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Tunable and direction-dependent group velocities in topologically protected edge states
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Topological effects continue to fascinate physicists since more than three decades. One of their main
applications are high-precision measurements of the resistivity. We propose to make also use of the spatially
separated edge states. It is possible to realize strongly direction-dependent group velocities. They can also be
tuned over orders of magnitude so that robust and tunable delay lines and interference devices are within reach.
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I. INTRODUCTION

The edge states of topological insulators represent a
fascinating field of research, which has been founded over
thirty years ago with the discovery of the integer and the
fractional quantum Hall effects [1,2]. In particular, the link to
topological invariants has been an important step forward [3–6]
relying in the end on the notion of gauge-invariant quantum
mechanical phases [7].

Recently, the field has significantly gained interest due to
the discovery of topological insulators driven by spin-orbit
interaction, i.e., without necessity of an external magnetic
field [8–11]. This experimental progress has been anticipated
in a model put forward by Haldane [12], which is governed
by nontrivial phases, but not induced by a magnetic field.
This model is still the simplest example of a tight-binding
model with nontrivial bands, i.e., with bands of nonzero Chern
number. Since then, there is an abundance of studies of these
effects, for instance the inclusion of spin to restore time-
reversal symmetry [13–15]. A very recent promising progress
is that films of solid state systems realize ferromagnetic
Chern insulators representing essentially two-dimensional
lattice systems, which display the quantum anomalous Hall
effect (QAHE) [9–11] without external magnetic field. Thus
experiment has by now come very close to the original idea of
Haldane.

Our aim is to suggest two ways to put the topological
robustness of edge states to use beyond the high-precision
measurement of resistitivity in the Hall effect. Our focus are
Chern insulators, which do not require an external magnetic
field. The idea is based on the previous finding [16] that
the Fermi velocity of the edge states along the edge is not
a universal quantity, but depends crucially on the details of
the edge. We aim here at a proof-of-principle illustration of
the potential of this idea. Thus we perform calculations for
the archetypical model of the field, the Haldane model on
the honeycomb lattice [12]. For the same reason, we do not
consider spin though the obtained results will carry over to
spin currents in Kane-Mele models [13–15].

Of course, in standard quantum Hall setups the different
transport behavior of the spatially separated edge states has
been discussed, for instance, in strongly differing localization
[17] or in switchable quantum dots coupled to single edge
states [18]. Various quantum interferometer devices and
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quantum gates based on edges states have been realized
[19,20].

We put forward two effects which to our knowledge have
not yet been studied: (i) the Fermi velocity can be made
extremely direction-sensitive, i.e., it can differ from one edge
to the other by orders of magnitude. (ii) The Fermi velocity can
be tuned by suitable voltages to vary by orders of magnitude
such that one can control transport properties realizing tunable
delay lines and interference devices for precise measurements
of delays. Finally, we discuss various routes to realize the
proposed effects.

II. MODEL

The tight-binding model considered reads

H = Hstrip + Hdecor, (1a)

Hstrip = t
∑

〈l,j〉
c
†
l cj + t2

∑

〈〈l,j〉〉
eiφlj c

†
l cj (1b)

Hdecor =
∑

j

[
λt

(
c
†
d(j )cj + c

†
j cd(j )

) + δc
†
d(j )cd(j )

]
, (1c)

where the underlying lattice is shown in Fig. 1. The hopping
on the strip of the honeycomb lattice is given by Hstrip where 〈,〉
stands for nearest-neighbor (NN) hopping while 〈〈,〉〉 stands
for next-nearest-neigbor (NNN) hopping. The elements t and
t2 are real; the former serves as energy unit. The nontrivial
topology is induced by breaking the time-reversal symmetry
by the phases φlj = ±φ. The minus sign applies to the red
(light gray) arrows while the plus sign applies to the blue
(dark gray) arrows in Fig. 1. Starting from the other sublattice,
the colors of the arrows are interchanged.

The Hamiltonian of the additional sites at the upper edge is
given by Hdecor. If j is a protruding site at the upper edge of
the honeycomb we denote its adjacent additional site by d(j ).
The hopping between them is given by λt where 0 � λ � 1
reduces this hopping relative to the standard NN hopping. The
local energy of the additional sites is tuned by a gate voltage
denoted by δ. For λ = 0, one retrieves the standard Haldane
model on a strip of honeycomb lattice. Since this model has
been studied before [12,14], we refrain from computing its
nontrivial Chern numbers explicitly. We choose t2 = 0.2t and
φ = π/2 because this implies a sizable gap between the Chern
bands and the bands are relatively flat.
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FIG. 1. Sketch of a strip of the honeycomb lattice with NN
hopping (black bonds) and NNN hopping (colored arrows). Note that
the color of the arrows is swapped starting from the other sublattice.
The strip height is N units. The upper boundary is decorated by
weakly coupled (λ � 1) additional sites with local potential δ. The
lattice constant a is set to unity.

III. DIRECTION-SENSITIVE FERMI VELOCITY

We show the nontrivial properties by directly computing
the dispersion of the upper and lower edge modes. This allows
us to address their Fermi velocities. To this end, we consider a
strip of finite height, typically of N = 80 units, see Fig. 1. The
translational invariance in x direction is preserved such that kx

continues to be a good quantum number. Then, we diagonalize
the resulting (4N + 3) × (4N + 3) matrix numerically for
given kx . This procedure yields Fig. 2 where we focus on
the edge states. The continuum of states above the lower band
edge �low(kx) := minky

ωup(kx,ky) are indicated by the light
hatched/red colored region. The continuum of states below the
upper band edge �up(kx) := maxky

ωlow(kx,ky) are indicated
by the dark hatched/blue colored region.

The left and right moving modes in Fig. 2 show a distinctly
different behavior. This stems from the different structure
of the upper and the lower edges of the honeycomb strip
as shown in Fig. 1. The additional decorating sites have a
pronounced effect. Without them, the dispersion of the edge
mode crosses the Fermi level at the Brillouin zone boundary,
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FIG. 2. Dispersion of the edge modes: in green (dark gray), the
left mover at the upper edge and in orange (light gray) the right
mover at the lower edge for λ = 0.2. The shaded areas show the
continua from the Chern bands. The inset shows the Fermi velocity
vF = ∂ω/∂kx |εF relative to the one at the undecorated edge vs the
relative coupling λ at t2 = 0.2t and φ = π/2.

see right moving dispersion. If they are present, however, the
Fermi level is hit at the zone center, see left moving dispersion.
The remarkably flat dispersion results from the weak coupling
λ < 1 of the otherwise isolated decorating sites. If λ = 0, the
decorating site would host a completely local, i.e., momentum
independent mode.

The dependence of the Fermi velocity vF of the flat
dispersion on λ is studied quantitatively in the inset of
Fig. 2. As discussed above, it vanishes for λ = 0 and grows
quadratically if the coupling is switched on. In this way,
the coupling λ provides an excellent control parameter to
tune the Fermi velocity at one edge of the sample. Since
the position of the edge determines the direction of motion
the Fermi velocities become strongly direction-sensitive. In
particular, for small values of λ, the value for vF,right can differ
by orders of magnitude from vF,left. This opens interesting
avenues to applications which have not yet been realized so
far. We stress that the robustness of the topological edge mode
protects them from being destroyed or blocked completely by
disorder effects. Of course, they will be influenced by them
on a quantitative level. But the qualitative features will persist,
for instance, no localization occurs because back-scattering
cannot occur. Only if the disorder becomes very large so that
scattering from one edge to the other sets in, see, for instance,
Ref. [17], and the advocated effect vanishes.

The direction-sensitivity of the Fermi velocity appears to be
a static property once the system is given. Next, we illustrate
that it can be tuned as well.

IV. TUNABLE FERMI VELOCITY

The guiding idea is to continuously tune the system with
decorating sites towards the system without them. To this end,
the decorating sites shall be switched off. This can be achieved
by pushing them up in energy so that the electrons do not visit
them anymore. The knob to do so is the local potential δ in
(1c), which can be thought to be realized by a gate voltage.

In the upper panel of Fig. 3, we depict the effect of a finite
gate voltage δ = 0.1t . Clearly, the intended effect takes place
and the dispersion of the left moving mode is shifted upwards
by about δ. In addition, the precise shape of the dispersion
is modified. As expected, the right moving mode at the other
edge is almost not influenced. The strip analyzed is N = 80
units high and for this value no effect of the gate voltage on
the right moving mode occurred, even in the ninth digit.

Due to the shift, the part of the left moving dispersion
crossing the Fermi level at zero energy is changed. Its slope is
increased as we argued before on physical grounds. Note that
due to the particle-hole symmetry of the model a negative shift
would have the same effect, i.e., it produces the same increase
of the Fermi velocity.

In the lower panel of Fig. 3, we study the increase of the
Fermi velocity quantitatively. Indeed, it is possible to drive
the Fermi velocity to the value of the undecorated edge. For
large enough gate voltage δ, the Fermi velocity relative to the
undecorated one saturates at unity, i.e., the system behaves as
if the decorating sites were not present at all. The gate voltages
at which the saturation sets in is of the order of λt because δ has
to counteract the hybridization between the protruding edge
sites j and the attached decorating sites d(j ).
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FIG. 3. (Top) Dispersion of the edge modes; in green (dark gray)
the left mover at the upper edge and in orange (light gray) the right
mover at the lower edge for λ = 0.2 and δ = 0.1t . The shaded areas
show the continua from Chern bands. (Bottom) Fermi velocity vF =
∂ω/∂kx |εF relative to the one at the undecorated edge vs the gate
voltage δ for various values of the relative coupling λ at t2 = 0.2t and
φ = π/2.

This observation shows that for small values of λ the gate
voltage δ provides an excellent control parameter to tune the
Fermi velocity. Rather small values of the gate voltage are
sufficient to modify vF by orders of magnitude. There is a
small offset at δ = 0 given by vF(λ,δ = 0). But for increasing
δ a linear regime is entered in which vF ∝ δ holds until the
saturation regime is reached for δ > λt . This linear regime
is proposed to be put to use in applications. Here the Fermi
velocity, which is the group velocity of an electric signal,
can be tuned by a third gate so that a tunable delay line can
be realized. The gate voltage varies δ so that a setup can be
realized where the group velocity can be tuned on the fly. In
this way, the time a electric signal requires to pass through the
device can be fine-tuned to obtain destructive or constructive
interference with a signal which has passed along another
path, for instance, through a sample of which the transmission
properties shall be measured. Due to the topological protection
of the edge states, disorder will not destroy the effects so that
they are qualitatively robust against imperfections.

In Fig. 4(a), a circuit is sketched which permits to measure
the delay occurring in the unknown sample in parallel to the
tunable delay line based on a Chern insulator with tailored
edges. The idea is to look for destructive and constructive
interference of an oscillating electric signal at the output. In
this way, very precise detection of small delays should be

in

tuned
delay

sample

out

FIG. 4. (Left) Sketch of a circuit to use the tunable delay line
in an interference measurement for the determination of the delay
of signal transmission in a sample; almost destructive interference is
shown. (Right) Sketch of a decorated Hall sample to realize tunable
and direction-dependent Fermi velocities. The black hatched area
is impenetrable for the electrons, while the potential of the colored
areas (blue (dark gray) and red (light gray) can be tuned independently
by gate voltages δlow and δup, while the bulk of the sample (green)
remains unchanged. A magnetic field is applied perpendicular to the
plane shown to generate the edge states. It should be approximately
so large that circular Landau orbits fit into the bays.

possible. Note that we do not advocate quantum interference
here in contrast to many studies in the literature, e.g., Ref. [19].

Furthermore, this effect is direction-dependent. One can
push the device one step further by decorating also the lower
edge of the sample (not shown). Then two independent gate
voltages can be used to control the Fermi velocities in both
directions left and right independently.

In addition, one can feed the signal itself not only to the
input of the Chern insulator, but also to the gate voltage itself.
This yields a tunable nonlinear feedback: depending on the bias
on the control gate, larger amplitudes travel faster or slower
than smaller amplitudes. By suitable tuning of this effect one
can realize a wave equation similar to the Korteweg-de Vries
equation, which allows for soliton solutions. Thus particularly
stable signals can be transmitted.

V. POSSIBLE REALIZATIONS

About three years ago the chances of realizing a Chern
insulator in a microscopic lattice were still considered slim
[21]. But the observation of the QAHE in thin films of
ferromagnetic Chern insulators has changed the game [9,10].
The temperatures at which the QAHE is observable has
increased from several milliKelvin to a few degrees of Kelvin
[11] and theoretical calculations indicate that even room
temperature should be within reach [22,23]. Thus it appears
perfectly reasonable that the proposed lattices or similar
analogues can be designed and realized. Detailed calculations
show that the tailored design of super lattices of gold atoms
on single-vacancy graphene provide a promising candidate to
realize high-temperature Chern insulators [23,24]. Thus the
tailored design of differing edges will also possibly open a
route to realize the proposed strips of lattices and to measure
the advocated effects.

An alternative route is open in tailored optical lattices where
it has been recently possible to realize the Haldane model (1a)
itself and to measure some of its basic properties [25]. Thus
a proof-of-principle realization of decorated strips of Haldane
models such as shown in Fig. 1 appears to be well within
reach. While this is an attractive prospect such a realization is
probably not so close to the application as a measuring device.
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GÖTZ S. UHRIG PHYSICAL REVIEW B 93, 205438 (2016)

A third alternative is to construct lattice models artificially
by design of tailored semiconductor structure. For instance,
antidot structures can already be synthesized with high
precision [26]. So it is conceivable to realize dot or antidot
lattices which have the discrete translational invariance we are
considering here. Applying a perpendicular field to such planar
modulated electron gases yields the desired topologically
nontrivial Chern bands with the corresponding gapless edge
modes. We recall that lattices in a finite magnetic field of
certain strengths correspond to Haldane type of models as
illustrated before for the kagome lattice [16].

A fourth alternative realization can be based on more
standard quantum Hall setups. A quantum Hall sample in
a magnetic field provides a Chern insulator with spatially
separated edge states. Thus, if one is able to pattern the edges
differently and to control them independently by gate voltages,
the effect of tunable Fermi velocities will be observable.

To the author’s knowledge, no such experiment has been
performed so far. However, the degree of control of gate
voltages in time and space on the nanoscale is remarkable so
that it appears that the proposed experiment is well possible.
For instance, it is possible to switch the coupling of quantum
dots to one edge mode on and off yielding electrons on demand
[18]. If this kind of setup is extended to a periodic chain of
quantum dots, see Fig. 4 b, all gated by the same voltage, a
setup is realized, which is a continuum version of the lattice
model in Fig. 1. The patterning on the nanoscale is also
possible, see for instance the Mach-Zehnder interferometer
realized by Karmakar et al. [19]. Note that the interometer
discussed in that work uses the nanoscale structures to make
the two edge states interfere. Thus the setup is not the one
advocated here.

VI. SUMMARY

The first idea of the present work is the finding that the
relevant group velocity of signals transferred in topologically
protected and thus robust edge modes may differ strongly
depending on whether they propagate at the upper or lower
edge. The reason is that the structure of the edges may differ
and that this influences the nonuniversal transport properties.
For disorder or a (de)coupled quantum dot such phenomena
were discussed and observed before [17,18], but not for a
periodic structure with well-defined Fermi velocity, which will
allow for faithful signal transmission.

The second idea was that this difference can be enhanced
and manipulated by special design of the edges. For instance,
weakly linked local energy levels, decorating the edges, render
the mode at the Fermi velocity arbitrarily slow. This leads to
direction-dependent group velocities because the mode at one
edge moves into one direction while the mode at the other
edge moves into the other direction and the link strength can
be chosen very differently at the edges.

The third idea is to tune the group velocities by gate voltages
which can effectively switch the weakly linked decorating

levels on and off. By varying the gate voltages, one may easily
tune the group velocities. This can even be done for left and
right movers independently. By this mechanism the group
velocity, relevant for the delay time in signal transmission,
can be varied by a gate voltage. Signals can be delayed and/or
modulated.

The above ideas have been demonstrated on the proof-of-
principle level by explicit calculations for the archetypical
model for nontrival Chern bands [12]. This could be decorated
by weakly coupled additional sites at the edges with local
energy given by the gate voltage. The relative coupling λ and
the gate voltage δ are the tuning parameters.

Furthermore, we discussed and suggested ways to realize
the above proposal. Such realizations appear possible in
many fields ranging from quantum Hall systems with external
magnetic field over ultracold atoms in optical lattices with
artificial gauges to thin films of ferromagnetic topological
insulators [9–11,23]. The latter represent lattice models very
close to the ones studied here theoretically.

VII. OUTLOOK

The findings presented have established the fundamental
idea on the proof-of-principle level. Depending on the route
favored for experimental realization further calculations are
called for. For instance, on the one hand in optical lattices
the Chern insulator is realized so far on square lattice, not
on honeycomb lattice. On the other hand, proposals in solid
state physics favor honeycomb lattice systems which break
time-reversal symmetry by spontaneous ferromagnetism. Thus
differing specific calculations will be useful.

The topological protection of the edges limits the influence
of weak disorder and weak interactions to a quantitative level.
The qualitative effect to have tunable velocities remains robust.
Nevertheless, it would be necessary to assess quantitatively by
theoretical considerations how robust the tunable velocities
are. Such studies must be adapted to the envisaged experimen-
tal realization; thus they cannot be made on general level.

The fundamental idea advocated here can be extended also
towards spintronics. The inclusion of spin, for instance as in the
models put forward by Kane and Mele [13–15] will enable to
pass from currents and signals expressed in charges to currents
and signals of spin, i.e., to pass from electronics to spintronics
[27]. So there appear ample ways to explore the applicability of
topologically protected edge states propagating along tailored
and tuned edges.
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