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Manifestation of a non-Abelian Berry phase in a p-type semiconductor system
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Gauge theories, while describing fundamental interactions in nature, also emerge in a wide variety of physical
systems. Abelian gauge fields have been predicted and observed in a number of novel quantum many-body
systems, topological insulators, ultracold atoms, and many others. However, the non-Abelian gauge field, while
playing the most fundamental role in particle physics, up to now has remained a purely theoretical construction
in many-body physics. In this paper, we report an observation of a non-Abelian gauge field in a spin-orbit
coupled quantum system. The gauge field manifests itself in quantum magnetic oscillations of a hole doped
two-dimensional (2D) GaAs heterostructure. Transport measurements were performed in tilted magnetic fields,
where the effect of the emergent non-Abelian gauge field was controlled by the components of the magnetic field
in the 2D plane.
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I. INTRODUCTION

Gauge theories were originally conceived to describe
elementary particles and their interactions [1,2]. The concept
of the emergent gauge field is relevant to a wide class of
quantum systems whose initial formulation has no apparent
relationship to gauge fields. Such emergent gauge fields
arise naturally in many geometrical contexts and the idea
that physical systems can be classified according to their
geometrical properties has become an overarching paradigm
of modern physics. One example of an Abelian gauge theory
in this context is the Berry phase [3], which is associated with
the adiabatic evolution of a nondegenerate quantum state. The
emergence of non-Abelian gauge fields in degenerate quantum
systems was first theoretically proposed by Wilczek and Zee
[4] shortly after the work of Berry.

While Abelian gauge fields have been observed in systems
ranging from optical fibers [5] and semiconductor rings
[6,7] to Bose condensates of ultracold atoms [8], signs of
non-Abelian effects have so far only been observed in the
nuclear quadrupole resonance of 35Cl in a single crystal of
sodium chlorate [9]. Non-Abelian gauge fields have been
theoretically predicted in a number of many-body systems
including fractional quantum Hall liquids [10], spin-orbit
coupled systems [11,12], cuprate superconductors [13], and
ensembles of ultracold atoms [14,15]. In spite of the theo-
retical excitement and great interest, all previous attempts to
observe these fields were unsuccessful. This demonstrates the
challenge involved in the experimental realization of emergent
non-Abelian gauge fields.

The idea of our experiment is partially based on previous
theoretical work by Arovas and Lyanda-Geller [11] as well as
Murakami, Nagaosa, and Zhang [12] who proposed that effects
relating to non-Abelian gauge fields must be pronounced
in hole-doped zinc-blende semiconductors due to the strong
spin-orbit coupling (SOC). In this context, the gauge fields
are closely associated with spin dynamics along curved
trajectories: Ref. [11] proposed the use of mesoscopic rings
to bend the trajectory, while Ref. [12] suggested use of an
external electric field for the same purpose. In this work, we

use a two-dimensional (2D) GaAs hole-doped heterostructure
in a relatively small (fraction of a Tesla) magnetic field applied
perpendicular to the 2D plane to curve the hole trajectories. In
addition, we apply an in-plane magnetic field (B‖ ∼ several
Tesla), which allows us to control the magnitude of the
spin-orbit coupling. The combination of the SOC and curved
trajectories makes the non-Abelian gauge field observable. The
perpendicular magnetic field gives rise to quantum magnetic
oscillations which are influenced by non-Abelian spin dynam-
ics. We measure the oscillations via the Shubnikov–de Haas
(SdH) effect. The SdH effect has been measured previously in
numerous experiments with 2D systems with strong spin-orbit
interaction (see, e.g., Refs. [16,17]). However, in all previous
studies, effects related to the non-Abelian Berry phase are
negligible, and what is measured is simply the densities of
the spin-split subbands. One needs very special conditions
to distinguish between the Abelian and the non-Abelian
Berry phases, it is necessary to tune independently the spin
precession, the orbital dynamics, and the spin-orbit interaction.
To do so in our experiment we use the following crucial points.
(i) We can tune the spin-orbit coupling over a wide range using
the in-plane field B‖ while keeping the orbital dynamics fixed.
(ii) We use a low-symmetry crystal with highly anisotropic
coupling to B‖, which allows us to control independently the
Larmor and the spin precession frequencies. This is key to
proving that the effects we observe cannot be due to Abelian
physics, nor due to differences between data sets taken at
different carrier densities, gate biases, or even from different
samples. (iii) We use a device where we can minimize the
undesirable Rashba interaction, allowing a simple analytic
theory to explain the data. These three factors allow us to
report the first observation of the non-Abelian gauge phase
which was elusive for 30 years since its theoretical prediction.

The spin dynamics of a particle moving around a circle
in momentum space used in Onsager quantization [18] is
illustrated in Fig. 1. The three panels in this figure correspond
to three qualitatively different situations: (a) spin dynamics
being absent, (b) Abelian spin dynamics, and (c) non-Abelian
spin dynamics. The spin (red arrows) is driven by a local
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FIG. 1. Spin dynamics along the closed trajectory in momentum space (green circle) in three qualitatively different situations. The spin
shown by red arrows is driven by a local effective magnetic field shown by blue arrows. (a) Absence of spin dynamics. This corresponds to
the case of an electron moving within an external magnetic field in the absence of spin-orbit interaction. (b) Abelian spin dynamics. Spin is
changing, but it remains parallel to the driving field Beff ∝ k. (c) Non-Abelian spin dynamics. The spin is parallel to the vector sum of the
driving field Beff and the non-Abelian gauge field.

effective magnetic field Beff (blue arrows), which is the sum of
the external magnetic field Bext and the momentum-dependent
spin-orbit field BSOC. Figure 1(a) depicts the trajectory of a
nonrelativistic electron in the absence of spin orbit. In this case,
Beff = Bext and the spin is simply aligned with the external
field. Figure 1(b) illustrates the case of an ultrarelativistic Dirac
electron, e.g., an electron in graphene or on the surface of a
topological insulator. In this case, although spin is precessing,
it remains aligned with the driving field which itself is parallel
to the momentum Beff ≈ BSOC ∝ k. The precession of spin
around the orbit generates a geometric Berry phase (Abelian
gauge field) which appears as the π -phase shift observed in
magnetic oscillations [19,20]. The non-Abelian case addressed
in this work is illustrated in Fig. 1(c). Here, the driving
field Beff is not collinear with spin and the noncollinearity
is proportional to the non-Abelian gauge field. Due to the non-
Abelian spin dynamics, the particle acquires a matrix-valued
phase equal to the circulation of the gauge field around the
trajectory in momentum space. The phase manifests itself in
quantum magnetic oscillations.

II. ORIGIN OF THE NON-ABELIAN GAUGE FIELD IN
p-TYPE SYSTEMS

Holes in GaAs originate from atomic p3/2 orbitals and
hence possess an angular momentum J = 3

2 . The electric
quadrupole interaction leads to strong coupling between
the angular momentum J and the linear momentum k,
which is described by the Luttinger Hamiltonian [21]. The
z confinement in a 2D heterostructure enforces quantization
of J along the z axis. Therefore, a hole quantum state with a
given in-plane momentum k = (kx,ky) splits into two doublets
with Jz = ± 3

2 (heavy holes) and Jz = ± 1
2 (light holes). Since

light holes lie significantly higher in energy, we shall only
consider heavy holes for the low-energy dynamics.

The heavy-hole Kramers doublet can be described by an
effective spin s = 1

2 , |Jz = + 3
2 〉 ≡ |↑〉, |Jz = − 3

2 〉 ≡ |↓〉. The
Hamiltonian describing heavy holes consists of the kinetic
energy, the Zeeman interaction, and the SOC, H = HK +
HZ + HSOC:

HK = ε(k), HZ = −�

2
σz , � = gμBBz,

(1)

HSOC ≡ −β(k) · σ = −1

2
α[σ+B−k2

− + σ−B+k2
+],

where k = −i�∇ − eA; σ± = σx ± iσy , B± = Bx ± iBy ,
k± = kx ± iky ; A is the in-plane vector potential created
by Bz, e is the elementary charge, σi are Pauli matrices
describing the spin, μB is Bohr magneton, g = gzz is the
effective g factor, and α is the SOC strength. Note that
due to mixing between heavy-hole states the dispersion ε(k)
can significantly differ from the simple quadratic form (see
discussion in Appendix A). Note also that generally g and α

depend on k, and in combination with nonquadratic dispersion
ε(k) this dependence results in a very complex fan diagram
of Landau levels. However, according to the Landau theory
of normal Fermi liquids, this complexity is irrelevant to the
problem we address. We do not need the full Landau level
fan diagram. According to normal Fermi liquid theory, only
the values of the parameters at the Fermi energy are relevant.
This statement is very general, and even includes hole-hole
Coulomb interaction effects. We will fit the experimental data
to obtain the parameters g and α at ε = εF . A derivation of
the spin-orbit interaction HSOC is presented in Appendix A,
although we shall make two comments here on its origin:
(i) The spin-orbit coupling arises from a small mixing between
heavy and light holes, where the mixing probability is 1%–2%
(see Appendix A). (ii) The kinematic structure of HSOC in
Eq. (1) is dictated by the fact that the Pauli matrices σ±
correspond to �Jz = ±3.

If the perpendicular magnetic field is zero, A ∝ Bz = 0,
then the hole trajectories are straight lines and HSOC in Eq. (1)
simply splits the doubly degenerate band εk into a pair of chiral
bands. In presence of Bz, the hole trajectory forms a circle k =
k(cos θ, sin θ ). Semiclassically, using the wave-packet picture,
the angle is θ = −ωct (the sign corresponds to Bz > 0), where
ωc = e|Bz|/m is the cyclotron frequency and m = k( dε

dk
)
−1

is
the effective cyclotron mass at the Fermi energy. The spin-orbit
field β(k) varies along the trajectory. This variation can be
removed by a local gauge transformation of the spinor wave
function ψ → ψ ′ = g−1(k)ψ . Taking g(k) = e−iθσz we gauge
out the angle dependence of the SOC:

β ′(k) · σ = g−1[β · σ ]g , β ′ = αk2 B‖ . (2)

Since our choice of g(k) ensures that we perform a transfor-
mation to the corotating frame of the hole, it follows that β ′
does not vary along the trajectory. The gauge transformation
results in the covariant derivative ∇ → ∇ − i�k, where �k is
the non-Abelian gauge field possessing a vortex structure in
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2D momentum space

�k = ig−1∇kg =
(

−kyσz

k2
,
kxσz

k2

)
. (3)

The field tensor corresponding to this gauge field is zero,
Fμν = ∂μ�ν − ∂ν�μ − i[�μ,�ν] = 0. However, the gauge
field has a nonzero circulation along the hole trajectory∮

�k · dk = 2πσz, (4)

and this circulation reveals itself in quantum magnetic oscilla-
tions.

To understand quantum magnetic oscillations, we need to
consider the impact of spin-orbit coupling upon the Landau
level structure. For this analysis, we restrict ourselves to a
semiclassical approximation, where the Landau levels are
determined by the Onsager quantization condition. Consider
a hole traversing the circular trajectory, where the hole is
initially prepared in a polarization state ψ(0). Under the
combined action of HSOC and HZ spin will precess along
the trajectory, as shown in Fig. 1(c). After a full cycle, the
spin wave function is ψ(2π ) = Uψ(0), where U ∈ SU(2) is a
unitary evolution matrix. In order to satisfy the semiclassical
quantization condition, it is necessary for ψ(0) to be an
eigenvector of U , i.e., ψ(2π ) = e±iψ(0). Here, e±i are the
complex-conjugate eigenvalues of U . Hence, depending on
the spin state, an additional phase ± appears in the Onsager
quantization condition due to spin dynamics.

III. MANIFESTATION OF NON-ABELIAN GAUGE FIELDS
IN SHUBNIKOV-DE HAAS OSCILLATIONS

SdH oscillations in the resistivity are given by the usual
Lifshitz-Kosevich formula [22]. Accounting for the additional
phase  we obtain

�ρxx = ρxx(B) − ρxx(0) = A(B) cos  cos
πk2

F

e|Bz| . (5)

The amplitude factor depends on the hole scattering time
τ , A(B) ∝ e− π

ωcτ . Spin dynamics enters only via the spin
evolution phase factor trU = 2 cos . For the semiclassical
approximation approach we assume large filling factors ν =

k2
F

2e|Bz|  1, hence, only the lowest harmonic of magnetic
oscillations is taken into consideration.

The matrix phase U may be explicitly expressed as a path-
ordered exponential which can be calculated using the gauge
transformation from Eq. (2):

U = P exp

{
− i

ωc

∮ [
β · σ + �

2
σz

]
dθ

}

= exp

{
i

∮
�k · dk − i

2π

ωc

[
β ′ · σ + �

2
σz

]}
. (6)

Hence, using Eqs. (4) and (2) we find the prefactor in Eq. (5)
for SdH oscillations 2 cos  = trU :

 = 2π

ωc

√(
ωc − �

2

)2

+ ∣∣αk2
F

∣∣2(
B2

x + B2
y

)
. (7)

Here, the ωc term under the square root comes from the non-
Abelian gauge field. It is worth noting that the effect of the
gauge field is somewhat analogous to Thomas precession in
special relativity [23]. As previously mentioned, the gauge
field cannot be observed without the in-plane magnetic field.
This is evident from Eq. (7): if B‖ = 0 the gauge contribution
is exactly 2π and hence the phase shift is determined only
by the Zeeman splitting trU = 2 cos(π�/ωc). The Zeeman

splitting with B‖ �= 0 is δEZ =
√

(�
2 )2 + |αk2

F |2(B2
x + B2

y ).
A naı̈ve expectation for the spin accumulated phase would
be naive = 2πδEZ/ωc, but Eq. (7) is different from this. A
seminaı̈ve expectation would take into account the Abelian
Berry phase ϕB on top of the Zeeman splitting. The phase ϕB

is given by the first term of the square-root expansion in (7) in
powers of ωc, yielding

AB = 2πδEZ

ωc

+ ϕB = 2πδEZ

ωc

− π�

δEZ

. (8)

The subscript “AB” in  stands for “Abelian Berry.” The
Abelian Berry phase approach provides a good description
for magneto-oscillations in Dirac fermion systems [19,20],
and for quantum interference in mesoscopic rings with strong
spin-orbit coupling [6,7]. However, in our case, both the
“naı̈ve” naive and the Abelian Berry phase AB approach
are inconsistent with the data.

IV. COMPARISON WITH EXPERIMENTAL DATA

In our experiments, the 2D hole system is formed in
a 20-nm-wide symmetric GaAs quantum well, grown in a
(311)A GaAs-Al0.33Ga0.67As heterostructure as indicated in
Fig. 2(a). Previous experiments on this system have shown
that holes in a (311) oriented quantum well have a tensor g

factor with an unusual off-diagonal term gxz [24]. Although
tilted field measurements revealed the presence of the gxz term,
no comparison of the Shubnikov–de Haas oscillations with
theory was possible, as there was no theory available for 2D
hole systems in tilted magnetic fields. We are now able to
show that there is excellent qualitative agreement between the
experimental data and the new theoretical model based on the
non-Abelian gauge field.

We use the coordinates x ‖ [2̄33], y ‖ [01̄1], z ‖ [311]
shown in Fig. 2(a). The gyromagnetic tensor is not diagonal in
the x, y, and z axes, therefore, the expression for � presented
in Eq. (1) and used elsewhere is now replaced by

� = μB(gBz + gxzBx). (9)

Note that the off-diagonal tensor component gxz makes the
magnetic response different for three orientations of B‖: B‖ =
Bx , B‖ = −Bx , and B‖ = By [24]. This triples the amount
of data we can get from the same sample. Details of our
experimental setup/method are presented in Appendixes B,
C, and D.

So far, we have only considered the effect of the external
magnetic field, however, spin dynamics can also be influenced
by additional couplings, such as the Rashba interaction
(stemming from the asymmetry of the interface) and the
Dresselhaus interaction (arising from the lack of inversion
symmetry in the bulk GaAs crystal). We apply a voltage bias
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FIG. 2. Magnetoresistance (SdH) oscillations in an external magnetic field B applied at an angle θtilt to the 2D heterostructure, B‖ =
Bz tan θtilt, Bz > 0. (a) The orientation of the magnetic field components relative to the crystal axes. (b) SdH oscillations plotted as a function
of 1

Bz
for an applied field of By > 0, Bx = 0 (green solid lines) and By < 0, Bx = 0 (purple dotted lines). Traces are offset for clarity. The

amplitude of the oscillations was normalized by multiplying the data by e0.33/Bz . SdH data are presented for the range in which the amplitude
of the SdH oscillations is not too large (�ρxx < ρxx) and Bz is small enough that we do not enter the quantum Hall regime (see Fig. 5). At
θtilt = ±(7.0◦ ± 0.5◦) the oscillations exhibit an inversion corresponding to the change in sign of cos  in Eq. (5). (c) SdH oscillations where
the applied field is Bx > 0, By = 0 (red solid lines) and Bx < 0, By = 0 (blue dotted lines). Due to crystallographic anisotropy, the oscillations
are distinctly different for different signs of Bx . In this orientation, the oscillations invert at angles θtilt = 18◦ ± 1◦, 5.5◦ ± 0.5◦, 3.5◦ ± 0.25◦

for Bx > 0 and θtilt = −6.5◦ ± 0.5◦ for Bx < 0. The filling factors ν are indicated by arrows at the tops of panels (b) and (c). The right-hand
panels in (b) and (c) display theoretical SdH curves calculated using the non-Abelian theory and the usual Lifshitz-Kosevich formula, valid in
the regime �ρxx � ρxx .

to the back-gate, to tune the symmetry of the GaAs quantum
well such that the Rashba interaction is practically zero (see
Appendix D). The Dresselhaus interaction is relatively weak,
nevertheless, it is important in some regimes. Moreover, as
we discuss below, it brings an additional confirmation of the
non-Abelian dynamics.

The results of our measurements are presented in Figs. 2(b)
and 2(c) which plot resistivity versus 1/Bz where the in-plane
field is altered by tilting the sample at an angle θtilt with
respect to the applied field, such that Bz = B‖ tan θtilt, with
Bz > 0. Figure 2(b) corresponds to tilting in the yz plane
(Bx = 0) and Fig. 2(c) corresponds to tilting in the xz plane
(By = 0). The data in Fig. 2(b) are symmetric with respect
to By → −By , while the data in Fig. 2(c) exhibit asymmetry
with respect to Bx → −Bx due to nonvanishing gxz in Eq. (9).
According to Eqs. (5) and (7), the normalized amplitude
of resistivity oscillations, cos , is a function only of θtilt

and is independent of the magnitude of the total magnetic
field B. At tilt angles corresponding to changes in the sign
of trU = 2 cos , the first harmonic of the SdH oscillations
invert (i.e., maxima become minima, and vice versa). At
these “coincidence” angles the phase  must coincide with
a half-integer multiple of π . In the data, these coincidences

are observed at the tilt angle θtilt = ±(7◦ ± 0.5◦) for the field
applied along the yz plane in Fig. 2(b). For the field applied in
the xz plane [Fig. 2(c)] there are multiple coincidence angles
at θtilt = 18◦ ± 1◦, 5.5◦ ± 0.5◦, 3.5◦ ± 0.25◦ for Bx > 0 and
only a single coincidence at θtilt = −6.5◦ ± 0.5◦ for Bx < 0.
The coincidence angles are plotted in Fig. 3, and are described
by Eqs. (7) and (9). There are three independent device-specific
parameters in these equations, which are gm, 2αk2

F /(gμB), and
gxz/g. We use the value m = 0.25me derived in Appendix A
as our reference point and hence we are left with unknowns
g, λ = 2αk2

F /μB , and gxz which we treat as free fitting
parameters.

Altogether we have three fitting parameters to describe five
coincidence angles. To compare the experimental coincidence
angles to those of theory, we perform a least-squares fit to 

using the observed four coincidence angles for the orientations
Bx > 0,By = 0 and By �= 0,Bx = 0 [red and green symbols
in Fig. 3(a)], and use the values obtained to predict the
coincidence angles for the orientation Bx < 0,By = 0 [blue
traces in Fig. 3(b)]. The solid red and green curves in Fig. 3(a)
show the calculated /π obtained from this fitting, with the
following values of the fitting parameters: g = 7, |λ| = 0.88,
and gxz = −0.87. The solid blue line in Fig. 3(b) shows
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FIG. 3. Comparison of experimentally observed coincidences angles to the non-Abelian (a), (b) and Abelian (c), (d) theories. Expressing
the envelope of the SdH oscillations as cos , we find that /π becomes a smooth function of tilt angle. This function is plotted for the
experimental range of tilting angles. Angles at which  crosses a half-integer multiple of π correspond to inversions of the SdH oscillations.
Both theories contain three unknown parameters g, gxz, λ. In panels (a) and (c) we show the least-squares fits of  to the observed coincidence
angles for an applied Bx > 0,By = 0 (red) and By �= 0,Bx = 0 (green). The plots of  in panels (b) and (d) show the predicted coincidences
for Bx < 0,By = 0. For the non-Abelian theory, the solid curves do not include the Dresselhaus perturbation, whereas it is included for the
dashed curves. In the Abelian case, the influence of the Dresselhaus perturbation is negligible. The non-Abelian gauge theory predicts a single
angle of coincidence blue solid line in panel (b), consistent with the observed coincidence point (blue square). Including the Dresselhaus
interaction (blue dashed line) provides quantitative agreement with experiment. In contrast, the Abelian theory (d) predicts three coincidences
while experimentally only one angle of coincidence was observed (solid blue square); the two coincidence angles marked with open symbols
were not observed in experiment.

/π for the Bx < 0,By = 0 orientation calculated using the
fitting parameters from Fig. 3(a), which predicts that there will
be only a single coincidence observed in the experimentally
measured range of θtilt, in agreement with experiment (blue
square). There is reasonable agreement between the predicted
coincidence angle of θtilt = −4.5◦ and that observed in the
experiment of θtilt ≈ −6.5◦ ± 0.5◦, although we will shortly
discuss the origins of this 2◦ discrepancy.

To highlight the non-Abelian dynamics, we have attempted
to fit the observed data using the Abelian Berry formula (8)
instead of Eq. (7). Using Eqs. (8) and (9), we repeat the
same procedure described above and fit AB to the observed
four coincidence angles for the orientations (Bx > 0,By = 0)
and (By �= 0,Bx = 0), as shown in Fig. 3(c). The fitting
parameters obtained are g = 9.5, |λ| = 0.54, gxz = +0.81.
These parameters were then used to predict the coincidence
angles occurring for the orientation Bx < 0,By = 0, shown in
Fig. 3(d). The key point is that the Abelian theory always
predicts three coincidence angles in contrast to the single
coincidence observed in experiment.

Although the number of coincidence angles is not a
topological invariant (for example, it depends on the range
of tilt angles available in the experiment), it is robust within
both the non-Abelian and the Abelian theories. As shown
in Appendix E, although the precise tilt angles at which the

coincidences occurred are sensitive to the fitting parameters,
the number of coincidences could not be changed even after
significant variation of the parameters.

Additional confirmation of the non-Abelian dynamics
comes from the Dresselhaus interaction, neglected so far
because of its smallness. In the corotating frame, the spin-orbit
coupling given by Eq. (2) results in an energy splitting
�↑↓ = ωc


π

between the “up” and “down” spin states [see
Eq. (7)]. The quantization axis for �↑↓ is tilted with respect
to z. The Dresselhaus interaction in the corotating frame
takes the form of a small periodic perturbation σz cos ωct .
Since the quantization axis is tilted, this perturbation drives
transitions between the spin “up” and spin “down.” Because of
the smallness of the perturbation, the transitions are significant
only close to resonance �↑↓ ≈ ωc. We use the amplitude of
the Dresselhaus interaction as an additional fitting parameter,
and find that it is close to the value known from the literature
(see Appendix F). The effect of the Dresselhaus perturbation
is shown by the dashed curves in Figs. 3(a) and 3(b). The tiny
difference from the red and green solid curves in Fig. 3(a),
which do not include the Dresselhaus interaction, show that
the effect of the interaction is very weak. On the other hand,
for Bx < 0 [Fig. 3(b)] the resonance condition �↑↓ ≈ ωc is
satisfied and the Dresselhaus term now becomes significant.
This causes a clear difference between the solid and dashed
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blue curves in Fig. 3(b), which completely removes the small
disagreement between experimental and theoretical values of
the coincidence angle.

Of course, the inclusion of the Dresselhaus interaction does
not influence the number of coincidence angles, which is a very
robust number. Moreover, the inclusion of the Dresselhaus
term explains why the single coincidence for Bx < 0 is not
sharp, but occurs over a much wider range of angles than
for +Bx or ±By [seen as the slow phase inversion and small
amplitude of the SdH oscillations in the range 5◦ < |θtilt| <

10◦ for blue traces in Fig. 2(b)]. This nonsharp transition for
Bx < 0 is explained by the inflection in the blue dashed curve
in Fig. 3(b), which is due to the Dresselhaus interaction. The
“inflection” effect provides further confirmation of the non-
Abelian dynamics since the small Dresselhaus perturbation is
always insignificant in the Abelian theory.

Finally, we present in Figs. 2(b) and 2(c) theoretical SdH
curves calculated with modified Lifshitz-Kosevich formula
(5). The agreement between theory (including Dresselhaus
interaction) and experiment is very good. Overall, our data
on the number of coincidences, supported by the slow phase
flip of the SdH oscillations for Bx < 0, provide unambiguous
evidence for the non-Abelian gauge field.

The non-Abelian gauge field features centrally in theo-
retical proposals to exploit hole systems for spintronics and
quantum information purposes, including the realization of
the dissipationless spin Hall effect [12] and non-Abelian
manipulation of hole qubits [25]. The capacity of hole systems
in this context is further enhanced by the suppression of
decoherence due to absence of the hyperfine interaction
[26,27]. The observation of the non-Abelian gauge field in
a 2D hole system has positive implications for future studies
of hole systems which rely on this concept.
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APPENDIX A: DERIVATION OF THE SPIN-ORBIT
INTERACTION FOR HEAVY HOLES

In a zinc-blende semiconductor, the hole wave function
originates from atomic p3/2 orbitals resulting in an angular
momentum J = 3

2 . In the long-wavelength approximation, the
effective Luttinger Hamiltonian for holes is quadratic in the
hole momentum k [21] (see also Ref. [28]):

HL =
(

γ1 + 5

2
γ2

)
k2

2me

− γ2

me

(
k2

1S
2
1 + k2

2S
2
2 + k2

3S
2
3

)
− γ3

me

(k1k2{S1,S2} + k2k3{S2,S3} + k3k1{S3,S1}), (A1)

1, 2, 3 are the crystal axes of the cubic lattice, me is the electron
mass, {. . .} denotes the anticommutator, and γ1, γ2, and γ3 are
Luttinger parameters. In GaAs γ1 ≈ 6.85, γ2 ≈ 2.1, γ3 ≈ 2.9

[29]. The Hamiltonian (A1) can be rewritten as

HL =
(

γ1 + 5

2
γ 2

)
k2

2m
− γ 2

m
(k · S)2 + kikjSmSnT

(4)
ijmn,

where
γ 2 = 2γ2 + 3γ3

5
≈ 2.6.

The irreducible fourth-rank tensor T
(4)
ijmn depends on the

orientation of the cubic lattice, the tensor is proportional to
γ3 − γ2. Neglecting γ3 − γ2 compared to γ2, the Luttinger
Hamiltonian can be approximated by the following rotationally
invariant (independent of the lattice orientation) Hamiltonian:

HL → H = �
2

2me

[(
γ1 + 5

2
γ 2

)
k2 − 2γ 2(k · J)2

]
. (A2)

Due to the confining potential V (z), motion perpendicular to
the 2D plane of the heterostructure is quantized, leading to the
formation of 2D subbands, where only the lowest subband oc-
cupied in the low-temperature experimental regime. Assuming
a square well confining potential of width d we have 〈k2

z 〉 = π2

d2 .
Since 〈k2

z 〉  k2
F , we may expand −(k · J)2 = −k2

z J
2
z + . . . ,

with the leading term becoming diagonal in a basis of states
with Jz. Due to the sign of the interaction, states with Jz = ± 3

2
(heavy hole) are lower in energy, and the splitting between
these and states with Jz = ± 1

2 (light hole) at kx = ky = 0
becomes

�hl = 2γ 2
π2

�
2

med2
≈ 9.6 meV. (A3)

Here, we take d = 20 nm. The splitting between the lowest
and the next heavy hole band at kx = ky = 0 is

�h12 = 3

2
(γ1 − 2γ 2)

π2
�

2

med2
≈ 4.6 meV. (A4)

Numerical diagonalization of the full Luttinger Hamiltinian
(A1) using the NEXTNANO++ package [30] gives the energy
levels (2D dispersions) plotted in Fig. 4.

The HH1-HH2 splitting at kx = ky = 0 is pretty close
to (A4) while the HH1-LH1 splitting in Fig. 4 is some-
what smaller than (A3) because of the ∼(γ3 − γ2) tensor
corrections. At hole density corresponding to our experiment,
n ≈ 1011 cm−2, only the lowest band is populated. The lowest-
band dispersion ε(k) enters Eq. (1). We describe this band by
the effective spin s = 1

2 , |Jz = + 3
2 〉 ≡ |↑〉, |Jz = − 3

2 〉 ≡ |↓〉.
The Fermi momentum is kF ≈ 0.0079 Å

−1
and the Fermi

energy EF ≈ 1.3 meV, is shown in Fig. 4 by the red horizontal
line. The heavy-hole effective mass m = k( dε

dk
)
−1

follows from
Fig. 4. At k → 0, the mass is about 0.14me and at k = kF the
mass is m ≈ 0.25me. Obviously, only the latter mass is relevant
to our analysis.

The off-diagonal part of (k · J)2 in the Hamiltonian (A2),
(k · J)2 → 1

4 (k−J+ + k+J−)2, leads to heavy- and light-hole
mixing:

|k, ↑〉 =
[∣∣∣∣+3

2

〉
+ ak2

+

∣∣∣∣−1

2

〉]
eik·r ,

|k, ↓〉 =
[∣∣∣∣−3

2

〉
+ ak2

−

∣∣∣∣+1

2

〉]
eik·r , (A5)

a =
√

3γ2

2me�hl

=
√

3

4
〈
k2
z

〉 .
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FIG. 4. Energy levels (2D dispersions) of holes in a (311) square
quantum well of width d = 20 nm. The Fermi level shown by the
red horizintal line, EF ≈ 1.3 meV, corresponds to the hole density
n = 1011 cm−2.

Taking the square well width d = 20 nm and the hole density
n = 1011 cm−2, we arrive at the following estimate for the
mixing probability: a2k4

F = 3
4π2 d

4n2 ≈ 1.2 × 10−2. This very
small mixing, of order 1% in probability, is responsible for the
SOC considered here.

The Zeeman interaction of a J = 3
2 hole with magnetic field

B is [28]
δH = −g0

3
μB B · J, (A6)

where g0 ≈ 7.2. Taking the matrix element of δH between
states Eq. (A5) we find the effective matrix of HSOC:

〈↓|HSOC|↑〉 ≡ 〈↓|δH |↑〉 = −g0μB

4
〈
k2
z

〉 B+k2
+. (A7)

Comparing this with HSOC in Eq. (1), we determine the
coefficient α in this equation to be

α = g0μB

4
〈
k2
z

〉 . (A8)

According to our fit of SdH data |λ| = 2|α|k2
F /μB ≈ 0.88.

Hence, we find that k2
F /k2

z ≈ 0.25 and the probability of the

heavy- and light-hole mixing is a2k4
F = 3

16
k4
F

〈k2
z 〉2 ≈ 1.1 × 10−2,

which is remarkably consistent with the estimate presented
after Eq. (A5). It is worth noting that Eq. (A8) is approximate
since one should expect a comparable contribution to α which
is not accounted for by the calculations presented. So far, we
have neglected the coupling to the vector potential created
by B‖, (k · J)2 → [(k − eA) · J]2. This coupling also gives a
contribution to the coefficient α (see Refs. [28,31]). This con-
tribution is highly sensitive to the exact shape of the confining
potential and therefore cannot be reliably calculated [31]. The
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FIG. 5. Plot of SdH oscillations ρxx (in red) and corresponding
Hall plateaus (in blue) as a function of perpendicular field Bz,
taken at the symmetric operating point of VBG = +1.50 V, where
the 2D carrier density is n = 9.26 × 1010 cm−2 and the mobility
600 000 cm2 V−1 s−1.

kinematic form of HSOC, however, remains unambiguous and
we can fit the value of α to the experimental data.

APPENDIX B: SAMPLE AND TRANSPORT
MEASUREMENTS

The 2D hole system resides within a symmetrically doped
20-nm-wide GaAs/Al0.33Ga0.67As quantum well, grown on
the low-symmetry plane (311) by molecular beam epitaxy.
A heavily doped n+ GaAs layer located 2.6 μm below the
quantum well, acts as an in situ back gate, allowing the
2D density to be tuned [32]. At zero back-gate voltage,
the density of the 2D hole system is n = 1.33 × 1011 cm2

with a corresponding mobility of μ = 678 000 cm2 V−1 s−1.
Transport measurements were performed in a Kelvinox 100
dilution refrigerator within the bore of a 15-T magnet at a
base temperature of 25 mK, using standard lock-in techniques,
with a constant ac current of 10 nA at a frequency of 5 Hz. To
perform tilted field measurements, the sample was mounted
on a piezoelectric rotator which allowed for in situ rotation to
be conducted with an accuracy of ±0.01◦ [33].

Initially the 2D device was rotated to θtilt = 90◦, so the
magnetic field lies perpendicular to the sample plane, Bz �= 0,
B‖ = 0, and the sample orientation confirmed by measuring
the Hall plateaus as a function of perpendicular field, shown
in Fig. 5 (blue).

The corresponding low-field oscillating longitudinal re-
sistivity is shown in (red), with spin-splitting appearing for
Bz > 0.35 T. For the purposes of our analysis, we are only
interested in low-field data between Bz = 0.15 and 0.25 T.

APPENDIX C: TILTED FIELD MEASUREMENTS

The coincidence method using tilted fields was first pio-
neered by Fang and Stiles in 1968 [34] to study the Landé g

factor in 2D electron systems. Here, we perform a similar set
of tilted field transport measurements for a 2D hole system,
taken along two crystal directions: the high symmetry [01̄1]
and the low symmetry [2̄33], as depicted in Fig. 2(a). To
achieve this, the device was first mounted on the rotator such
that it tilts between the crystal axes [311] and [011̄], where
the 2D plane is fully perpendicular to the field at θtilt = 90◦.
The sample was then rotated towards the [01̄1] direction until
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θtilt = +10◦ to introduce a parallel field component By , and the
total field B swept, changing the sign of the in-plane field ±By .
This procedure was repeated for a number of different +θtilt

with increasing in-plane field components. The experiment
was then repeated for equivalent −θtilt and the results plotted
in Fig. 2(b). During a second cooldown, the sample was
reoriented to perform tilted measurements along the [311] and
low-symmetry [2̄33] crystal axes. The experiment was then
repeated for both ±θtilt and the results shown in Fig. 2(c).

APPENDIX D: TUNING THE CONFINING POTENTIAL
WITH THE BACK-GATE VOLTAGE TO COMPENSATE

RASHBA SPIN-ORBIT INTERACTION

The electric potential across the quantum well was tuned
via the in situ back gate, to adjust the confining potential. The
presence of the Rashba SOC results in beatings of the SdH
oscillations even without any tilting of the magnetic field [35].
The Rashba interaction is sensitive to the back-gate voltage
(VBG), so by varying the applied bias voltage, we can tune
the system to minimize the amount of beatings and hence to
eliminate the Rashba interaction. Figure 6 shows these beatings
in detail, where the SdH oscillations at each back-gate voltage
are periodic in 1

Bz
and the amplitudes of these oscillations
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FIG. 6. Plots of the SdH oscillations ρxx periodic in inverse Bz,
for different back-gate biases, with their amplitudes normalized by

e
0.33T
Bz . The tilt angle θtilt = 90◦, so B‖ = 0 T. In the top panel at VBG =

+1.50 V, the 2D carrier density is n = 9.26 × 1010 cm2 and increases
to n = 1.53 × 1011 cm2 at VBG = −0.75 V in the bottom panel. The
back-gate voltage VBG = +1.50 V produces SdH oscillations with
the least beating and hence this was selected as the operating point
for the rest of the experiment.

normalized for clarity by multiplying the data sets by e
0.33 T

Bz to
remove the envelope.

The data are taken without any tilting, θtilt = 90◦. From
Fig. 6 we select VBG = +1.50 V as the final operating point
with the least amount of beating in the SdH oscillations. We
will show that the major part of the Dresselhaus interaction
does not influence dynamics at θtilt = 90◦. Hence, minimizing
the beating we tune the Rashba interaction to be close to zero.
This back-gate voltage is used as the operating point for the
rest of the experiment. At this point, the carrier density is n =
9.26 × 1010 cm−2 and the mobility is 600 000 cm2 V−1 s−1.

APPENDIX E: SENSITIVITY TO FITTING PARAMETERS

The comparison of the experimental result with possible
theories is presented in Fig. 3. Figures 3(a) and 3(b) show the
non-Abelian theory and Figs. 3(c) and 3(d) show the Abelian
theory. The non-Abelian theory is consistent with experiment
while the Abelian theory is not consistent. Since the conclu-
sions are based on our fits, a natural question which arises is
as follows: How sensitive is the number of coincidences with
respect to variation in our fitting parameters? In Fig. 7, we
show the response of the non-Abelian prediction Eq. (7) as the
fitting parameters are varied.

The layout and color scheme are similar to Fig. 3: the
top panels show the theoretical phase and the experimental
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4
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(c)

= 0.88  10% xz = -0.87  30%λ = 7.0  10%+ ++

(a)

gg_

θ οtilt

π

Φ
π

Φ

_ _

(d) (f)

(e)

FIG. 7. Comparison of the non-Abelian theory (without account-
ing for the Dresselhaus interaction) with experiment. The plot /π

[defined by the envelope of the resistivity oscillations ρxx ∝ cos ,
see Eq. (7)] as a function of tilt angle for varied parameters λ, gxz, g.
The top panels show the phase and the experimental coincidence
points for orientations of the external field Bx > 0,By = 0 (red)
and By �= 0,Bx = 0 (green). The bottom panels show the phase
and the experimental coincidence points for the field orientation
Bx < 0,By = 0 (blue). Experimentally observed coincidence angles
are shown in symbols. Solid lines correspond to λ = 0.88, gxz =
−0.87, g = 7.0, and are identical to solid lines in Figs. 3(a) and 3(b).
Dashed and dotted lines correspond to variations in λ by 10% [(a),
(b)], gxz by ±30% [(c), (d)], and g by ±10% [(e), (f)]. Note there is
only one green line in panel (c) since at By �= 0,Bx = 0 the phase is
independent of gxz.
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coincidence points for orientations of the external field
Bx > 0,By = 0 (red) and By �= 0,Bx = 0 (green). The bottom
panels show the phase and the experimental coincidence
points for the field orientation Bx < 0,By = 0 (blue). Solid
lines in Fig. 7 are identical to that in Figs. 3(a) and 3(b).
Figures 7(a) and 7(b) correspond to ±10% variation of λ,
Figs. 7(c) and 7(d) correspond to ±30% variation of gxz, and
Figs. 7(e) and 7(f) correspond to ±10% variation of g. From
these plots, the presented deviations are larger than those
accepted in Fig. 3. The curves corresponding to the lower
boundaries of the parameters (dotted lines) are too far away
from the experimental points. On the other hand, the curves
corresponding to the upper boundaries of the parameters
(dashed lines) demonstrate an additional coincidence point
[Figs. 7(b), 7(d), 7(f)] which is not observed experimentally.
This shows that the selected parameters |λ| = 0.88, gxz =
−0.87, g = 7.0 provide the best fit to the data. The curves
in Fig. 7 do not account for the Dresselhaus interaction. There
is no point to account for the interaction for purposes of the
present analysis since it hardly affects the red and green curves
which are used to determine the fit parameters, and it does not
change the number of coincidences. Dresselhaus only deforms
the blue curves in Figs. 7(b), 7(d), and 7(f) exactly in the same
way as in Fig. 3(b).

A similar comparison for the Abelian theory [Eq. (8)]
is presented in Fig. 8, where once again the parameters
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FIG. 8. Comparison of the Abelian theory with experiment. The
plot AB/π [defined by the envelope of the resistivity oscillations
ρxx ∝ cos , see Eq. (8)] as a function of tilt angle for varied
parameters λ, gxz, g. The top panels show the phase and the
experimental coincidence points for orientations of the external
field Bx > 0,By = 0 (red) and By �= 0,Bx = 0 (green). The bottom
panels show the phase and the experimental coincidence points for
the field orientation Bx < 0,By = 0 (blue). Experimentally observed
coincidence angles are shown in symbols. Solid lines correspond to
λ = 0.54,gxz = 0.81,9 = 9.5, and are identical to the solid lines in
Figs. 3(c) and 3(d). Dashed and dotted lines correspond to variation
λ by 30% [(a), (b)], gxz by ±30% [(c), (d)], and g by ±10% [(e),
(f)]. The unobserved coincidences are shown in panels (b), (d), (f) by
short black horizontal lines. There is only one green line in (c) since
at By �= 0,Bx = 0 the phase is independent of gxz.

λ, gxz, m are varied. The top panels show the theoretical
phase AB and the experimental coincidence angles for
orientations of the external field Bx > 0,By = 0 (red) and
By �= 0,Bx = 0 (green). The bottom panels show the phase and
the experimental coincidence points for the field orientation
Bx < 0,By = 0 (blue). Solid lines in Fig. 8 are identical to
those in Figs. 3(c) and 3(d).

Figures 8(a) and 8(b) correspond to ±30% variation of λ,
Figs. 8(c) and 8(d) correspond to ±30% variation of gxz, and
Figs. 8(e) and 8(f) correspond to ±10% variation of g. Despite
the significant amount of variation in these parameters, the
Abelian theory always predicts three coincidence angles for
Bx < 0,By = 0 (blue), while experimentally only one angle
is observed. This discrepancy illustrates that the experimental
data cannot be reconciled with the paradigm of Berry phases
alone and renders our evidence for the non-Abelian gauge field
unambiguous.

APPENDIX F: ACCOUNTING FOR THE DRESSELHAUS
INTERACTION

Dresselhaus spin-orbit interaction arises due to the lack of
inversion symmetry in the bulk GaAs crystal. The interaction is
cubic in the momentum k and linear in the angular momentum
J (see Ref. [28]). In the coordinate system defined in Fig. 2(a),
the leading term of the Dresselhaus Hamiltonian is

HD → −12
√

22

121
bD

〈
k2
z

〉
kyσz=−12

√
22

121
bD

〈
k2
z

〉
kF σz sin θ ,

(F1)

where bD = 82 eV Å
3

(see Ref. [28]). We neglect the sublead-
ing terms cubic in k‖. The transformation (2) to the corotating
frame does not change (F1). Hence, in the corotating frame the
Dresselhaus interaction works as a weak periodic “magnetic
field” superimposed on the constant “magnetic field” defined
by Eq. (6). The projection of the periodic “field” on the
direction perpendicular to the direction of the constant “field”

σz sin θ → σ⊥
αk2

F B‖√(
ωc − �

2

)2 + ∣∣αk2
F

∣∣2
B2

‖
sin ωct (F2)

generates spin flips. Accounting for the resonant part of the
periodic perturbation, one finds that  given by Eq. (7) is
replaced by D:

D

π
= 1 +

√(


π
− 1

)2

+ D2,

D = D0
αk2

F B‖√(
ωc − �

2

)2 + ∣∣αk2
F

∣∣2
B2

‖
, (F3)

where

D0 = 12
√

22

121

bD

〈
k2
z

〉
kF

ωc

. (F4)

Without tilting, θtilt = 90◦, the Dresselhaus perturbation (F2)
is zero, D = . Hence, our back-gate tuning performed at
θtilt = 90◦ does not compensate the Dresselhaus interaction.
The interaction becomes important at intermediate values of
θtilt. The dashed curves in Figs. 3(a) and 3(b) display Eq. (F3)
calculated with D0 = 0.5. We chose this value of D0 to
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shift the coincidence angle in Fig. 3(b) from θtilt = −4.5◦ to
θtilt ≈ −6.5◦. This is an additional fitting parameter. Because
of weakness of the Dresselhaus interaction, the dashed and
the solid curves in Fig. 3(a) are practically indistinguishable.
On the other hand, because of the resonance, the effect of the
Dresselhaus interaction in Fig. 3(b) is significant. We stress
again the point made in the main text, the correct value of D0

necessarily leads to the extended range of θtilt over which the
phase of the SdH oscillation inverts, clearly seen in the blue

traces in Fig. 2(c). The value of D0 can be also calculated
using Eq. (F4). With Bz = 0.2 T and with parameters of the
system discussed in the paper, Eq. (F4) gives D0 ≈ 0.8. So,
the Dresselhaus interaction is weak and insignificant compared
to the dominating magnetic field controlled spin-orbit effects
that drive the non-Abelian Berry phase. The strength of the
Dresselhaus interaction measured in our experiment is slightly
smaller but comparable with theoretical estimates presented in
Refs. [28,36].
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