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Efficient quantum modeling of inelastic interactions in nanodevices

Y. Lee,1,* M. Lannoo,1 N. Cavassilas,1 M. Luisier,2 and M. Bescond1,†
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This paper presents an efficient direct quantum method to model inelastic scattering in nanoelectronic structures
including degenerate band extrema. It couples the Born series expansion of the nonequilibrium Green’s function
(NEGF) to an analytic continuation based on the Padé approximant technique. Using a two-band k · p Hamiltonian,
we analyze the electron transport through a linear chain in the presence of both optical and acoustic phonons.
Results are consistently compared with the usual, computationally expensive, self-consistent Born approximation
(SCBA). We find that our approach provides a much better convergence for both types of phonons in the presence
of strong multiband coupling. The calculation of the current to the fifth order in the interactions is sufficient to
reproduce the influence of all considered phonon interactions. We also show that the method can be applied to
the calculation of the density of carriers which depicts however a slower convergence rate than the current. The
capability to efficiently calculate both current and carrier density represents a clear advantage in a context of
increasing request for atomistic quantum simulations.
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I. INTRODUCTION

The great progress of semiconductor industry over the last
30 years has been accompanied by an impressive development
of the quantum transport modeling of nanostructures and
devices [1]. Indeed experimental advances in mesoscopic
physics and innovations in nanoelectronics require the use
of sophisticated quantum transport simulation tools capable of
capturing the physical properties of such systems. One of the
most difficult parts in quantum transport modeling is to manage
the computational burden induced by the treatment of inelastic
interactions between electrons and other particles like phonons
or photons. Unfortunately, these interactions are found to have
a non-negligible influence and even in some cases can be at
the origin of the working principle of the device. This is for
instance the case of electron-photon interaction in solar cells.

Several quantum approaches have been intensively de-
veloped during the last decade to address this issue [2–6].
Among them the nonequilibrium Green’s function (NEGF)
formalism appears as one of the most efficient methods
to include interactions in quantum transport codes using
the concept of self-energies [7]. This approach has been
successfully applied to various nanostructures and devices,
including quantum dots [8,9], molecular junctions [10], 2D
materials [11], resonant tunneling diodes [12], semiconductor
transistors [13–19], and solar cells [20–22]. Despite significant
improvements the NEGF method still requires heavy compu-
tational resources when dealing with interactions in realistic
nanostructures. Indeed electron-phonon/photon interactions
are usually treated within the self-consistent Born approxi-
mation (SCBA) through an iterative resolution of the Dyson
equation. Self-consistency is often believed to be “the price to
pay” to obey all conservation laws and to obtain physically
meaningful solutions. However, we recently demonstrated
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that this is not the case. The calculated self-energies must
not be necessarily obtained through a self-consistent scheme,
but more importantly via the derivative of a functional φ

in the picture of Luttinger and Ward [23,24]. Considering a
lowest order approximation (LOA) for the interaction we first
demonstrated in Ref. [25] that self-consistency is sufficient but
not necessary to conserve the current. Furthermore, in Ref. [26]
we have proposed an infinite family of non-self-consistent
but conserving approaches based on an extension of the LOA
relying on the Green’s function Born series. This extended
LOA technique coupled with an analytic continuation of Padé
approximants [27,28] has been shown to provide excellent
expectation values of the current (at least very close to
those obtained with SCBA). The first order version of the
analytically continuated LOA has been then applied to the
calculation of current characteristics with phonon scattering
in double-gate [29] and nanowire [30] n-type transistors.

The aim of the present paper is twofold. Firstly, we
want to precisely describe the computational scheme of the
so-called analytically continuated LOA technique and to
assess its limits in providing accurate current expectation
values in the presence of phonon scattering. To do so we
will consider an ideal 1D system described by different
Hamiltonians. Two-band k · p models will be used to assess the
validity of the approach when multiband transport becomes
predominant. The calculation of the carrier density is also
an important point in the context of nanostructure quantum
transport modeling. Indeed, the calculation of the current
requires the determination of the electrostatic potential which
is itself computed, in most cases, via a self-consistent loop
between the carrier density and the Poisson equation. We
will therefore describe the computation of carrier densities
within the analytically continuated LOA approach and will
apply it to the Hamiltonians previously mentioned. Such a
validated approach represents a significant reduction of the
computational complexity with respect to the SCBA since it
provides a general recipe to efficiently calculate both current
and carrier densities in nonequilibrium quantum systems.
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The rest of the paper is organized as follows: In Sec. II
we will describe the implementation of the LOA starting
from the SCBA. Higher order LOA and analytic continuation
techniques will be presented in the subsections for both
current and carrier density in the presence of electron-phonon
interactions (acoustic and optical). Section III will show the
details of the computational implementation of this scheme.
Section IV will present the various results for each types of
Hamiltonian and phonon interaction intensity. Finally, Sec. V
will summarize the key findings.

II. THEORETICAL FRAMEWORK

In this section, theoretical details of the LOA are introduced
starting from the comparison with the usual SCBA. In partic-
ular we focus on the physical and computational advantages
of the LOA over the SCBA. Thereafter, based on this scheme
we will provide the generalized LOA method to calculate the
interacting Green’s function to any order. In addition, we will
apply analytic continuations based on the Padé approximants
for the calculation of currents and carrier densities.

A. Self-Consistent Born approximation

Inelastic interactions in the NEGF framework are usually
treated using the SCBA in which scattering processes are
treated via self-energy contributions [13–15,19]. The calcu-
lation of these self-energies is performed using the Born
approximation in which the unperturbed Green’s function is
replaced by G obtained from the Dyson equation, which can
be expressed in the simplified matrix notation [1 = (r1, t1),
g0�[G]G = ∫

d2
∫

d2′ g0(1; 2)�(2; 2′)G(2′; 1′)] as

G = g0 + g0�[G]G, (1)

where g0 is the noninteracting (or ballistic) Green’s function,
� is the self-energy, and G is the fully interacting Green’s
function [25]. The resolution of this equation usually requires
an iterative scheme which can be written as

GN = [
g−1

0 − �[GN−1]
]−1

, (2)

where GN is the Green’s function at the N th iteration. It de-
pends on the self-energy calculated from the Green’s function
at the previous iteration with G0 = g0. When the iterative pro-
cess converges, i.e., GN = GN−1, it leads to the SCBA, which
has been shown to be current conserving along the device [31].
However, truncated series expansions of Eqs. (1)–(2) do not
necessarily preserve these conservation laws. Therefore, the
SCBA should be treated with specified convergence criteria
to obtain the conserving results. This iterative character is
definitively the bottleneck in real applications since it may
become computationally very expensive. For example, the
atomistic full-band simulator described in Ref. [15] requires
heavy computational resources (>3000 CPUs) with up to 100
SCBA iterations to reach good convergences.

B. Lowest order approximation (LOA)

Choosing a proper self-energy is the most important task in
the NEGF framework since this quantity should accurately
describe the physical properties of the system and fulfill
the conservation laws. It has been shown that a �-derivable

self-energy in the Luttinger-Ward picture [23,24] guarantees
the conservation laws. The SCBA self-energy is � derivable,
but it requires a lot of iterations to converge, as mentioned
previously. Therefore, it is of interest to devise an alternative
approach satisfying the conservation laws, while avoiding the
iterative scheme. The simplest LOA is a one-shot approach
that meets these requirements. To build up the LOA one can
also start from the Dyson equation and write

G = g0 + g0�[G]G = g0 + δG. (3)

We can consider the noninteracting (or ballistic) Green’s
function g0 as an unperturbed term and the other one,
g0�[G]G, as a perturbation δG. By injecting these terms
g0 + δG into the fully interacting Green’s function G of Dyson
equation and applying a first-order Taylor series expansion to
the interacting self energy �[g0 + δG], we get at the first
order [25]

gLOA = g0 + g0�[g0]g0, (4)

where gLOA is the lowest order Green’s function that only
depends on the noninteracting Green’s function g0.

This Green’s function does not violate the conservation laws
since the self-energy �[g0] is found to be � derivable. Bescond
et al. in Ref. [30] have shown that gLOA is equivalent to the
G1 of the SCBA scheme in Eq. (2) when the perturbation term
is very small and that it only includes one interaction process.
Finally, this scheme can be the basic building block to gen-
eralize LOA for calculating the interacting Green’s functions
gN thLOA(N > 1), N defining the order in the interaction, which
is given in the next section.

C. Generalization of the lowest order approximation

Mera et al. in Ref. [26] have shown that one can construct
the Born series of the Green’s function starting with the basic
building block �g1 = g0�[g0]g0 of the LOA. The Green’s
function for the Born series up to order N in the interaction
(gN ≡ gN thLOA, N > 1) can be generalized as

gN = g0 +
N∑

n=1

�gn, (5)

where �gn is the term of order n in the strength of the
interaction. In this paper we focus on the case of the electron-
phonon interaction where the self energy of the interaction is
linear in the Green’s function and also in the strength of the
interaction. This means that �[G] can also be expanded in a
Born series for which the term of order n is given by

�n = �[�gn−1]. (6)

Since only the processes of N interactions should be included
for the Green’s function gN to satisfy the conservation laws, we
can then discard higher order perturbation terms. We can now
generalize the Born series starting from the Dyson equation (1)
and expressing the fact that the term of order N , i.e., �gN ,
results from all products of that order contained in �[G]G.
We thus get, for N � 1

�gN = g0

N−1∑
n=0

�N−n�gn, (7)

205411-2



EFFICIENT QUANTUM MODELING OF INELASTIC . . . PHYSICAL REVIEW B 93, 205411 (2016)

with

�g1 = g0�[g0]g0, (8)

and

gN = gN−1 + �gN. (9)

By using these Eqs. (7)–(9), we obtain the carrier density series
ρ

(j )
N = ρ(j )(gN ) and current series IN = I(gN ) to any order in

the interaction

ρ
(j )
N = ρ

(j )
0 +

N∑
n=1

�ρ(j )
n , IN = I0 +

N∑
n=1

�In, (10)

where �ρ
(j )
n = ρ

(j )
n − ρ

(j )
n−1 and �In = In − In−1 are defined

as the difference between the expectation values of the nth
and (n − 1)th order LOA, and ρ

(j )
0 and I0 are the ballistic

expectation values. It has to be noted that ρ
(j )
N represents

a carrier density of a local site (j ) in the real space. It is
defined on each point of the system and then computationally
detailed by a vector whose dimension depends on the mesh
discretization and the size of the studied system.

This series of current and carrier density guarantees the
conservation laws by construction. However, it may converge
or diverge according to the strength of the considered inter-
action. Therefore, in the next section we also present Padé

approximants to analytically continue this series in the case of
divergence.

D. Padé approximants

Some of us have demonstrated [26] that any current
expectation values can be calculated by using the Born series
while preserving the conservation laws. However, since this
series has a radius of convergence depending on the intensity
of the interaction, the energy of the particle, etc., Padé
approximants have been introduced as an efficient remedy
to treat divergent behavior [27,28,32]. Padé approximants
represent a relevant method in the way they can provide several
sets of rational approximations.

Considering a function F (z), the Taylor series is represented
as FN (z) = ∑N

k=0
F (k)

k! zk where F (k) is the kth derivative of F .
The Padé approximant to this function F (z) is defined as a
rational function Fl/m(z) in a fractional form composed of two
polynomials Ll(z),Mm(z) such as [33]

Fl/m(z) = Ll(z)

Mm(z)

= l0 + l1z + l2z
2 + · · · + llz

l

1 + m1z + m2z2 + · · · + mmzm
. (11)

By using the relation FN (z)Mm(z) − Ll(z) = 0, we can deter-
mine the unknown coefficients l0, . . . ,ll and m1, . . . ,mm up to
l + m order. Here, the Padé table of the arbitrary function F (z)
constructed up to the second order is given as

Fl/m =

⎛
⎜⎜⎝

f0 f0 + f1z f0 + f1z + f2z
2

f0

1−f1z/f0

f0+(f1−f0f2/f1)z
1−f2z/f1

f0

1−f1z/f0+((f1/f0)2−f2/f0)z2

⎞
⎟⎟⎠ =

⎛
⎝f0/0 f1/0 f2/0

f0/1 f1/1

f0/2

⎞
⎠, (12)

where it is noticeable that the first row of the table, i.e., Fl/0 (l � 2), is exactly equivalent to the Taylor series of the function F (z).
Therefore, when the function can be represented by a Taylor series, we can use several rational forms of the Padé approximant.
For example, once we apply Eq. (10) for the carrier density and current series to the first row of the Padé table (12) for the arbitrary
function such as f0 = ρ

(j )
0 , f1z = �ρ

(j )
1 and f2z

2 = �ρ
(j )
2 , we can reconstruct the Padé table for the carrier and current as

ρ
(j )
l/m =

⎛
⎜⎜⎜⎜⎜⎝

ρ
(j )
0 ρ

(j )
0 + �ρ

(j )
1 ρ

(j )
0 + �ρ

(j )
1 + �ρ

(j )
2

ρ
(j )
0

1−�ρ
(j )
1 /ρ

(j )
0

ρ
(j )
0 +�ρ

(j )
1 −ρ

(j )
0 �ρ

(j )
2 /�ρ

(j )
1

1−�ρ
(j )
2 /�ρ

(j )
1

ρ
(j )
0

1−�ρ
(j )
1 /ρ

(j )
0 +

(
�ρ

(j )
1 /ρ

(j )
0

)2−ρ
(j )
2 /ρ

(j )
0

⎞
⎟⎟⎟⎟⎟⎠

, (13)

Il/m =

⎛
⎜⎜⎝

I0 I0 + �I1 I0 + �I1 + �I2

I0
1−�I1/I0

I0+�I1−I0�I2/�I1

1−�I2/�I1

I0

1−�I1/I0+(�I1/I0)2−I2/I0

⎞
⎟⎟⎠. (14)

We then see that both SCBA and generalized LOA are
analytical continuation techniques based on the explicit knowl-
edge of the lowest order self energy. SCBA applies directly to
the Green’s function including in principle all powers of this
term and proceeds by iterations. The present method works on
integral properties and explicitly includes a limited number of
the higher order contributions and then proceeds to the analytic
continuation.

III. COMPUTATIONAL IMPLEMENTATION

This section describes in detail the calculation of carrier
densities and currents by using the first and higher order
LOA. In particular, we apply the formalism in the case
of electron-phonon coupling. We limit ourselves to steady-
state situations and thus write all expressions in the energy
representation.
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A. Calculation of Green’s functions by implementing
the LOA algorithm

Since our system consists of an active region coupled to
contacts we use a real space formulation. We then express
all operators as matrices in a localized basis set, either in
tight-binding (i.e., using an orthogonalized set of atomic
orbitals) or in a discretized representation of continuous
equations (effective-mass and k · p method). Let us begin with
the definition of the retarded noninteracting/ballistic Green’s
function gr

0 connected to two contact reservoirs (labeled L for
the left contact and R for the right contact) such as

gr
0 = [

EI − H − �r
L − �r

R

]−1
, (15)

where I is the identity matrix, �r
L/R are the retarded self-

energy for the left/right device contacts [34], and H represents
the Hamiltonian of the active region. In Eq. (15) and the
following we have, for simplicity, omitted to write explicitly
(unless when needed) the energy dependence of the operators.
The corresponding lesser/greater Green’s functions are defined
as

g
≶
0 = gr

0(�≶
L + �

≶
R )ga

0 , (16)

where ga
0 is the advanced Green’s function obtained from the

Hermitian conjugate of its retarded counterpart (ga = gr†) and
�≶ is the lesser/greater self-energy matrix

�<
L/R = +i�L/RfL/R , (17)

�>
L/R = −i�L/R(1 − fL/R), (18)

fL/R being the Fermi-Dirac distribution function of the left and
right reservoirs, respectively, and �L/R the broadening matrix
calculated according to the following relation [1]

�L/R = i[�>
L/R − �<

L/R] = i[�r
L/R − �a

L/R]. (19)

From the lesser/greater ballistic Green’s function matrix g
≶
0

one can calculate the ballistic particle density around the site
j (e for electrons, h for holes)

ρ
(j )
0, e/(h) = − i

V

∫
dE

2π
T r (j )

α [g</(>)
0 (E)], (20)

where V is the volume of the cell centered on the site and the
trace operator T r

(j )
α is taken over all basis states α belonging

to site (j ). The local ballistic electronic current between two
planes p and p + 1 is given by

Ip,p+1
0 = e

�

∫
dE

2π
T r[βp,p+1g

<
0; p+1,p − βp+1,pg<

0; p,p+1],

(21)

valid for a tight-binding model (or discretized Hamiltonian)
with nearest-neighbors interactions β, where � is the reduced
Planck constant, and e is the electronic charge. The trace T r

is now over all basis states within each plane.
We now introduce the electron-phonon scattering by calcu-

lating the higher order Born series. The electron mass being
much smaller compared to the ion mass [35], the phonon
bath is assumed to be in thermal equilibrium. Therefore,
the self-energy of interaction with optical phonons can be

expressed as

�≶
op(E) = Mop[Nop g

≶
0 (E ∓ �ω)

+(Nop + 1)g≶
0 (E ± �ω)], (22)

where Mop(unit in eV 2) describes the strength of the optical-
phonon interaction and Nop = 1/(e�ω/kBT − 1) is the phonon
occupation number at the optical phonon energy �ω. Interac-
tions with acoustic phonons are assumed to generate elastic
processes (E ± �w ≈ E) and can be reduced to

�≶
ac (E) = Mac g

≶
0 (E), (23)

where Mac(unit in eV 2) is the intensity of the acoustic-phonon
interaction. We then define an interaction self energy

�
≶
int = Im[�≶

op + �≶
ac ]. (24)

We neglect the real part of the self energy as it is usually
assumed in quantum transport nanodevice modeling [36].
Moreover, due to computational limitations the self energies
are also taken as diagonal matrices; i.e., the electron-phonon
interaction is assumed to be local in space. Indeed, a large
number of the off-diagonal blocks of the Green’s function
must be computed if nonlocal self-energy interactions are
taken into account. Most of the numerical approaches to
obtain the Green’s functions, such as the widely used recursive
algorithm [15,37], are then not well adapted to produce
off-diagonal components. It would also be possible to develop
efficient algorithms for the LOA implementation, but this
is beyond the scope of the present paper, which aims at
comparing SCBA and LOA considering equivalent “numerical
context.”

Here, the self energies for the electron-phonon scattering
are treated differently in the SCBA and LOA cases. For
the SCBA, we inject these self energies Eqs. (22)–(24) into
Eqs. (15)–(16) and iteratively solve the following system

G
≶
N = Gr

N (�≶
L/R + �

≶
int[GN−1])Ga

N, (25)

Gr
N = [

EI − H − �r
L/R − �r

int[GN−1]
]−1

, (26)

�r
int = [�>

int − �<
int]

2
, (27)

where G
r/ a

0 = g
r/ a

0 and G
≶
0 = g

≶
0 . In the case of LOA,

the noninteracting Green’s function g
≶
0 can be used for the

calculation of the self energy in Eq. (22) as the first order
LOA. However, it should be replaced by the perturbation terms
�gN−1 for the higher order LOA (N � 1) such that

�
≶
op, N (E) = Mop[Nop �g

≶
N−1(E ∓ �ω)

+(Nop + 1)�g
≶
N−1(E ± �ω)], (28)

�
≶
ac, N (E) = Mac �g

≶
N−1(E), (29)

where �g
≶
0 = g

≶
0 is the perturbation term of the first-order

LOA. This process imparts physical interpretations on the LOA
meaning that first-order LOA exactly includes one electron-
phonon interaction processes, second-order LOA exactly two
electron-phonon interactions, and so on.
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Now that the noninteracting Green’s function and the
electron-phonon self-energies are defined, we return to the
generalized LOA Eq. (7). This equation shows how to compute
the retarded Green’s function of the LOA to any order.
However, to obtain the general formulation of the lesser/greater
Green’s function of the LOA at any order we need to apply
the Langreth theorem [7] to this equation. This theorem states
that

G≶ = gr
0

[
�r

intG
≶ + �

≶
intG

a + �
≶
L/RGa

]
. (30)

Noticing that gr
0�

≶
L/R = g

≶
0 (ga

0 )−1 and that (ga
0 )−1Ga = I +

�a
intG

a , we can rewrite

G≶ = g
≶
0 + gr

0

(
�r

intG
≶ + �

≶
intG

a
) + g

≶
0 �a

intG
a, (31)

so that the Born series is given by

�g
≶
N =

N−1∑
n=0

[
gr

0�
r
int, N−n�g≶

n

+ gr
0�

≶
int, N−n�ga

n + g
≶
0 �a

int, N−n�ga
n

]
, (32)

with

�ga
N = (

�gr
N

)†
,�gr

N = gr
0

N−1∑
n=0

�r
int,N−n�gr

n, (33)

and

�g
≶
N = g

≶
N − g

≶
N−1. (34)

Finally, once we get the lesser/greater LOA Green’s function,
we can calculate the particle density from Eq. (20)

ρ
(j )
N, e/ (h) = − i

V

∫
dE

2π
T r (j )

α [g</(>)
N (E)], (35)

while we calculate the local current between two planes p and
p + 1 from

Ip,p+1
N = e

�

∫
dE

2π
T r[βp,p+1g

<
N ; p+1,p−βp+1,pg<

N ; p,p+1], (36)

using the same notation as for Eq. (21).

B. Matrix form of the Padé approximants

When considering higher order of currents and carrier
densities, the Padé approximants in Eq. (12) can be rapidly
difficult to evaluate. We therefore refer in the following to the
matrix form of the Padé approximants [38].

We first turn our attention to Eq. (11). By substituting the
Taylor series into this expression, we obtain the following
equation

l+m∑
k=0

fkz
k = f0 + f1z + f2z

2 + · · · + fl+mzl+m

= l0 + l1z + l2z
2 + · · · + llz

l

1 + m1z + m2z2 + · · · + mmzm
. (37)

We can then rearrange it and match the same order coefficients

f0 + (f0m1 + f1)z + (f0m2 + f1m1 + f2)z2 + · · ·
= l0 + l1z + l2z

2 + · · · , (38)

so that a system of l + m + 1 linear homogeneous equations
is obtained

l0 = f0,

l1 − f0m1 = f1,

l2 − f0m2 − f1m1 = f2,

...

ll − f0ml − f1ml−1 − · · · − fl−1m1 = fl, (39)

−fl−m+1mm − fl−m+2mm−1 − · · · − flm1 = fl+1,

−fl−m+2mm − fl−m+3mm−1 − · · · − fl+1m1 = fl+2,

...

−flmm − fl+1mm−1 − · · · − fl+m−1m1 = fl+m.

In terms of the unknown coefficients l0, . . . ,ll and m1, . . . ,mm,
these linear equations can be transformed in a matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 −f0 0 · · · 0
...

. . .
...

...
. . .

...
0 0 · · · 1 −fl−1 −fl−2 · · · 0
0 0 · · · 0 −fl −fl−1 · · · −fl−m+1

0 0 · · · 0 −fl+1 −fl · · · −fl−m+2

...
. . .

...
...

. . .
...

0 0 · · · 0 −fl+m−1 −fl+m−2 · · · −fl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l0

l1
...
ll

m1

m2

...
mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

...
fl

fl+1

fl+2

...
fl+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (40)

where we can see that it represents a Ax = b linear matrix equation. By solving this equation we can easily determine the
coefficients l0, . . . ,ll and m1, . . . ,mm for the function Fl/m(z) = l0+l1z+l2z

2+···+ll z
l

1+m1z+m2z2+···+mmzm . This approach will be used in the rest of
the paper.
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FIG. 1. Band structures in E − kx diagram described by a two-band k · p Hamiltonian: (a) two bands without coupling (TBWOC) and
(b) two bands with coupling (TBWC). The chemical potentials μL/R in the left and right reservoirs are set 0.1 eV above the bottom of the
lowest subband.

FIG. 2. Top panel: the current-voltage characteristics in the presence of optical phonon scattering (Mop = 5 × 10−4 eV2): (a) for TBWOC,
and (b) for TBWC in the ballistic regime, the SCBA and the five first lowest order approximations. Bottom panel: the corresponding currents
spectra Jw at the edge of the right active region with VRL = 0.2 V: (c) for TBWOC, and (d) for TBWC in the ballistic regime, the SCBA and
the five first lowest order approximations. The dotted circle in Fig. 2(b) refers to the current inflection induced by the negative curvature of the
considered band structure.
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FIG. 3. Top panel: the current-voltage characteristics in the presence of optical phonon scattering (Mop = 1 × 10−3 eV2): (a) for TBWOC,
and (b) for TBWC in the ballistic regime, the SCBA and the five first lowest order approximations. Bottom panel: the current-voltage
characteristics reconstructed based on Padé approximants: (c) for TBWOC, and (d) for TBWC. The ballistic and SCBA results are also
reported.

IV. RESULTS AND DISCUSSIONS

To validate our approach, we consider a one-dimensional
(1D) linear atomic chain connected to left and right reservoirs
at room temperature, as widely encountered in nanoelectronic
devices. We consider a two-band k · p Hamiltonian to assess
the capability of such a method to treat the impact of multiband
transport properties, and we compute both the current and the
electron density in the presence of electron-phonon scattering.

The active region of the linear chain is 16 nm long and
consists of 32 atomic sites along the x direction (i.e., the lattice
constant between atoms is 5 Å). In order to evaluate the impact
of multiband transport, we consider the following two-band
k · p Hamiltonian Hk·p defined as

Hk·p =
⎡
⎣E2 + �

2k2
x

2me2

√
Ep�2

2m0
kx√

Ep�2

2m0
kx E1 + �

2k2
x

2me1

⎤
⎦, (41)

where E1 and E2 are the energies of the two bands at
kx = 0, me1 and me2 represent the corresponding effective
masses, and Ep is the strength of the coupling between the
two bands. By transforming kx → −i∂/∂x, we can discretize
this Hamiltonian in the real space. Two different parameter
sets are defined in Table I. In the first parametrization
the coupling term Ep is equal to zero and E1 = E2. The
two bands exactly overlap each other and can be treated

independently. Figure 1(a) shows the resulting band structure
defined as TBWOC for ‘two-band without coupling.” The
second parametrization, labeled TBWC for ‘two-band with
coupling,” assumes a strong coupling Ep. The two bands repel
each other and generate a negative curvature in the lowest
one [Fig. 1(b)]. It gives rise to a camel-like shape which is
a characteristic, for instance, of valence band structures in Si
nanowires [39].

Without any applied voltages on the reservoirs (VRL), the
linear chain is in equilibrium with the left and right chemical
potentials μL/R set 0.1 eV above the bottom of the lowest sub-
band (Fig. 1). A nonzero applied bias shifts the two chemical
potentials by �μ = μL − μR = eVRL making the active re-
gion out-of-equilibrium. For the sake of simplicity a linear po-
tential profile between the left and right reservoirs is assumed.

We first study the influence of optical phonon in-
teractions with a frequency �w = 60 meV and consider

TABLE I. Parameters for two-band k · p Hamiltonian used in this
paper.

TBWOC TBWC

me1/m0, me2/m0 0.9, 0.9 0.5, 1.0
E1, E2 (eV) 0, 0 0.0691, 0.1
Ep 0 0.5
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a weak electron-phonon coupling (Mop = 5 × 10−4 eV2).
Figures 2(a) and 2(b) compare the currents obtained in the
ballistic regime, the SCBA, and for the five first LOA for
the two TBWOC and TBWC Hamiltonians, respectively. At
VRL = 0.2 V, the SCBA results show 11% current degradation
for TBWOC and 4% current degradation for TBWC with
respect to the ballistic currents. We clearly see that the Born
series of the current rapidly converges to usual SCBA for both
TBWOC and TBWC Hamiltonians. In addition, Figure 2(b)
shows that the LOA well captures the multiband properties
since the current inflection near VRL = 0.07 V induced by
the negative curvature of the band structure [Fig. 1(b)] was
correctly described as in the SCBA.

The corresponding spectral currents at the right edge of the
active region are plotted at VRL = 0.2 V in Figs. 2(c) and 2(d)
for TBWOC and TBWC, respectively. The ballistic spectrum
depicts one peak for TBWOC [Fig. 2(c)] and two peaks for
TBWC [Fig. 2(d)] corresponding to the band structure features
shown in Fig. 1. The SCBA spectrum shows the impact of
optical emission and absorption of phonons on the energy
distribution of electrons for the two types of Hamiltonians. We
also note that at a given order N the LOA includes all the N

phonon scattering processes. For such a weak electron-phonon
coupling, the converging behavior of the series for both types
of band structure confirms the relevancy of the LOA, which
avoids multiple SCBA iterations without losing accuracy in
the current calculation.

The situation differs when considering a larger electron-
phonon coupling (Mop = 1 × 10−3 eV2). As shown by the
current characteristics in Fig. 3, the reductions between the
ballistic and the SCBA are 18% for TBWOC and 7% for
TBWC at VRL = 0.2 V. Figures 3(a) and 3(b) also show that
the series of the LOA currents are now diverging with respect
to SCBA values. However, the LOA currents of this diverging
Born series are still conserved (Fig. 4). We then apply the Padé
approximants to analytically continue these divergent series.
Figures 3(c) and 3(d) show that most of the Padé approximants
successfully reproduce the results of SCBA. We also note that

FIG. 4. Comparison of the five first LOA currents for TBWC
with the ballistic and the SCBA currents along the active region
with VRL = 0.2 V and Mop = 1 × 10−3 eV2. This confirms that LOA
currents do not violate the current conservation law when considering
interactions with optical phonons.

FIG. 5. Current spectra Jw of TBWC at the edge of the right active
region with VRL = 0.2 V for Mop = 1 × 10−3 eV2: (a) in the ballistic
regime, the SCBA, and the five first lowest order approximations.
Insets: the currents spectra for the ballistic regime and SCBA;
(b) corresponding current spectra after applying Padé 3/4 to each
energy value.

the Padé 1/1 in Fig. 3(d) exhibits strong singularities. These
singularities result from the cancellation of the denominator
of the rational expression of the Padé approximants. This
behavior occurs when �I1 of Eq. (14) is equal to �I2. To better
understand the divergence of the LOA series, Fig. 5 shows the
current spectra at the edge of the right active region at VRL =
0.2 V. In Fig. 5(a) we clearly see that the odd and even orders
of the LOA oscillate alternatively in opposite directions, while
going away from the SCBA. However, Fig. 5(b) demonstrates
that it is also possible to analytically continue the LOA
spectra at each energy and that Padé 3/4 was able to faithfully
reproduces the SCBA current spectra.

We put forward our approach to check the valid-
ity for strong optical phonon scattering and then con-
sider an electron-phonon coupling (Mop = 3 × 10−3 eV2).
Figures 6(a) and 6(b) show that current degradations induced
by the strong scattering are 34% for TBWOC and 18% for
TBWC at VRL = 0.2 V. All LOA series strongly diverge (not

205411-8



EFFICIENT QUANTUM MODELING OF INELASTIC . . . PHYSICAL REVIEW B 93, 205411 (2016)

FIG. 6. Current-voltage characteristics reconstructed based on
Padé approximants in the presence of optical phonon scattering
(Mop = 3 × 10−3 eV2): (a) for TBWOC, and (b) for TBWC with
comparison to the ballistic and SCBA results.

shown), and we should refer to higher order Padé approximants
to successfully reconstruct these divergent series, e.g., Padé 2/3
(requiring the fifth current order) for TBWOC and Padé 1/2
(requiring the third current order) for TBWC.

We now focus on the impact of interactions with acoustic
phonons which are defined in the present work within the
elastic limit. Study of acoustic phonon scattering is an
important aspect since it has been found to accelerate the
divergence of the Born series in nanowire transistor [30].
We first consider an electron-phonon coupling Mac = 1 ×
10−3 eV2. It corresponds to a scattering which generates a
24% current degradation for TBWC at VRL = 0.2 V as
shown in Fig. 7(a). Figure 7(a) also shows that the LOA
series diverges. The higher LOA currents (>3rd LOA) are
even outside the visible range in the scale. However, the
LOA currents at each order in interactions are still perfectly
conserved (Fig. 8) and application of the Padé approximants
on the LOA currents is once again capable of providing
SCBA results [Fig. 7(b)]. Padé approximants are then a
relevant root to reconstruct the divergent series even for a

FIG. 7. Current-voltage characteristics of TBWC in the presence
of acoustic phonon scattering with Mac = 1 × 10−3 eV2: (a) in
the ballistic regime, the SCBA and the five first lowest order
approximation, and (b) in the ballistic regime, the SCBA, and the
Padé approximants. For a clear view of curves, 4th and 5th LOA are
not reported in Fig. 7(a).

high rate of divergence. Current spectra in Fig. 9 clearly
illustrate the reason of the faster divergence of the LOA
with the acoustic phonon scattering than with their optical
counterparts. Indeed, optical phonon scattering relaxes or
excites electrons to lower or higher energies according to
the number of scattering processes involved. On the other
hand, acoustic phonon scattering, assumed to be elastic, does
not modify the electron energy. Therefore, electrons whose
energy is near the edge of the subband have a divergent
density of states due to the Van Hove singularities (compare
Fig. 5 with Fig. 9) that drastically increase the electron-phonon
interactions.

When increasing the electron-phonon coupling to Mac =
5 × 10−3 eV2, we see that acoustic phonon scattering in-
duces a strong current degradation which is almost 60%
for TBWC at VRL = 0.2 V as shown in Fig. 10(a). For
such a strong scattering, all the LOA currents are highly
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FIG. 8. Comparison of five first LOA currents for TBWC with
ballistic and SCBA currents along the active region with VRL = 0.2
V for Mac = 1 × 10−3 eV2. This confirms that LOA currents do not
violate the current conservation law when considering interactions
with acoustic phonons.

diverging from the SCBA values. However, applying the
Padé approximants to these diverging currents can still suc-
cessfully reproduce SCBA results [Fig. 10(b)]. In particular,
we see that Padé 0/1, 1/2, and 2/3 (i.e., N/N + 1) which
requires current calculations at the first, third, and fifth
orders are more efficient to rapidly converge toward the
SCBA results. This behavior can be physically intuited by
noting that the Green’s function dependence in the limit of
very large electron-phonon coupling (i.e., Mac(op) → +∞)
is proportional to (Mac(oc))−1/2. In this limit, Padé l/m will
behave as (Mac(op))(l−m). Therefore, one could expect the best
approximant to be between Padé N/N and N/N + 1.

Calculation of carrier density is another important aspect
since it directly determines the potential profile inside the

FIG. 9. Current spectra Jw of TBWC at the edge of right active
region in the presence of acoustic phonon scattering with VRL = 0.2
V for Mac = 1 × 10−3 eV2 in the ballistic regime, the SCBA, and the
five first lowest order approximations.

FIG. 10. Current-voltage characteristics of TBWC in the pres-
ence of acoustic phonon scattering with Mac = 5 × 10−3 eV2:
(a) in the ballistic regime, the SCBA, and the five first lowest order
approximations, and (b) in the ballistic regime, the SCBA, and the
Padé approximants. For a clear view of curves, 2nd ∼ 5th LOA are
not reported in Fig. 10(a).

device within the Hartree approximation. We then examine
the validity of the analytically continuated LOA method to
calculate the carrier densities in the linear chain. For the
sake of clarity we do not solve the Poisson equation to get
a self-consistent potential. The system is first considered at
equilibrium, i.e., VRL = 0 V. Figure 11 shows the carrier
density profiles along the linear chain with the TBWOC and
TBWC Hamiltonians for a weak optical phonon coupling
(Mop = 1 × 10−4 eV2). As expected for such a bias, the
carrier density profile in the ballistic regime is constant. On
the other hand, those obtained by the SCBA and the LOA
show symmetric variations with respect to the middle of the
chain. This is due to the fact that the self energy of the
electron-phonon interactions is not included in the Green’s
functions of the reservoirs, thus generating small reflections
at the contacts that are only visible at VRL = 0 V. We also
observe that the carrier density of the LOA series obtained
with TBWC converges more slowly than the one for TBWOC
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FIG. 11. 1D carrier density profiles along the active region at equilibrium (VRL = 0 V) with Mop = 1 × 10−4 eV2: (a) for TBWOC, and
(b) for TBWC in the ballistic regime, the SCBA, and the five first lowest order approximations.

due to the impact of band coupling. These results confirm that
the multiband character of the transport has an important effect
on the convergence behavior of the series by increasing the
number and the intensity of the scattering processes. However,
both LOA series converge towards the SCBA result for this
weak optical phonon scattering.

When considering a five times larger coupling, i.e., Mop =
5 × 10−4 eV2, the carrier density series for TBWC clearly
diverges as it goes to higher LOA [Fig. 12(a)]. Here, we note
that Padé approximant is again capable to analytically continue
the diverging series. In that case, we need to use higher order
Padé approximants (� Padé 3/4) to obtain the same results as
with SCBA. However, except for the Padé 0/2 and 2/3, the
other order Padé approximants also show good results within
∼1% error to the SCBA result [Fig. 12(b)].

We now consider a nonzero applied bias VRL = 0.2 V.
Figure 13 shows the carrier densities obtained for both optical
and acoustic scattering with a strong coupling Mop = Mac =
1 × 10−3 eV2. The applied bias now generates asymmetric
carrier density profiles since the Poisson equation is not

solved to ensure the electroneutrality of the access regions.
We first note that the LOA series diverge for both types of
phonons [Figs. 13(a) and 13(c)]. However, like for the current
calculations the divergence is faster for acoustic phonons
than for optical ones. For the optical phonon scattering
[Fig. 13(a)], active regions near the right reservoir where
the forward scattering dominates are diverging slower than
the other regions. On the other hand, in the case of the
acoustic phonon scattering [Fig. 13(c)], forward scattering
regions (right part) diverge much faster than back scattering
regions (left part). These different behaviors of divergence
are due to the different elastic and inelastic nature of the
acoustic and optical phonon scattering, respectively. Padé
approximants (� Padé 2/3) applied to the divergent series
of the carrier density still reproduce the SCBA results for
both types of scattering [Figs. 13(b) and 13(d)]. Moreover, as
for the analytical continuation of the current spectra, Padé
approximant is still capable of faithfully reproducing the
SCBA spectral charge carrier density (not shown). Although
the calculation of the carrier density requires higher order Padé

FIG. 12. 1D carrier density profiles of TBWC along the active region at equilibrium (VRL = 0 V) with Mop = 5 × 10−4 eV2: (a) in the
ballistic regime, the SCBA, and the seven first lowest order approximations, and (b) where LOA series are replaced by the Padé approximants.
6th and 7th LOA are not visible in Fig. 12(a).

205411-11



LEE, LANNOO, CAVASSILAS, LUISIER, AND BESCOND PHYSICAL REVIEW B 93, 205411 (2016)

FIG. 13. Top panel: 1D carrier density profiles of TBWC with VRL = 0.2 V considering optical phonon scattering with Mop = 1 × 10−3 eV2:
(a) in the ballistic regime, the SCBA, and the five first lowest order approximations, and (b) in the ballistic regime, the SCBA, and the
corresponding Padé approximants. Bottom panel: 1D carrier density profile of TBWC with VRL = 0.2 V considering acoustic phonon
scattering with Mac = 1 × 10−3 eV2: (c) in the ballistic regime, the SCBA, and the seven first lowest order approximations, and (d) in the
ballistic regime, the SCBA, and the corresponding Padé approximants.

approximants, the analytically continuated LOA approach still
shows a clear advantage to describe transport properties in
quantum simulations without iterative scheme.

Finally, in order to illustrate the numerical efficiency of
our approach we compare computational times at VRL =
0.07 V and 0.2 V for the SCBA with those for the five first
LOA (see Table II) in the case of strong optical and acoustic
phonon scattering for TBWC. At VRL = 0.07 V where the
SCBA requires more than 40 iterations due to complex band
structure features, all LOA calculations outperform the SCBA

ones. We also see that computational times of the LOA do
not significantly vary with bias, while the number of SCBA
iterations depends on it. In total runtime to SCBA, it is shown
that the simulation for the optical phonon scattering takes more
computational times than that for the acoustic phonon one. This
is due to the fact that even though the SCBA for the optical
phonon scattering at high bias shows a faster convergence than
for the acoustic one, at low bias (VRL � 0.05 V) it does not
converge after 200 iterations with < 2% error. In addition,
we see that calculating 1st LOA coupled with the Padé 0/1 is

TABLE II. Comparison of computational times for TBWC at VRL = 0.07 V and 0.2 V for the SCBA with those for five first lowest order
approximations in the presence of strong optical and acoustic phonon scattering with Mop = Mac = 5 × 10−3 eV2. Total computational times
for all bias points are also compared.

SCBA 1st LOA 2nd LOA 3rd LOA 4th LOA 5th LOA

Runtime (s) Optical 744 17 39 70 111 162
at VRL = 0.07 V Acoustic 738 16 33 59 91 132

Runtime (s) Optical 191 17 39 69 109 158
at VRL = 0.2 V Acoustic 535 15 33 59 91 132

Total runtime (s) Optical 13934 357 819 1470 2331 3402
Acoustic 12166 336 693 1240 1911 2774
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40 times faster than the SCBA. Calculation of 5th LOA with
Padé 2/3 is still efficient with respect to the SCBA. We then
expect that for devices where strong scattering processes are
dominant, our approach is much more powerful. Very recently
Mera et al. have reported in Ref. [40] an approach based
on Gauss hypergeometric resummation to model the Stark
effect in the hydrogen atom. Even more recently [41], they
applied this technique to the current calculation in presence
of optical phonon scattering in nanostructures. They consider
an opposite transport regime as in the present work, i.e.,
quasilocalized states weakly coupled to electron reservoirs.
In this particular regime, the authors have shown that a
fourth order hypergeometric approach was able to outperform
Padé approximants 1/1 and 2/2. It then represents a relevant
technique to treat inelastic scattering in nanodevice quantum
simulations. Further investigations should be done along that
direction for other general transport regimes.

V. CONCLUSIONS

In this paper we presented a numerically efficient approach,
coupling the Born series of a given observable with the
Padé approximant technique, to treat inelastic scattering in
nanostructures. The approach has been applied to the treatment
of electron-phonon interactions and has been systematically
compared to the usual, time consuming, self-consistent Born
approximation. As a fair illustration of systems encountered
in nanoelectronics, we considered a linear chain in the
presence of both acoustic and optical phonons. Two-band k · p
Hamiltonians have been implemented to analyze the capability
of the approach to capture multiband scattering. Our results
first show that the method is efficient to calculate the current
values. Indeed, the Padé approximants constructed with the
fifth order terms in interactions are capable of providing the

SCBA values for a large variety of coupling intensities and
biases. The approach has been also successfully applied to the
calculation of the carrier density, for which it has been found
that the convergence is more difficult to achieve, requiring
calculations of higher orders of the electron density Born
series. The presented technique remains a relevant alternative
to avoid the iterative scheme of the SCBA. Its main advantage
is that it can be easily generalized systematically to any order
of the interaction and any Padé table. It can then be rapidly
implemented in any SCBA quantum transport code. Its main
drawback is that second, third, and higher order perturbation
terms require an important number of matrix operations and
a large amount of memory storage. Their implementation in
three-dimensional (3-D) atomistic quantum transport codes to
model realistic nanostructures is still numerically challenging
and difficult to overcome. Therefore, the development of
efficient algorithm equivalent to the recursive one in SCBA
is a must to promote the applications of the Padé approximant
technique to 2D and 3D nanostructures. However, our results
showed that N/N+1 Padé approximants are more reliable in
reconstructing the divergent current and carrier density series
in the considered systems. Especially, the straightforward
0/1 Padé approximant, easily calculated from the first SCBA
iteration [30], is still be of relative interest in the context of
multidimensional structures.
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