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Floquet Weyl fermions in three-dimensional stacked graphene systems irradiated
by circularly polarized light
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Using Floquet theory, we illustrate that Floquet Weyl fermions can be created in three-dimensional stacked
graphene systems irradiated by circularly polarized light. One or two semi-Dirac points can be formed due to
overlapping of Floquet subbands. Each pair of Weyl points have a two-component semi-Dirac point parent,
instead of a four-component Dirac point parent. Decreasing the light frequency will make the Weyl points move
in the momentum space, and the Weyl points can approach to the Dirac points when the frequency becomes
very small. The frequency-amplitude phase diagram is worked out. It is shown that there exist Fermi arcs in
the surface Brillouin zones in semi-infinitely stacked and finitely multilayered graphene systems irradiated by
circularly polarized light. The Floquet Weyl points emerging due to the overlap of Floquet subbands provide a
new platform to study Weyl fermions.
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I. INTRODUCTION

As an important fundamental particle, the Weyl fermion has
been studied in high-energy physics for a long time, but has not
been found in nature yet [1]. Nevertheless, in condensed matter
physics, the Weyl fermion can emerge as a quasiparticle in the
so called Weyl semimetal (WSM) [2,3]. This phenomenon
is analogous to Dirac points in graphene with band crossing
and linear dispersion. Recently, the Weyl semimetal, with
its novel properties, triggered enormous research activities
[2–19], especially the milestone experimental discovery of
Weyl fermions [20–22]. Contrasting with the Dirac points
in two-dimensional (2D) graphene, Weyl fermions in a 3D
semimetal are topologically stable, because the Hamiltonian
uses up all three Pauli matrices so that any perturbation can
just move the Weyl points unless they meet and annihilate with
others with opposite topological numbers [3]. The topological
property of WSM protects its surface gapless states which
appear in the form of a Fermi arc [5–7]. The Fermi arc connects
the projections in the surface Brillouin zone of opposite
Weyl points. WSM also exhibits many other interesting
phenomena, such as a chiral anomaly [2,10], anomalous Hall
effect [7], negative magnetoresistance under parallel electric
and magnetic fields, and others [10,23].

In quantum field theory, a massless four-component Dirac
fermion can be reduced to two two-component Weyl fermions,
which enables one to define a new good quantum number
according to their respective chiralities [24]. In condensed
matter physics, Weyl fermions can be created in a similar
way [4–12,25]. For this purpose, one should find matter
with a four-component massless Dirac point band structure,
which means that the energy bands should touch each other
at the Dirac point with quadruple degeneracy and disperse
linearly. The degeneracy of the Weyl points is protected by
time-reversal symmetry and inversion symmetry. Breaking any
of them will split them and create two Weyl points. In this
sense, the Weyl point has a four-component Dirac parent.

Here, however, we will create Weyl fermions with a
two-component semi-Dirac parent in a 3D lattice, a stacked
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graphene system irradiated by circularly polarized light. We
use Floquet theory to solve this system, without requiring a
high-frequency limit as usual [25]. When the frequency of light
is very large compared to the hopping parameters of lattice,
Floquet subbands are far from each other. With decreasing
frequency, subbands can get closer and closer to touching
and overlapping, and then separating and so forth [26–30].
Our investigation shows that with the frequency decreasing,
each time the ±1 Floquet subbands touch, a semi-Dirac point
will be created and then split into two Weyl points with
opposite chirality, producing two Weyl fermions. A frequency-
amplitude phase diagram is completed. It is interesting that
there can be such Weyl fermions in the limit of low light
amplitude. It is also shown that when a good surface is made,
a Fermi arc can be created in the surface Brillouin zone. More
detailed results will be presented in the following.

II. MODEL AND FLOQUET THEORY

We define �δ1 to point in the x direction and �a1 the y

direction, with the z direction being perpendicular to the
layer plane. The three-dimensional lattice model consists of
infinite graphene layers, each of which can be considered to
be translated from its nearest graphene layer by the vector �a3

in the x-z plane [31], as demonstrated in Fig. 1. The angle θ

is used to parametrize the stacking and θ = 90◦ corresponds
to the well-known ABC stacking. Our structural model can be
considered to be a generalized ABC stacking model with θ

being near 90◦. We consider only the nearest-neighbor (NN)
hopping constants within each layer and between the nearest
layers. The light travels in the y direction, with its vector
potential being in the x-z plane:

A(t) = A0(sin wt,0, cos wt). (1)

By the Perierls substitution, k → k̃ = k + A(t), we can obtain
the time-dependent Hamiltonian,

H (k,t) =
(

0 h12(k,t)
h21(k,t) 0

)
, (2)

where h12(k,t) is defined as γ
∑

n ei[k+A(t)]·δn + ηei[k+A(t)]·d,
and h21(k,t) is the complex conjugate of h12(k,t). γ is used to
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FIG. 1. A schematic of the three-dimensional stacked graphene
model which can be built by stacking infinite graphene layers. Panel
(a) shows the relation between the two nearest graphenes. The
interlayer distance is eqivalent to d sin θ . The sliding displacement
between the nearest graphene layers, a − d cos θ , is along the x axis,
which becomes clear by using the top view (b).

denote the NN hopping parameter within the graphene layer
and η the hopping parameter between the nearest graphene
layers. The intralayer NN bond length is denoted as a and the
interlayer distance is equivalent to d sin θ . We define both η

and γ to be positive without losing any generality.
If switching off the light, we can obtain the 2D standard

graphene if we let η = 0, and a nonzero η destroys the C3

symmetry but reserves inversion symmetry. Therefore, the
band structure is gapless when η is less than γ . The gapless k
points are nothing but special Dirac points defined with only
two Pauli matrices, much like Dirac points in the 2D graphene.
They can survive even when the light is turned on.

We use Floquet theory to study the time-dependent nonequi-
librium systems [32,33], because the Hamiltonian (2) is
periodic in time, H (k,t) = H (k,t + T ), where the time period
is T = 2π/w. In terms of the Floquet-Bloch ansatz [34],
the eigenstates can be written as |�α,k(t)〉 = e−iεα,kt |uα,k(t)〉,
where εα,k stands for the quasienergy of the Floquet state, α

is the band index, and |uα,k(t)〉 is periodic in t . Substituting
|�α,k(t)〉 into the Schrödinger equation leads to

[H (k,t) − i∂t ]|uα,k(t)〉 = εα,k|uα,k(t)〉. (3)

We can define the Floquet Hamiltonian as

HF = H (k,t) − i∂t . (4)

Defining |uα,k,n〉 to be the Fourier transform of the periodic
Floquet state |uα,k(t)〉, and applying HF on the basis {|uα,k,n〉},
we can explicitly express the operator HF in terms of
the composed Hilbert space S = H ⊗ T [32], with inner
product 〈〈· · · 〉〉 = ∫ T

0 〈· · · 〉dt/T , where T is spanned by
the T -periodic function. With the annihilation and creating
operators cα,k(t) and c

†
α,k(t) Fourier expanded in cα,k,n and

c
†
α,k,n, HF can be expressed in a block matrix form with its

block elements [28]

(HF )n,m = nwδn,m + Hm−n,
(5)

Hm−n = 1

T

∫ T

0
H (k,t)eiw(m−n)t dt.

Obviously, Hm−n are the Fourier modes of time periodic
H (k,t). Without much effort, one can write the Floquet

Hamiltonian in the block matrix form

HF (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .
. . . H0 + w H1 H2

. . .
. . . H−1 H0 H1

. . .
. . . H−2 H−1 H0 − w

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

The 2 × 2 matrix block Hn can be expressed as

Hn = 1

T

∫ T

0
dt H (k,t)einwt =

(
0 (Hn)12

(Hn)21 0

)
. (7)

Defining vi = eik·δi , we can write the matrix elements in Eq. (7)
as

(Hn)12 = γ

{
J−n(A0a)v1 + Jn

(
A0a

2

)
(v2 + v3)

}

+ ηeinθJ−n(A0d)eik·d,
(8)

(Hn)21 = γ

{
Jn(A0a)v∗

1 + J−n

(
A0a

2

)
(v∗

2 + v∗
3 )

}

+ ηeinθJn(A0d)e−ik·d,

where Jn is the Bessel function of order n.

III. WEYL SEMIMETAL AND WEYL FERMIONS

A. Dirac and semi-Dirac points

Generally speaking, there are infinite Floquet energy
subbands labeled with m = 0,±1,±2, . . . . To begin with,
we consider the high-frequency limit, where the frequency
is much larger than the hopping parameters (w 	 γ,η). In
this regime, the overlap between different Floquet subbands
is negligible. As a result, the Floquet bands near the Fermi
energy are determined by H0, and the bands are gapless at
points kD

± = (0, ± ky0,0) if the condition

γ
[
J0(A0a) + 2J0

(
1
2A0a

)
cos

(√
3

2 aky0
)] + ηJ0(A0d) = 0

(9)

is satisfied. These points, appearing in a pair, are similar to
usual Dirac points in the case of graphene, and are presented
as the crossing points circled with green in Fig. 2. Their low-
energy effective Hamiltonian can be written as

H D
eff = h1σ1 + h2σ2,

h1 = −
√

3aγ J0
(

1
2A0a

)
sin

( ± ky0

√
3

2 a
)
ky,

(10)
h2 = aγ

[
J0

(
1
2A0a

)
cos

(
ky0

√
3

2 a
) − J0(A0a)

]
kx

− ηJ0(dA0)k · d,

where k is defined with respect to kD
± . We use usual definition

for the Pauli matrices: σ1 = σx , σ2 = σy , and σ3 = σz. These
mean that in this frequency regime the system is a Dirac
semimetal. When the light strength increases, the two gapless
points will move toward the origin of the momentum space and
will finally disappear at the origin, opening a semiconductor
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FIG. 2. The band structure along the ky axis, with kx = kz = 0. For the A0a values, there always exist two gapless Dirac points (denoted by
green circles). For different frequencies, there can be one or two pairs of Weyl points astride k0 (red circles) and/or k1 (black circles). The HF

matrix is truncated at m = ±2, and other parameters are set as d = 2a, η = γ /7, and θ = 4π/9. (a) A0a = 1, w = 3.5γ (b) A0a = 1, w = 2.3γ

(c) A0a = 1, w = 1.5γ (d) A0a = 2, w = 3.5γ (e) A0a = 2, w = 2γ (f) A0a = 2, w = 1.3γ .

gap and causing the Dirac semimetal to become an ordinary
insulator.

When the frequency decreases further, there will be some
overlapping between different Floquet subbands. While de-
creasing the frequency, at first the lower branch of the m = 1
subbands will intersect with the upper branch of the m = 0
subbands at ε = w/2, and meanwhile the upper branch of the
m = −1 subbands will intersect with the lower branch of the
m = 0 bands at ε = −w/2. As a rule, the near subbands whose
m values differ by �m = ±1 will intersect with each other. It
should be pointed out that the perturbation introduced by H±1,
that stands for the coupling of m = ±1 sub-bands and m = 0
subbands, can open energy gaps at the band crossing points.
Here, we will concentrate on the band touching between the
m = ±1 subbands at ε = 0. There is one touching point at

k0 = (0,0,0) when the condition

w = γ
[
J0(A0a) + 2J0

(
1
2A0a

)] + ηJ0(A0d) (11)

is satisfied. Another touching point can appear at k1 =
(0, 2√

3a
π,0) when the condition

w = γ
[
J0(A0a) − 2J0

(
1
2A0a

)] + ηJ0(A0d) (12)

is satisfied. However, the w value can be modified by the
perturbation of H±1 when the m = ±1 subbands toucheach
other. Being different from the �m = ±1 sub-bands touching,
the perturbation of the H±2 block will be diagonal between the
±1 subbands when we diagonalize the H0 block along the ky

axis. That means the band touching points can be moved but
cannot be removed by the perturbation. This trend can be seen
in Fig. 2.
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The k · p perturbation theory can be used to study the band
structure near the two touching points at k0 = (0,0,0) and
k1 = (0, 2√

3a
π,0). It can be easily found that they are semi-

Dirac points with an effective Hamiltonian

H SD
eff =

3∑
i=1

hi(k)σi, h1(k) = −2η sin 2θJ2(A0d)k · d,

h2(k) = −2γ
[
J2(A0a) ∓ J2

(
1
2A0a

)]
kxa

− 2η cos 2θJ2(A0d)k · d,

h3(k) = −γ
{
J0(A0a)(k · a1)2 ± J0

(
1
2A0a

)
[(k · a2)2

+ (k · a3)2]
} − ηJ0(A0d)(k · d)2, (13)

where k is defined with respect to k0 or k1. The upper sign in
both ∓ and ± in Eq. (13) is for k0, and the lower one for k1.
These semi-Dirac points are similar to those in the 2D graphene
formed by making the two Dirac points along the y axis meet
when the C3 symmetry was broken [35], but in that case, a gap
is opened in the graphene’s band structure after the two Dirac
points are merged. Here, however, the two semi-Dirac points,
independent of each other, cannot be merged, although they
can coexist in some parameter regions.

B. Nontrivial Weyl points and Weyl fermions

The energy gap between the m = ±1 subbands is closed
when the semi-Dirac point is created. When the frequency
decreases further, the semi-Dirac point will split into two Weyl
points at kW

± = (0,±kyc,0), where kyc is determined by the
equation

w = γ
[
J0(A0a) + 2J0

(
1
2A0a

)
cos

(√
3

2 akyc

)] + ηJ0(A0d).

(14)

Similarly the effective Hamiltonian can be obtained by the
k · p perturbation theory, reading

H W
eff =

3∑
i,j=1

vij kiσj , v11 = −2η sin 2θJ2(A0d)d cos θ,

v12 = 2aγ
[
J2

(
1
2A0a

)
cos

(
kyc

√
3

2 a
)

− J2(A0a)
] − 2η cos 2θJ2(A0d)d cos θ,

v23 = 2
√

3aγ J2
(

1
2A0a

)
sin

( ± kyc

√
3

2 a
)
, (15)

v31 = 2η sin 2θJ2(A0d)d sin θ,

v32 = 2η cos 2θJ2(A0d)d sin θ,

v13 = v21 = v22 = v33 = 0,

where k is defined with respect to kW
± . It is interesting that the

low-energy Hamiltonians for the Weyl point pairs astride both
k0 and k1 have the same form. If we let kyc be equal to either
0 or 2√

3a
π , the v23 term will disappear and the quadric term

will return, resuming a semi-Dirac point again.
We can calculate the Weyl number using the definition

C = sgn[ det[v]]

= sgn
{
4
√

3a2γ J2
(

1
2A0a

)
sin

(
kyc

√
3

2 a
)

× [
J2

(
1
2A0a

)
cos

(
kyc

√
3

2 a
) − J2(A0a)

]}
(16)

FIG. 3. The band structures of the m = 0 and m = ±1 subbands
in the kz = 0 plane, with parameters η = γ /7, A0a = 1.5, w = 2γ ,
d = 2a, and θ = 4π/9. Two pairs of Weyl points are symmetrical
astride k0 and k1, respectively.

It can be proved that the two Weyl points possess opposite
Weyl number or chirality. The Weyl points created by the band
crossing of the m = ±1 subbands, with their Weyl numbers
labeled, are shown in Fig. 3.

C. Phase diagram

When the frequency decreases, the distance between the
two Weyl points in a pair increases, and kyc can approach ky0

but cannot exceed it. Thus, in this frequency regime, the system
will stay in a WSM phase, with one pair of Weyl points or two if
one or both of the semi-Dirac points (corresponding to k0 and
k1) were created and then split. On the other hand, for the very
strong light amplitude, we should have an ordinary insulator
phase in the regime of high frequency. In this strong light
regime (A0a � 4.13), there can be a pair of Weyl points astride
k1 when the frequency becomes enough low. The complete
phase diagram is presented in Fig. 4. Here, θ = 4π/9 is used.
The ABC stacking is obtained if we set θ = π/2, but we
need θ �= π/2 to achieve nontrivial topological properties. We
have six phases in the phase diagram: semimetal (SM), Weyl
semimetal with one pair of Weyl fermions astride k0 (WSM1-
A), Weyl semimetal with one pair of Weyl fermions astride k1

(WSM1-B), Weyl semimetal with two pairs of Weyl fermions
(WSM2), ordinary insulator (I), and Weyl semimetal (WSM).
There are Dirac points in the former four phases, but there
exist no Dirac points in the I and WSM phases.

It can be seen that for 0 � A0a < 1.34 and 1.34 < A0a �
4.13, there are two phase transitions with the frequency
decreasing: (1) from SM to WSM1-A/WSM1-B and (2)
from WSM1-A/WSM1-B to WSM2. At the special point
A0a = 1.34, the two phase transitions are replaced by one:
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FIG. 4. The phase diagram with experimentally achievable [31]
parameters d = 2a, η = γ /7, and θ = 4π/9. There are six phases:
semimetal (SM), Weyl semimetal with one pair of Weyl fermions
astride k0 (WSM1-A), Weyl semimetal with one pair of Weyl
fermions astride k1 (WSM1-B), Weyl semimetal with two pairs of
Weyl fermions (WSM2), ordinary insulator (I), and Weyl semimetal
(WSM). The six triangles show the (ω/γ,A0a) values for the band
structures shown in Fig. 2.

from SM to WSM2. It is clear that there are WSM phases even
in the low-amplitude limit A0a → 0. This feature of the phase
diagram is different from that in Ref. [25], where a WSM
phase is obtained from a quantum anomalous Hall phase when
the light amplitude exceeds a threshold value. The threshold
should be due to two-order virtual photon processes considered
in high frequency regime. In contrast, our cases are beyond the
high frequency regime and we treat H0 and H±1 accurately.
It should be pointed out that when the light frequency enters
deeply the WSM2 phase, other subbands need to be considered
and more pairs of Weyl points will appear. This situation is
similar to hierarchy of Floquet gaps in two-dimensional driven
honeycomb lattices [36].

D. Surface states and finite multilayers

One of the most striking phenomena in a WSM phase is its
Fermi arc in the surface Brillouin zone. We can address it in a
simple way [5,12]. In our case, H W

eff(kx,ky,kz) with a given ky

can be considered such a 2D (kx,kz) Hamiltonian and one can
calculate its ky-dependent Chern number Cky

. It is well known
that for a 2D Hamiltonian one can change its Chern number by
changing its parameters [12]. In our case, the Chern number
will change by

�C = Cky
− Ck′

y
(17)

when ky crosses a Weyl point where the mass term changes
sign. It is easy to get Cky

= 1 when ky is between the two
Weyl points in each pair, and Cky

= 0 otherwise. Semi-Dirac
points do not change the Chern number because the H SD

eff near

FIG. 5. The frequency dependence of the Fermi arcs in the surface
Brillouin zone: (a) no Fermi arc for w ∼ 3.5γ in the SM phase, (b)
one Fermi arc near (kx,ky) = (0,0) for w ∼ 2.3γ in the WSM1-A
phase, and (c) two Fermi arcs near (kx,ky) = (0,0) and (0,π/a) for
w ∼ 1.5γ in the WSM2 phase. Here the light amplitude is A0a < 1.
(a) No Fermi arc in the SM phase.(b) One Fermi arc in the WSM1-A
phase.(c) Two Fermi arcs in the WSM2 phase.

it has no mass term. We already illustrated the Chern numbers
in Fig. 2. Because ky is kept as a good quantum number,
each nontrivial 2D Hamiltonian, with Cky

= 1 and gapped
bulk states, has zero-mode edge states along its 1D boundary.
The edge states will disappear into the bulk states at the Weyl
points and thus the locus of the edge states makes the Fermi
arc which connects the projections of each pair of Weyl points
in the surface Brillouin zone. Therefore, as long as the flat
surface is parallel to the ky axis, a Fermi arc will emerge in the
surface Brillouin zone.

We can create a natural surface at z = 0 by cleaving the
the infinite graphene layers, which keeps kx and ky as good
quantum numbers. This is similar to the surface created for
layered NbP [37]. We demonstrate in Fig. 5 the development of
the Fermi arcs by decreasing the frequency, where the surface is
perpendicular to the kz axis and the light amplitude parameter
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is set to A0a < 1. There is no Fermi arc in Fig. 5(a) because
there are no Weyl fermions for w ∼ 3.5γ in the SM phase. One
Fermi arc appears near (kx,ky) = (0,0) in Figs. 5(b) and 5(c)
because the two frequency values are in the WSM1-A phase
and the WSM2 phase, respectively. In addition, there is a Fermi
arc near (kx,ky) = (0,π/a) in Fig. 5(c) because there are two
pairs of Weyl fermions in the WSM2 phase. There exists a cor-
respondence between the Weyl fermion pair and the Fermi arc.

It is clear that to experimentally realize the Floquet Weyl
fermions, some appropriate multilayer structures are better
than the infinitely stacked graphene model. On the basis of
the above surface construction, we can construct finite stacked
graphene models under circularly polarized light. Such finitely
stacked models irradiated by circularly polarized light can be
realized experimentally because the parameter θ can be made
different from π/2 (90◦) by bending the finite ABC-stacked
graphene layers within the x-z plane [31]. For such models
with the number of graphene layers being large enough, there
are two natural surfaces perpendicular to the z axis, and kx

and ky are good quantum numbers. As a result, there will be
zero-mode edge states between the projections of each pair of
the Weyl points in the two surface Brillouin zones. Therefore,
they can host bulk Floquet Weyl fermions and surface Fermi
arcs. Angle-resolved photoemission spectroscopy (ARPES)
can be used to investigate these bulk Floquet Weyl fermions
and surface Fermi arcs, because these systems are similar
to 3D layered Weyl semimetal materials: NbP, TaP, and
TaAs [20,22,37].

IV. FURTHER DISCUSSION AND CONCLUSION

To experimentally realize Floquet Weyl fermions in such
graphene-based models, one has to prepare a circularly
polarized light of suitable frequency and amplitude. Because
the NN hopping constants (γ ≈ 2.8 eV, a ≈ 1.4 Å) are very
large, we seem to need a high frequency (order of magnitude
of ∼1016 Hz) and a strong amplitude (order of magnitude
of ∼108 V/m). However, as shown in the phase diagram in
Fig. 4, the Floquet Weyl fermions can be realized when the
frequency is low or the amplitude is weak. Nevertheless, it
should be pointed out that in the regime of low frequency,
other Floquet subbands, such as those with �m = 4,6,8,
will play roles in creating Floquet Weyl points at ε = 0,
and therefore some complex situations may appear. This is
similar to some hierarchy structures in driven two-dimensional
honeycomb lattices [36]. Fortunately, in the regime of weak

light amplitude, one can realize the Weyl fermions in the region
of A0a < 0.5 and w < γ in the phase diagram. That is to say,
1015 Hz (ultraviolet), or even smaller than 1014 Hz (infrared),
is large enough to achieve such Weyl fermions. Therefore,
one can realize one or two pairs of Floquet Weyl fermions at
experimentally achievable frequency levels [30,38].

In addition, some self-assembled graphene-like lattices of
CdSe nanostructures [28,39,40] can be used to realize such
Floquet Weyl fermions. Because their hopping parameters are
approximately two order of magnitude smaller compared to
graphene and their lattice constant is one order of magnitude
larger, much lower frequency (1013 Hz or lower) is enough to
realize Floquet Weyl fermions in good multilayer structures of
such CdSe nanostructures [31].

In conclusion, we have proposed an interesting method to
create Floquet Weyl fermions with a two-component semi-
Dirac parent in a 3D stacked graphene system irradiated by
circularly polarized light instead of a four-component Dirac
parent. One or two semi-Dirac points can appear at k0 =
(0,0,0) and/or k1 = (0, 2√

3a
π,0) in momentum space when the

frequency w of light is on the order of magnitude of hopping
parameters γ and η. Upon decreasing the light frequency, each
semi-Dirac point will split into two symmetrical Weyl points
with opposite chirality. Further decreasing the frequency will
make the Weyl points move in the momentum space, and the
Weyl points can approach the Dirac points when the frequency
becomes very small. The frequency-amplitude phase diagram
has been worked out. It is clear that the Floquet Weyl femions,
always appearing in pairs, can be created in the limit of low
light amplitude, not needing any finite threshold for light am-
plitude [25]. This is because we treat H0 and H±1 accurately,
without requiring usual high-frequency limit [25]. Further-
more, it has been shown that there exist Fermi arcs in the sur-
face Brillouin zones in semi-infinitely stacked and finitely mul-
tilayered graphene systems irradiated by circularly polarized
light. These theoretical results can lead to a new platform to
create Weyl fermions in graphene-based and similar systems.
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