
of N . In the degenerate basis of the |±m〉, the perturbing
Hamiltonian iĤI takes the following form:

i

[
〈+m|ĤI |+m〉 〈+m|ĤI |−m〉
〈−m|ĤI |+m〉 〈−m|ĤI |−m〉

]
. (8)

Due to symmetry, 〈+m|ĤI |+m〉 = 〈−m|ĤI |−m〉 and
〈−m|ĤI |+m〉 = 〈+m|ĤI |−m〉∗. However, from Eq. (7), we
have

HIm,m
= HI−m,−m

= 0 (9)

and

HIm,−m
= H ∗

I−m,m
= αm = 2πωε0C2m

∫ Rout

Rin

dr r|Rm(r)|2.

(10)

Accordingly, the perturbation matrix simplifies to[
0 iαm

iα∗
m 0

]
, (11)

and the new eigenvalues (i.e., propagation constants) of the
perturbed mth states are

βL,G = βm ± i|αm|. (12)

Note that αm is linearly proportional to C2m and thus κ .
Therefore if C2m 	= 0, the degeneracy of |±m〉 is lifted and the
eigenvalues move into the complex plane where exclusive gain
and loss modes are obtained (κth = 0). Using the properties
of the Fourier coefficients, the following relations for the
eigenstates of the loss and gain modes are derived:

loss eigenstate → 1√
2

(1, − i), (13)

gain eigenstate → 1√
2

(1, + i). (14)

These coefficients are the weights of the new modes in
the basis of the CCW (|+m〉) and CW (|−m〉) modes. The
sign difference in the imaginary component reveals that the
basis modes combine with a ±π/2 phase shift for the gain
and loss eigenstates, respectively. Moreover, this combination
means that the new eigenstates do not possess circulating field
profiles, unique compared to the κ = 0 modes. To illustrate this
effect, Fig. 7 plots the real part of the m = 1 electric field in
the radial direction Er and its phase for the N = 1 waveguide.
When κ = 0, the sweep in phase from +π to −π shows that
the OAM of this mode is m = 1 [Fig. 7(b)]. For comparison,

(c)

Er

1

-1

= 0.02

(d) π

-π

(a)
= 0

(b)

Phase(E
r )

FIG. 7. (a) Er for m = 1 when κ = 0. (b) Phase of Er for m = 1
showing OAM. (c) and (d) show Er and its phase for κ = 0.02 for
the N = 1 waveguide. No OAM is present.

Figs. 7(c) and 7(d) plot the real part of Er and its phase for
κ = 0.002. Although the mode appears to be the product of a
simple rotation, the phase reveals that the new mode is not a
pure OAM mode and does not rotate as it propagates.

As seen in Fig. 1, C2m always vanishes for half integer
values of N . Therefore, to break the degeneracy of the CW
and CCW modes and enter the broken phase with κth = 0,
N must be an integer. This conclusion is consistent with
Ref. [37], where the degeneracy between the azimuthal modes
was broken for a properly chosen number of gain/loss sections.
Based on Eq. (12), the new eigenvalues have the same real part
(propagation constant), but one of the modes is amplified as
it propagates, while the other is attenuated. The broken phase
is entered without an EP, and the imaginary component of the
propagation constant is linear with κ .

The predictions of degenerate perturbation theory are all
confirmed with our numerical analysis from the previous
sections. In Fig. 1(b), the N = 1 structure has C2 	= 0, and
the degeneracy of the ±1 modes (β(1) and β(2)) is lifted for
κ 	= 0. The linear dependence of the imaginary component
of the propagation constant with κ , plotted in Fig. 5(b), is
numerically found to be 0.026 nm−1, which is in very good
agreement with the slope predicted by degenerate perturbation
theory analysis, 0.027 nm−1.

The localization of the field intensity, in addition to an
amplification or absorption of a given orientation, suggests a
segment of coaxial waveguide with a N = 1 configuration of
gain and loss would be able to convert an input mode with one
unit of angular momentum, e.g., +1 or −1, into an azimuthally
localized mode. Two different N = 1 coaxial segments with
different orientations could multiplex two orthogonal gain
modes into a single passive coaxial waveguide. The same
N = 1 coaxial waveguide design could then demultiplex the
signals by absorbing one orientation while allowing the other
to pass through.

Figure 8 shows the modal properties of two other cases
of PT -symmetric waveguides, where N = 1.5 [Figs. 8(a)
and 8(b)] and N = 2 [Figs. 8(c) and 8(d)]. While N = 1.5

205439-6



TOWARDS NANOSCALE MULTIPLEXING WITH PARITY- . . . PHYSICAL REVIEW B 93, 205439 (2016)

Re
(β

)(n
m

-1
)

0.
02

5
0.

04
5

0.
01

-0
.0

1Im
(β

)(n
m

-1
)

0 0.1 0.2 0 0.1 0.2

β(1) β(2)

β(3) β(4)

β(1) β(2)

β(3) β(4)

β(3)

β(4)β(2)

β(4)

N=1.5 N=2
(a)

(b)

(c)

(d)

β(0) β(0)
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five lowest order modes of a PT -symmetric waveguide for N = 1.5.
Real (c) and imaginary (d) parts of the wave vectors of the five lowest
order modes of a PT -symmetric waveguide for N = 2.

has the signature of typical phase breaking (i.e., possesses an
EP), the N = 2 waveguide possesses thresholdless symmetry
breaking. As seen in Fig. 1(b), C4 is the first nonzero
Fourier coefficient of N = 2. Hence, N = 2 can remove the
degeneracy of the ±2 modes (β(3) and β(4)), but not the ±1
modes. Although the real parts of the propagation constants
for N = 2 show no variation with κ in Fig. 8(c), the imaginary
parts of the β’s in Fig. 8(d) do change. While β(0), β(1), and β(2)

remain constant and lossless, β(3) and β(4) avoid crossing in the
imaginary plane with a linear dependency. Through a linear
fitting, the slope of this line is determined to be 0.035 nm−1,
which is in good agreement with 0.034 nm−1 predicted by
perturbation analysis (HI2,−2 perturbing matrix element). This
linear dependency is indicative of the splitting described by
Eq. (12).

V. CONCLUSION

In conclusion, we have proposed and studied a PT -
symmetric coaxial waveguide with varying numbers of paired
gain and loss sections arranged azimuthally within the dielec-
tric channel. If the gain and loss do not possess inversion
symmetry, the eigenvalues of the waveguide possess EPs.
Conversely, distributions of gain and loss with inversion
symmetry are shown to exhibit thresholdless PT -symmetry
breaking for degenerate modes that match the periodicity of the
gain and loss, e.g., N = 1 drives the m = ±1 modes to become
amplifying and attenuating complex conjugates. Degenerate
perturbation theory confirms the distribution of gain and loss,
as defined through Fourier coefficients, and determines if
thresholdless behavior is achievable for a given structure.
These structures transform a degenerate mode pair into
complex conjugates according to a relation with the Fourier
coefficients: if C2m 	= 0, then |±m〉 degeneracy is lifted. In
an unperturbed coaxial waveguide, these degenerate modes
represent different OAM states, CW and CCW. However, when

the degeneracy is lifted, the newly formed modes are equal
combinations of phase offset CW and CCW, and therefore
have no OAM.

Given that these degenerate and complex conjugate broken-
symmetry modes all possess the same propagation constant,
small cross-section plasmonic coaxial waveguides could be
designed with MDM that use both modes to double data
throughput. The MDM system can be fed by an OAM
coaxial mode, which could be generated by a plasmonic
coaxial laser, coupled into the structure from another on-chip
photonic component, or coupled in from free space. We
have shown a PT -symmetric waveguide with an N = 1
distribution of gain and loss has promise as an amplifying
mode filter and converter. The amplified mode passed by the
filter is a hybrid mode without OAM and therefore possesses
a spatially varying energy profile around the coaxial ring.
The peaks of energy intensity are encoded by the locations
of the gain sections in the N = 1 distribution. Two N = 1
coaxial waveguides with reversed gain and loss sections will
accordingly produce two modes with zero spatial overlap, but
will possess the same effective index. These two modes could
be multiplexed into a uniform plasmonic coaxial waveguide to
double the waveguide’s transmission capacity. Demultiplexing
of the uniform plasmonic coaxial waveguide is the reverse
process, in which the two multiplexed signals are passed to
another set of N = 1 PT -symmetric waveguide filters and
the selective spatial absorption will attenuate the misaligned
mode.

The metallic cladding present in the coaxial design also
allows for dense packing of the waveguides with minimal cross
talk and interference, allowing these different multiplexing and
demultiplexing waveguides to be closely spaced. If a design
can support multiple wave vectors, additional degenerate pairs
(e.g., |±2〉) can be used to further multiply throughput.
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APPENDIX A: INVESTIGATING THE EFFECTS OF
METALLIC LOSS AND PASSIVE PT SYMMETRY

In all previous sections, the calculations have been per-
formed assuming a lossless metal [41]. This assumption is
hard to achieve for plasmonic materials at optical wavelengths;
therefore it is necessary to investigate how the predicted EPs
and trends change as metallic losses are included.

In this Appendix, we present the results for the coaxial
waveguide with aPT -symmetrically modulated channel when
the permittivity of Ag is given by Johnson and Christy
empirical data [42]. The results presented in Fig. 9 include
this empirical data and can be compared to Figs. 3 and 5 from
the main text.
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FIG. 9. Real and imaginary parts of the wave vector of the PT -
symmetric coaxial waveguide as a function of κ for N = 0.5 [(a),(b)]
and N = 1 [(c),(d)] at E = 2 eV. The empirical Johnson and Christy
dataset has been used for this set of calculations.

Due to the difference of the bulk plasma frequency of the
empirical data and the Drude model, the calculated mode
energies are slightly different. Further, the EP shifts to larger
values of κ for both N = 0.5 and N = 1. However, the
symmetry-breaking trends are similar. As seen in Fig. 9(a),
for N = 0.5 there is a clear EP for β(0) and β(1) as was for the
lossless case. Since the modes are lossy at κ = 0, the imaginary
parts of the propagation constants are nonzero even before the
EP [Fig. 9(b)]. However, when κ reaches the threshold value,
the imaginary parts avoid crossing and diverge symmetrically.

The real and imaginary parts of the propagation constants
for N = 1 are shown in Figs. 9(c) and 9(d), respectively.
Similar to the lossless case, the real parts of the m = ±1 modes
(β(1) and β(2)) remain the same as κ varies. However, their
imaginary parts separate from each other right after κ = 0 and
vary linearly as a function of the non-Hermiticity parameter
[Fig. 9(d)]. In contrast to the lossless case, these modes are
not purely gain or loss modes, and there is an offset due to the
loss of the uniform coaxial modes. Nevertheless, this offset
only introduces a shift in the values of the imaginary part and
it does not change the linear trends of the branches. In our
specific geometry, the pair of these modes reaches Im(β)= 0
at very low values of κ = 0.01.

The thresholdless behavior also exists for passive PT -
symmetric coaxial waveguides, which possess no active gain
material. Passive PT -symmetric structures can be thought
of as a combination of the formal PT -symmetric case and
a uniform lossy background. This background can then be
factored out using a gauge transformation. Figure 10 presents
the real and imaginary wave vectors of the N = 0.5 (a) and
N = 1 (b) geometries where only nloss changes with κ and
ngain = 0. The real part of the wave vectors, Figs. 10(a)
and 10(b), are very similar in form to the true PT -symmetric
case explored in the main text. The imaginary part of the
wave vectors shown in Figs. 10(c) and 10(d) are different
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FIG. 10. Modes of the coaxial waveguide in the absence of gain as
a function of κ , where ngain = 0 and nloss = +iκ for N = 0.5 [(a),(c)]
and N = 1 [(b),(d)] at E = 2 eV.

from the figures in the text; the paired modes are no longer
symmetric about Im(β) but are instead symmetric about a line
proportional to κ . The C2m coefficients remain unchanged,
however, so the thresholdless symmetry breaking for the N =
1 structure is preserved. A passive PT -symmetric waveguide
may simplify the waveguide design, but would lessen the
performance of a MDM filter. All modes, including the desired
mode, would experience loss, which could prove detrimental
if the design is cascaded.

APPENDIX B: EIGENVALUE PROPERTIES

When expanded in the basis of the unperturbed uniform
coaxial waveguide modes, the electromagnetic analysis is
simplified to the following eigenequation including a vector
of expansion coefficients V and propagation constants of the
hybrid modes β:

(HR + iHI ) |V 〉 = β |V 〉 . (B1)

Note that ĤR and ĤI are both Hermitian operators. In this
appendix, we find the general properties of the eigenvalues of
Eq. (B1) in the complex plane. Specifically, we show that β

appear either as real values or complex conjugate pairs.
Modal propagation constants are the solutions of the

following characteristic equation:

det(HR + iHI − βI ) = 0, (B2)

where HR is a diagonal matrix with real entries, and HI is
a Hermitian matrix with zero diagonal elements. Taking the
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imaginary parts separately. In each panel, the continuous horizontal
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complex conjugate of the above equation gives

det(H ∗
R − iH ∗

I − β∗I ) = 0. (B3)

However, H ∗
R = HR = HT

R and H ∗
I = HT

I ; hence, equation
(B3) can be rewritten as

det[(HR − iHI )T − β∗I ] = 0. (B4)

Therefore, β and β∗ are the eigenvalues of HR + iHI and
(HR − iHI )T , respectively. The latter implies that β∗ is an
eigenvalue of (HR − iHI ) as well. (HR − iHI ) is the effective
matrix of a PT -symmetric waveguide when the gain and
loss sectors are swapped. While this rotation changes the
eigenvectors of the matrix in Eq. (B1), it does not change the
eigenvalues, which means β∗ is also an eigenvalue of Eq. (B1).
Accordingly, the propagation constants of a PT -symmetric
waveguide are either real values or complex conjugate pairs.

APPENDIX C: EXPANSION COEFFICIENTS OF THE
PT -SYMMETRIC MODES IN THE BASIS OF THE

UNIFORM COAXIAL WAVEGUIDE

In the main text, we showed how the morphology of
the modes can be controlled via the number of gain/loss
sections. This Appendix extends the existing argument to the
properties of the eigenmodes. It discusses how the modes of the
PT -symmetric system are related to the modes of the uniform
waveguide and how they are transformed with a PT operator.
Since we are using the modes of the axially symmetric
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FIG. 12. Expansion coefficients of each mode for N = 1 at E =
2 eV. Coefficients are plotted for the same five modes shown in Fig. 5
at two values of the non-Hermiticity parameter. Since the coefficients
are complex in general, we have plotted the real and imaginary parts
separately. In each panel, the continuous horizontal line is 0.

waveguide as a basis, the following equation describes the
form of the modes in the PT -symmetric case:

MPT (r,φ) =
∑

n

cnRn(r)einφ, (C1)

where cn are the expansion coefficients and Rn(r) is the radial
distribution of the nth mode. Figure 11 shows the expansion
coefficients of the five lowest order modes for N = 0.5.
Figure 12 shows the expansion coefficients of the five lowest
order modes for N = 1. The weights of the coefficients for β(1)

and β(2) confirm the description of the eigenstates in Eqs. (13)
and (14). Note that due to the mixing of the modes with
different angular momenta, the new modes have a different
beating pattern around the channel as shown in Figs. 4 and 6.
This pattern is due to the interference of the CW and CCW
modes within the ring.

If a mode of the PT -symmetric waveguide is in the
exact (i.e., unbroken) phase, then it must obey the following
symmetry:

PT [MPT (r,φ)] = M∗
PT (r,−φ) =

∑
n

c∗
nRn(r)einφ. (C2)

The exact symmetric phase therefore requires cn = c∗
n; i.e., that

the expansion coefficients are real. This result can be clearly
seen in Figs. 11 and 12 where the expansion coefficients of the
modes before the EP are all real. After the EP, the expansion
coefficients become complex as can be observed by comparing
the top and bottom panels in each case.
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