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Valley Zeeman energy in monolayer MoS2 quantum rings: Aharonov-Bohm effect
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We investigate the valley Zeeman energy (VZE) in monolayer MoS2 quantum rings, subjected to a magnetic
flux � only passing through a hole region enclosed by the inner circle of the ring. To gain insight on our numerical
outcomes for finite two-dimensional rings, an analytic solution in the one-dimensional limit (zero ring width) is
also presented. Although no magnetic field is applied inside the ring region, we observe finite VZEs. Interestingly,
in contrast to the usual linear scenario, the VZE of the rings exhibits an oscillatory dependence on � with possible
vanishing valley Zeeman effect even in a nonzero magnetic flux due to Aharonov-Bohm type effect. On the other
hand, within one period of oscillations the VZE increases linearly with �. Furthermore, for a given magnetic
flux, the valley Zeeman effect is more pronounced in a ring with a stronger quantum confinement. Thus the VZE
can be tuned by either magnetic flux or ring confinement or both of them. This opens a new route for controlling
the valley Zeeman effect using a nonmagnetic means.
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I. INTRODUCTION

Recently monolayer transition metal dichalcogenides
(TMDs) have attracted considerable interest due to their rich
electronic and optical properties [1–3]. The lack of lattice
inversion symmetry together with strong spin-orbit coupling
results in coupled spin and valley pseudospin physics [4–7],
making it possible to simultaneously control the real spin and
valley pseudospin in these materials [8,9].

For free monolayer TMDs, a variety of achievements
such as valley-selective luminescence [10–13], valley coher-
ence [2,14], valley Hall effect [15], and valley Zeeman split-
ting [16–19], have been demonstrated both theoretically [20]
and experimentally [10,16]. In addition, monolayer TMD
quantum dots [21,22] have also drawn a lot of attention in the
last two years because (i) they open a platform to study spin and
valley pseudospin physics in strong confinement systems [23]
and (ii) potential applications in single electron and single
phonon sources with versatile controllability by varying
external confinements. In both two-dimensional (2D) bulk
TMDs and their corresponding quantum dots, the magnetic
field B induced valley Zeeman energy (VZE), as a key element
in the valley manipulation, has been found simply increasing
linearly with B [16,24].

In comparison with quantum dots, quantum rings possess
several unique properties. For instance, they allow a transition
from two dimensions (finite radius-to-width ratio) to a one-
dimensional (1D) limit (zero width) by varying the geometry of
rings. The latter has simple analytic solutions, which is an ideal
platform to understand fundamental spin and valley physics.
Furthermore, quantum rings make it possible to explore the
valley Zeeman effect entirely due to the Aharonov-Bohm type
effect. These advantages motivate us to focus our attention
on monolayer TMD quantum rings in which a magnetic flux
� only passes through the inner circle enclosed hole region
(r < R1) (Fig. 1). Interestingly, although there is no flux
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threading the ring region (R1 < r < R2), we observe finite
valley Zeeman splittings. In addition, it is found that the VZE
exhibits an oscillatory behavior with �, in contrast to the usual
monotonous linear scenario [16,18,23]. On the other hand,
within one period of oscillations, the VZE increases linearly
with the magnetic flux. Besides, we observe that the VZE can
be tuned by varying the geometry of rings which determines
ring confinements.

II. THEORETICAL FRAMEWORK

In the vicinity of the K (τ = 1) and K ′ (τ = −1) valleys,
by constructing the wave functions through the basis of con-
duction and valence bands, an effective two-band Hamiltonian
for 2D bulk TMDs can be obtained from density functional
theory calculations [8,9]. Accordingly, for our quantum rings
(Fig. 1) the low-energy effective Hamiltonian reads

H = H0 + �

2
σ̂z + λso

2
τ ŝz(1 − σ̂z) + V (r)σ̂z, (1)

where H0 = �vF (τ σ̂xkx + σ̂yky), vF denotes the Fermi veloc-
ity given by vF = at/� with t as the effective hopping integral
and a as the lattice constant, and σ̂x,y,z are the Pauli matrices,
acting on the atomic orbitals. Since spin is a good quantum
number, sz = ±1 stand for states of spin up and spin down.

FIG. 1. Schematic of a monolayer MoS2 circular quantum ring
with inner radius R1, outer radius R2, and width w = R2 − R1. A
magnetic flux � only threads the hole region (r < R1) enclosed by
the inner circle of the ring, as indicated by the dotted region.
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�k = −i�∇ + eA is the kinetic momentum, with e > 0 as
the electron charge and A as the vector potential describing a
magnetic flux. � represents the energy gap and λso denotes the
spin-orbit coupling constant. V (r) is the confinement potential
of the ring, defined by V (r) = 0 for R1 � |r| � R2, otherwise
V (r) = ∞, as shown in Fig. 1.

By defining a valley dependent angular momentum as
J τ

eff = Lz + �τσz/2, we find [H,J τ
eff] = 0, with Lz as the

orbital angular momentum along the z direction. This results
in common eigenstates |ψτ

m〉 of J τ
eff and H, i.e., J τ

eff|ψτ
m〉 =

m�|ψτ
m〉 and H|ψτ

m〉 = E|ψτ
m〉. We consider that an applied

magnetic flux � only threads a disk region enclosed by
the inner circle of rings, as shown in Fig. 1. In the polar
coordinate system (r , φ) and in the Landau gauge defined by
�A = (�/2πr)�eφ , the Hamiltonian H reads

H =
(

�
2 


†
+


+ −�
2 + τszλso

)
, (2)

with


+ = −iateiτφ

(
τ

∂

∂r
+ i

r

∂

∂φ
− �

�0

1

r

)
. (3)

Because of the rotational symmetry of the ring confinements,
the wave function of H admits the following Ansatz:

ψτ
m(r,φ) = ei(m−τ/2)φ

(
aτ (r)

eiτφbτ (r)

)
, (4)

where aτ (r) and bτ (r) are the radial components of pseu-
dospinnor and m = ±1/2,±3/2, . . . refers to the total angular
momentum.

After some algebra calculations, a general form of eigen-
states is obtained as

ψτ (ρ,φ) = ατ e
i(m−τ/2)φ

⎛
⎜⎝

H
(1)
m̄−τ/2(

√
γ ρ)

cEeiτφH
(1)
m̄+τ/2(

√
γ ρ)

⎞
⎟⎠

+ βτ e
i(m−τ/2)φ

⎛
⎜⎝

H
(2)
m̄−τ/2(

√
γ ρ)

cEeiτφH
(2)
m̄+τ/2(

√
γ ρ)

⎞
⎟⎠, (5)

where H (1)
ν (H (2)

ν ) are Hankel functions of the first
(second) kind, γ = (sE − δ)(δ − λszτ + sE), cE = i(sE −
δ)/

√
γ , m̄ = m + �/�0 refers to an effective quantum num-

ber, with �0 = 2π�/e as the elementary flux, ατ and βτ are
normalization constants. To facilitate our calculation, unless
stated otherwise, the following dimensionless quantities:
sE = sgn(E), δ = �/2|E|, λ = λso/|E|, and ρ = |E|r/at , are
adopted.

With the general expression of ψτ (ρ,φ) at hand, the
eigensolution of H can be obtained by applying the infinite
mass boundary condition, i.e., b(R2) = iτa(R2) and b(R1) =
−iτa(R1), at the outer and inner boundaries, respectively. The
secular equation corresponds to z1 = z2, where zj is given by

zj = H
(j )
m̄−τ/2(

√
γ ρ2) + icEτH

(j )
m̄+τ/2(

√
γ ρ2)

H
(j )
m̄−τ/2(

√
γ ρ1) − icEτH

(j )
m̄+τ/2(

√
γ ρ1)

. (6)

It is worth commenting that in a special case such as
graphene ring in which � → 0, λso → 0 and τ = 1, the
constants γ and cE determining the eigenstates change
accordingly as γ → 1 and cE → isE , and our results reduce
to those of the graphene ring shown in Ref. [25].

To gain insight on our numerical outcomes, let us derive
an analytic expression of the eigensolution for a thin ring
with negligible width which arrives at the 1D limit. It can
be implemented by freezing out carrier radial motions in the
Schrödinger equation for rings of finite width,

E± = λsoszτ

2
± t

√(
m̄2 − 1

4

)(
a

Rt

)2

+
(

� − λsoszτ

2t

)2

,

(7)
with the radius Rt ∼ R1 ∼ R2. Note that the energies of
the lowest conduction band and the highest valence band
corresponding to m̄ = ±1/2 are given by E+ = �/2 and
E− = −�/2 + λsoszτ , which do not depend on the geometry
of rings, in contrast to all other states for which m̄ 	= ±1/2,
energies strongly dependent on the geometry parameters of
the ring, see Eq. (7).

III. SYSTEM

We consider MoS2 quantum rings, with the inner and outer
radius of R1 and R2, respectively, and the width w = R2 − R1,
as shown in Fig. 1. We assume that an applied magnetic flux
� only passes through a disk region enclosed by the inner
circle (i.e., r < R1), allowing us to explore the valley Zeeman
energy entirely due to the Aharonov-Bohm type effect. The
ring width w and average radius Ra = (R1 + R2)/2 are two
major quantities used to measure a ring confinement. In our
numerical simulation, we use the following typical parameters
for a monolayer MoS2, t = 1100 meV, a = 0.3193 nm, � =
1660 meV, and λso = 75 meV.

IV. ZERO FIELD ENERGY SPECTRUM

In Fig. 2(a) we show the energy spectrum of the lowest
three conduction bands and the highest three valence bands as
functions of the angular momentum m, for the spin up state
in the K valley (τ = 1, sz = 1) and the spin-down state in the
K ′ valley (τ = −1, sz = −1). Since the confinement potential
couples with the orbital pseudospin, Eq. (1), the effective time
reversal symmetry (TRS) is broken within a single valley even
in the absence of a magnetic field/flux, similar to graphene
quantum dots/rings [25]. As a consequence, in a single valley
the dependence of energy on m is asymmetric referring to
±m, i.e., Eτ (m) 	= Eτ (−m) for both the conduction and
valence bands. However, since the real TRS preserves at zero
magnetic field/flux, the equality Eτ (m) = E−τ (−m) involving
two distinct valleys still holds, as expected. In addition, the
energy spectrum in Fig. 2(a) also shows that the particle-hole
symmetry is broken, cf. conduction and valence-band spectra,
because the inversion asymmetry of the crystal structure, spin-
orbit interaction, and confinement potential do not commute
with the effective inversion symmetry operator defined in a
single valley given by Pe = Iτ ⊗ σx , with Iτ as the identity
matrix.
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(a) (b)

FIG. 2. Energy spectrum as a function of the angular momentum
m at � = 0 for (a) (K , spin up) and (K ′, spin down) states and (b) (K ,
spin down) and (K ′, spin up) states, for the first three quantum states
denoted as n = 1,2,3. The ring has an average radius Ra = 20 nm
and a width w = 30 nm.

In Fig. 2(b) we show the corresponding analogs to the
energy spectrum in Fig. 2(a) but for the K valley with
spin down (τ = 1, sz = −1) and the K ′ valley with spin up
(τ = −1, sz = 1). We find similar behaviors of E versus m to
that for (τ = 1, sz = 1) and (τ = −1, sz = −1), cf. Figs. 2(a)
and 2(b).

Furthermore, by comparing Figs. 2(a) and 2(b), we find that
conduction-band energies for the spin up and spin down states
in the same valley are close but different for most values of m’s,
and the distinction (∼meV) is more considerable for a larger
value of m. Since in our model there is no direct spin-orbit term
for the conduction band right at the K (or K ′) valley [Eq. (1)],
we attribute the spin splitting to the ring confinement, for both
spin states. To facilitate understanding this, we get help from
an analytic solution in the 1D limit, see Eq. (7), where the
ring confinement and magnetic flux induced energy correction
is determined by the first term [∝(a/Rt )2] inside the square
root which contains m̄. At zero flux, m̄ = m and the energy
correction increases with m, thus leading to a stronger spin
splitting in a single valley for a larger angular momentum.
Physically we emphasize that the energy correction arises from
the fact that the Hamiltonian H0 + V (r)σ̂z does not commute
with the spin-orbit term, see Eq. (1). Accordingly, although
there is no direct spin-orbit contribution in the conduction
band, the corresponding states are still spin mixed. Note that
the energy correction vanishes at m̄ = ±1/2, corresponding
to the case that the effective pure orbital angular momentum is
zero [Eq. (7)]. As for the valence band, the distinction of the
energy spectrum between the spin up and spin down states in
a given valley, is dominated by the spin-orbit term λso.

V. EFFECT OF MAGNETIC FLUX ON ENERGY
SPECTRUM

Figure 3 shows the energy spectrum of the lowest con-
duction band and the highest valence band for the (K , spin

FIG. 3. Energy spectrum in a quantum ring of Ra = 20 nm and
w = 1 nm as a function of the magnetic flux � (in unit of elementary
flux �0) for (K , spin up) and (K ′, spin down) states. Several values
of m’s, with m = ±1/2,±3/2, are considered. The black circles
indicate different states that have the same energy for both the lowest
conduction band and the highest valence band.

up) and (K ′, spin down) states, as a function of magnetic
flux. At � = 0, the states in distinct valleys with opposite
spin and angular momentum have the same energy for both
the conduction and valence bands, i.e., EK

c/v,↑(m = 1/2) =
EK ′

c/v,↓(m = −1/2), due to the TRS. Here the subscripts c and
v stand for conduction and valence bands, respectively. When
� deviates from zero, the magnetic flux breaks the TRS, and
hence the energy degeneracy between EK

c/v,↑(m = 1/2) and

EK ′
c/v,↓(m = −1/2) in general is lifted. However, interestingly

the degeneracy can still possibly remain for a nonzero flux
� being integer multiples of the elementary flux �0, i.e.,
�/�0 = k with k an integer, see black circles in Fig. 3. This
arises from the periodic dependence of the energy spectrum
on the applied magnetic flux. Since the energy spectrum
of our rings depends on an effective angular momentum,
m̄ = m + �/�0, renormalized by the magnetic flux [Eq. (6)],
the periodic behavior of the energy versus � with a period of
�0 follows. Physically, the periodic dependence of energy
spectra on � is originated from the Aharonov-Bohm type
effect, which involves a phase variation of the states when
� changes.

VI. CONTROL OVER VZE: AN INTERPLAY OF
MAGNETIC FLUX AND RING CONFINEMENT

Now we turn to the valley Zeeman energy referring to
the lowest conduction band (�Ec) and the highest valence
band (�Ev), which is a key ingredient in controlling the
valley degree of freedom. The valley Zeeman energy �Ec/v is
defined as the energy splitting of the corresponding band with
opposite spin in distinct valleys, i.e., �Ec/v = EK

c/v,↑ − EK ′
c/v,↓.

From our model, the results show that �Ec ∼ �Ev . Therefore,
below we only focus on �E ≡ �Ev , as illustrated in Fig. 4(a).

In Fig. 4(b) we show the VZE as a function of magnetic
flux, for rings with average radius Ra = 8 and 15 nm,
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FIG. 4. (a) Schematic diagram of the band structure and valley
Zeeman energy, around the K and K

′
points. Up and down arrows

represent the spin states. (b) Valley Zeeman energy as a function of
magnetic flux � in a quantum ring of w = 4 nm and Ra = 8 nm (blue
curve) and 15 nm (red curve). (c) Valley Zeeman energy versus �

within only one period of oscillations in a quantum ring at w = 4 nm
for several values of Ra’s. (d) Valley Zeeman energy versus Ra at
�/�0 = 0.45 for w = 3,4,5 nm, respectively.

respectively. Although the flux only passes through a disk
region enclosed by the inner circle of the rings, interestingly
we observe a remarkable valley Zeeman effect, which is
attributed to the Aharonov-Bohm type effect. Moreover, the
VZE exhibits an oscillatory behavior with �, with a period of
�0. This oscillation straightforwardly arises from the periodic
dependence of the energy spectrum on magnetic flux, as we
have discussed above. Note that the valley Zeeman effect
vanishes at � = 0. Because of the oscillation of the VZE with
�, the VZE can possibly be zero even for nonzero magnetic
flux � being integer multiples of �0.

Furthermore, by comparing the VZE for rings of Ra = 8
and 15 nm in Fig. 4(b), we find that the valley Zeeman
effect is enhanced, in a ring with smaller average radius
which has stronger confinements. On the other hand, the
oscillation period of VZE versus � is independent of the
geometry of rings, which remains �0 for rings of any sizes.
The underlying cause of the oscillation period equal to the �0

is as follows. The phase shift induced by the vector potential
on an electron propagating once around a closed loop is given

by e/�
∮

A · dl = 2π�/�0. Hence the phase difference equals
2π times the enclosed flux in units of the flux quantum �0.
As a phase difference is only distinguishable Mod(2π ), any
effect resulting from this enclosed flux will show a periodic
behavior, with a period of one flux quantum. This conclusion
can also be drawn from our eigensolutions of the rings,
which are characterized by the effective quantum number
m̄ = m + �/�0, in both the general 2D ring with finite width
[Eq. (6)] and the 1D limit [Eq. (7)]. Therefore, states with the
same m̄ but with different combinations of m and �/�0 have
the same energy, e.g., E(m,�/�0) = E(m − 1,�/�0 + 1),
implying a �0 periodicity of the dependence of energy spectra
on magnetic flux.

In Fig. 4(c) we show the VZE as a function of � for several
values of Ra’s, within one period of oscillation, i.e., |�| < �0.
In this range we find that the VZE increases linearly with
�. Moreover, the VZE in rings of smaller Ra is found more
sensitive to a variation of � than that in larger rings, cf. slopes
of VZE versus � for rings of different Ra’s.

To get an insight into the VZE in the ring, we have
also performed the calculations in both quantum dots and
in the 2D bulk subjected to perpendicular magnetic fields.
More specifically, for the 2D bulk, the energy spectrum is
given by En = λsoτsz/2 + σz

√
(� − λsoτsz)2/4 + t2a2ω2

cn at
the low energy region, n is the Landau level index, and
ωc = √

2/lB . Thus it is straightforward to obtain the field de-
pendence of VZE, �E/�B ≈ [2/(� − λso)](t2a2/25.62) ∼
238 μeV/T [26], close to the experimental value 200 μeV/T
[24]. On the other hand, for a 40-nm quantum dot, we find
the slope of VZE versus B is similar to the bulk case. In
addition, based on the B field dependence of VZE, one can
further extract the valley gv factor, i.e., ∼4.11 for the dot
and bulk cases as expected. This gives strong support for our
model calculation. Therefore, we can safely conclude that the
magnetic flux in the ring does induce the VZE via Aharonov-
Bohm effect, but it is smaller than that in the quantum dots
subjected to a magnetic field. Although the Aharonov-Bohm
effect induced VZE has a relatively weak dependence on
magnetic flux, here we mainly focus on emergent unique
properties in quantum rings, e.g., ring-geometry dependent
oscillating behavior of VZE with magnetic flux, which does
not exist either in the pristine monolayer or in quantum
dots.

To gain insight of the dependence of VZE on ring
confinement, in Fig. 4(d) we show the VZE as a function of
average radius Ra , at a constant flux � = 0.45�0 for several
values of ring width w’s. For a given w we find that the VZE
first decreases with increasing Ra up to 15 nm, as discussed
previously. Nevertheless, with a further increase of Ra , the
VZE only slightly changes. Similar to the Ra dependence
of VZE, the smaller the ring width is, the higher the VZE
effect becomes due to an enhanced confinement. In the regime
of w � Ra , which is around 15 nm for rings we focus on
here, our system approaches the one-dimensional limit. In this
regime the energy for the highest valence band (or the lowest
conduction band) only depends on the intrinsic spin and valley
degrees of freedom, see Eq. (7), and hence the valley Zeeman
energy remains almost a constant as the geometry of rings
varies. We should emphasize that the dependence of VZE
on ring confinements opens the possibility of controlling the
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FIG. 5. Cartoon plot of valley Zeeman energy as a function of
average radius Ra and magnetic flux � in a MoS2 ring of w = 4 nm.

valley degree of freedom using a nonmagnetic means for a
given magnetic flux.

In order to demonstrate a whole control over the valley
Zeeman effect, we show a cartoon plot of VZE as a function
of the magnetic flux and average radius for rings with w = 4
nm in Fig. 5. Notice that no VZE is available in the case of
� = 0. For � 	= 0, however, a symmetric figure showing the
magnitude of valley Zeeman splitting with respect to opposite
values of � is found. Also note that either � or Ra or both of
them can be used to tune the VZE.

It is worth addressing that the Zeeman and cyclotron
energies are negligible as compared to the band gap, which
allows a simple effective-mass model to describe both con-
duction and valance bands [27,28]. In this effective model,
the valley pseudospin in 2D TMDs plays a similar role to
the spin degree of freedom in conventional semiconductor
quantum rings. Therefore, one can in principle apply the
available knowledge (well-established methods and known
results) about the conventional rings to investigate TMDs
rings [27,28].

Finally, we recall that the two-band model in which the
effect of remote band is neglected, yields equal electron and
hole mass and equal conduction and valence band g factor
around the K and K ′ points [27,28]. Strictly speaking, the
effective mass and g factor depend on the band, valley,

and even spin states [22,27]. The approximation of band
independent effective mass in our model results in vanishing
contribution of valley magnetic moment to the valley Zeeman
splitting [24,27]. We emphasize that these neglected effects in
our two-band model might give further enhancement of the
valley Zeeman effect. However, all of our conclusions remain
unchanged.

VII. CONCLUDING REMARKS

We have investigated the valley Zeeman energy (VZE)
entirely due to the Aharonov-Bohm type effect in monolayer
MoS2 quantum rings, subject to a magnetic flux only threading
the hole region enclosed by the inner circle of rings. The
effect of magnetic flux on the energy spectrum has also
been discussed. Despite having no flux passing through the
ring region, we have observed a remarkable valley Zeeman
effect. This unusual VZE exhibits an oscillatory dependence
on applied magnetic flux, in contrast to the usual linear
scenario. Although the oscillation period is independent of
ring confinements, the strength of valley Zeeman splitting
can be considerably tuned by the geometry of rings, i.e., ring
radius and width. On the other hand, within one period of the
oscillation, the VZE shows a linear dependence on applied flux.
Since the valley Zeenman energy depends on the combined
effect of the magnetic flux and ring confinements, our results
are expected to open a route in engineering the spin and valley
degrees of freedom in monolayer MoS2 nanostructures, via a
nonmagnetic means. We should emphasize that here we do not
consider the situation that a magnetic flux passes through the
ring region, which is similar to the case of quantum dots [23].
As a final remark on the practical implementation of magnetic
flux which is only restricted to the limited hole region, we
suggest using predesigned superconductor rings, where the
magnetic field is screened out in the ring region and allowed
only in the hole region.
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