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Resonant electronic Raman scattering: A BCS-like system
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In this paper we investigate the resonant intersubband Raman scattering of two-dimensional electron systems
in GaAs-AlGaAs single quantum wells. Self-consistent calculations of the polarized and depolarized Raman
cross sections show that the appearance of excitations at the unrenormalized single-particle energy are related
to three factors: the extreme resonance regime, the existence of degeneracy in intersubband excitations of the
electron gas, and, finally, degeneracy in the interactions between pairs of excitations. It is demonstrated that the
physics that governs the problem is similar to the one that gives rise to the formation of the superconducting state
in the BCS theory of normal metals. Comparison between experiment and theory shows an excellent agreement.
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I. INTRODUCTION

The study of quantum electron liquids in structured semi-
conductor systems presents a wealth of phenomena as a result
of the interplay between size quantization and fundamental
electron interactions. Prominent examples are as follows:
(a) the Fermi edge singularity near the absorption limit
of modulation-doped quantum wells [1]; (b) the fractional
quantum Hall effect where strong correlations between two-
dimensional electrons give rise to fractional charge particles
[2]; and (c) the existence of the quantum spin Hall effect
where a state of matter with different topological properties
of conventional insulators is obtained in quantum wells [3].
Even the nature of the electron system may be a controversial
issue, as in the case of intrasubband Raman spectra of doped
quantum wires. Some authors claim that their nature reflects a
Luttinger liquid model [4] and others a Fermi liquid [5].

The effects of the electronic interactions are conveniently
investigated by means of inelastic light scattering or Raman
scattering. Its selection rules on the incoming and outgoing
light polarizations allows one to study the intersubband
charge- and spin-density excitation mechanisms (CDE and
SDE) [6]. The first, the polarized case, gives information
of the collective charge-density excitations (CDEs) resulting
from direct Coulombian as well as exchange-correlation
interactions. In the latter, the depolarized case, only collective
spin-density excitations (SDEs) due to exchange-correlation
effects are present. Such a picture breaks down when the
incoming or outgoing laser light energy matches an optical
gap of the host semiconductor material. The electron gas,
allied to the aforementioned collective excitations, presents
also anomalous excitations whose energies turn out to be
close to the bare electronic transitions. By this means, such
excitations are called single-particle excitations (SPEs). They
were first observed by Pinckzuk et al. [7] in three-dimensional
(3D) n-doped GaAs with incident photon energies near
the split-off edge of GaAs and subsequently in structured
doped semiconductors ranging over from 2D to 1D, including
inter- or intrasubband processes [8–17]. Experimentally, it is
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consensual that the extreme resonance regime is a necessary
condition for the appearance of SPEs. Such an interpretation
was confirmed theoretically by Das Sarma and Wang [12] in
2D and 1D systems by means of a resonant random-phase
approximation. Further, Anjos, and Ioriatti [13], and Arantes
and Anjos [14] have shown that SPEs are in fact not renormal-
ized collective excitations. Honoring the International Year
of Light (2015), we would like to revisit the highly complex
theme of electronic Raman scattering which has been a source
of discussions for almost 40 years [18].

The goal of this paper is to show in a clear and transparent
way the physical situation of the existence of collective and
single-particle excitations which, we believe, has not been
completely understood, aggregating substantial information
about this phenomenon. In order to accomplish this, we
show that electronic Raman scattering belongs to the same
class of problems such as a set of forced, coupled, and
damped harmonic oscillators or BCS superconductors. Be-
sides, we present the result that the intersubband SPEs are
actually coherent collective excitations in electron systems.
Our findings show that their origins rely on three conditions:
first, that the laser energies should be in resonance with
interband transitions (i.e., transitions involving the valence
band and the conduction band states through the optical
gap in question); second, that in the conduction band a set
of approximately degenerate intersubband excitations exists;
and, finally, that the interactions between pairs of excitations
(i.e., Coulomb and/or exchange-correlation effects) should be
degenerated. With the three conditions satisfied, we show that
SPEs correspond to unrenormalized collective excitations. The
comparison of theoretical and experimental data performed for
both polarization geometries results in excellent agreement.

The experimental sample consists of a 25 nm wide, one-
sided modulation-doped GaAs-Al0.33Ga0.67As quantum well
grown by molecular beam epitaxy. It has a 40 nm AlGaAs:Si
doped barrier region that is separated by a 20 nm AlGaAs
spacer layer from the quantum well. Our self-consistent
calculations indicate that a doping layer with a total electronic
density of 8.81 × 1011 cm−2 corresponds to a quantum well
with one occupied subband with an electron density of 7.27 ×
1011 cm−2. The Raman spectra were obtained at 12 K using
a Ti:sapphire laser and a dye laser with DCM special. These
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RODRIGUES, ARANTES, SCHÜLLER, BELL, AND ANJOS PHYSICAL REVIEW B 93, 205409 (2016)

EF

21

collective 
excitation

single-particle 
excitation

2

1
3

(a) (b)

(c)

i

f

nћω

Extreme resonance 
regime

Near resonance 
regime

(d)

α

β

α

β

h

EF

’

i

f

FIG. 1. Illustrations of (a) an electron gas second-order inelastic
light scattering mechanism in quantum wells which involves two
interband optical transitions and (b) a third-order inelastic light
scattering mechanism which involves interband optical transitions
(first and third step) and intersubband transitions induced by Coulomb
interactions between the electron-hole pairs (or excitons) and the
Fermi sea (second step). (c) Resultant excitation in the near resonance
regime and (d) in the extreme resonance regime.

correspond to situations where the incoming laser energy is
resonant with electronic transitions through the fundamental
gap of the GaAs as well as resonant with transitions involving
the GaAs split-off gap.

II. SECOND- AND THIRD-ORDER INELASTIC LIGHT
SCATTERING: A COMPREHENSIVE APPROACH

The inelastic light scattering in electronic structures as
understood up to now can be described via second- or
third-order perturbation theory. The diagrams that address such
processes may involve intrasubband [15] or intersubband tran-
sitions [17]. In this article, only cases involving intersubband
transitions will be considered and, from our point of view,
described as in Fig. 1.

In the first step in the second-order process [Fig. 1(a)], n

photons promote N electrons to empty states in the conduction
band. Holes are left in the valence band. In the second step, N

electrons from the Fermi sea recombine with the holes in the
valence band emitting radiation. In the third-order process,
the first and third steps are analogous to the second-order one.
Nevertheless, there is a second step in which a hole or electron
is scattered into valence or conduction subbands, respectively.
This occurs due to Coulombian coupling of electron-hole pairs
or excitons with the Fermi sea via longitudinal charge-density
fluctuations. In both processes, the net effect in the near
resonance regime is the production of collective excitations
in the conduction band, as shown Fig. 1(c). However, in
the extreme resonance regime, besides the renormalized

excitations, there are also unrenormalized ones, which are
called single-particle excitations [Fig. 1(d)].

It is important to note that in this article we are considering
a backscattering geometry situation in which the incident and
scattered radiation are in the same direction. This means that
intrasubband excitations will not be taken into account.

One of the claims to be supported by us is that, independent
of the problem being of second order or third order, the physics
involved in the process is equivalent. These statements will be
put forward as premises to be proved.

As is well known, the inelastic light cross section is given
by [19,20]

∂2σ

∂�∂ω
∼ ωS

ωL

G(ω), (1)

where

G(ω) =
∑
F

|MFI |2δ(EF − EI − �ω) (2)

is the dynamic structure factor, and MFI is the matrix element
of the effective scattering operator of the light that describes
the transition from the many-body state |I 〉 with energy EI to
the final state |F 〉 with energy EF . �ωL and �ωS correspond
to the incident (laser) and scattered photon energies. The
scattering operator may be written in the Heisenberg picture
as

M(0) =
∑
if

γf ic
†
f ci . (3)

It represents a charge-density operator with a resonant factor.
The c

†
f (ci) are the creation (destruction) operators of the final

(initial) one-electron conduction band states. Depending on
the type of process, if it is second [19] (2) or third order [20]
(3), the resonant factor is written as

γ
(2)
f i = 1

m

∑
v

〈f |p · AL|v〉〈v|p · AS |i〉
Ef − Ev − �ωL

(4)

or

γ
(3)
f i =

∑
vv′

〈f |p · AL|v′〉〈v′|Û |v〉〈v|p · AS |i〉
(Ef − Ev′ − �ωL)(Ei − Ev − �ωS)

, (5)

where |v〉 and |v′〉 represent one-electron intermediate states,
Ei,f,v,v′ are state energies, AL and AS are vector potentials of
incident (laser) and scattered light, p is the momentum of the
electron, and Û is the Coulomb interaction potential.

In what follows, we will show that, regardless of the process
order, the theoretical Raman line will be in entire accordance
with the experimental one performed in the fundamental gap
(third-order process) or split-off gap (second-order process)
of the quantum well studied. In fact, the resonant factor will
be important in Raman efficiency measurements [15,17]. In
this way, we will approximate Eq. (5) by Eq. (4) considering
Û constant and performing the experiment resonant with
the incoming laser. Our interest is to strengthen the theory
[10,13,14,21], which we believe explains the nature of SPE.

Model from a generalized self-consistent field theory

An important and very useful result to inelastic light scat-
tering is the application of the dissipation-fluctuation theorem
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[6]. Cross sections may be expressed in terms of a Fourier
transform of correlation functions. It states that the dynamic
structure factor G(ω) is proportional to the imaginary part of a
response function. By means of the integral representation of
Dirac delta function, we can express Eq. (2) as

G(ω) = 1

2π

∫
dt eiωt 〈I |M†(t)M(0)|I 〉, (6)

where M†(t) = ei H
�

tM†(0)e−i H
�

t is the time-dependent
operator in the Heisenberg picture. Therefore,

G(ω) ∝ − �

π
Im〈	(t)|M†(0)|	(t)〉ω, (7)

where

|	(t)〉 = e−i
E0
�

t |0〉 +
∑

n

a(1)
n (t)e−i En

�
t |n〉,

a(1)
n (t) = 1

i�

∫ t

−∞
dt ′〈n|M(t ′)|0〉ei(ωn−ω0)t ′ .

In Eq. (7), 〈M†(0)〉ω is the Fourier amplitude at −ω of
the expectation value in the state |	(t)〉 for a time-dependent
perturbation M(0)e−iωt in the linear response regime [13] and
where limη→0

1
x+iη

= 1
x

− iπδ(x) was used.
The electronic Raman scattering is a two-photon process

described by the coupling between light and matter through
p · AL = êL · peikL·r and p · AS = êS · pei(−kS )·r, where êL(S)

is the incident (scattered) radiation polarizations and kL(S) is
the incident (scattered) light wave vector. The single-particle
states can be written within the effective mass approach
as |b〉 = eik‖·ρψ(b)(z)u(b)(r)/

√
A, where ψ(b)(z) are envelope

functions, u(b) Bloch functions in the Kane model, b refers to
the conduction (i,f ) or valence band (v), and A is the sample
area. From these considerations we rewrite Eq. (4) as

γ
(2)
βα = [

(êL · êS)δσα,σβ
+ i(êL × êS)〈σα|σ |σβ〉]

× P 2
cv

3m0

∑
h

〈β|eikL·r|h〉〈h|e−ikS ·r|α〉
Eg + εβ + εh − �ωL + iη

, (8)

where now, in Eq. (8), |α〉(|β〉,|h〉) = eik‖·ρψ(b)(z)/
√

A. The
spin states in the conduction band are labeled |σα〉, |σβ〉,
σ = (σx,σy,σz) is the Pauli spin matrix vector, Pcv are the
appropriate interband matrix elements, m0 is the bare electron
mass, Eg is an optical gap of GaAs, η is the gap damping,
and εβ(h) = �ωβ(h) + �

2k2
‖/2m∗

β(h) are single-particle energies
with k‖ representing 2D wave vectors. Note that Eq. (8)
provides the selection rules of the inelastic light scattering
by electron density fluctuations. The first term, if the incident
and scattered light polarizations are parallel, corresponds to
CDE. The second term will be different from zero if the two
polarizations are perpendicular to each other. It corresponds
to the SDE. From Eq. (8) the effective scattering operator is
given by

M(0) =
∑
αβ

γ
(2)
βα (c†β↑cα↑ ± c

†
β↓cα↓), (9)

γ
(2)
βα =

[
P 2

cv

]
3m0

∑
h

〈β|eikL·r|h〉〈h|e−ikS ·r|α〉
Eg + εβ + εh − �ωL + iη

, (10)

where the sign + (−) identifies the CDE (SDE) and ↑ (↓)
represents spin up (down) with the spin operations performed
in the σz representation. In this work, |kL| = |kS | = kz i.e., we
deal only with intersubband processes.

To calculate the response of a nonuniform electron gas
submitted to the action of an external potential, we use a
time-dependent local density approximation (TDLDA) [22–
24] based calculation. In the case where a spin symmetry
breakdown occurs, a time-dependent local spin-density ap-
proximation [25] (TDLSDA) should be used. This is the case
of a discontinuity in the electron density, as, for example, when
a second subband is populated in the quantum wells [26–29].

The basic idea of the self-consistent field theory approx-
imation is to assume that a many-body system responds to
a total effective field as a system of independent particles.
The external potential acts on the system and induces a
charge-density fluctuation as a response to the applied field.
This induced fluctuation produces an induced potential. In this
way, the total potential acting on the system is composed by
the external and the induced potential and is given by

δV tot = γ
(2)
βα + δV ind(r,t), (11)

where

δV ind(r,t) =
∫ [

e2

εl(ω)|r − r′| + Uxc(r)δ(r − r′)
]
δn(r′,t)dr′.

(12)

The first term in Eq. (12) corresponds to the direct Coulomb
interaction (the Hartree term) and the second term in-
cludes many-body exchange-correlation effects (Uxc). εl(ω) =
ε∞(ω2 − ω2

LO)/(ω2 − ω2
TO) is the lattice dielectric function

that contains the bulk GaAs frequencies of the longitudi-
nal (ωLO) and transversal (ωTO) optical phonons, dielec-
tric constant ε∞, and where the phonon lifetime is ne-
glected. The induced density fluctuation in the time-coordinate
representation is given by δn(r,t) = 〈ψ̂†(r,t)ψ̂(r,t)〉t =∑

αβ ψ∗
α (r)ψβ(r)〈c†α↑cβ↑ ± c

†
α↓cβ↓〉

t
, where ψ̂† and ψ̂ are field

operators. From Eqs. (11) and (12) and solving the Heisenberg
equation of motion for the expected values of the electron-hole
pairs [30], we have obtained

〈c†α↑cβ↑ ± c
†
α↓cβ↓〉ω = 4�ωβαnα[1 − nβ]

�2
(
ω2 − ω2

βα + iζβαω
)δV tot

βα , (13)

where

δV tot
βα = γ

(2)
βα +

∑
γ δ

4�ωδγ nγ [1 − nδ]Cβα,δγ

�2
(
ω2 − ω2

δγ + iζδγ ω
) δV tot

δγ . (14)

In Eq. (14), nγ (nδ) denotes the Fermi number of occupied
(unoccupied) conduction subband states, �ω = �(ωL − ωS) is
the energy transferred to the electron system by the light, �ωδγ

is the bare electronic transition, ζδγ is the damping of the
transition, and

Cβα,δγ = 2πe2

εl(ω)kzA

∫
dz

∫
dz′ϕβα(z)

× [e−kz|z−z′ | − Uxc(z)δ(z − z′)]ϕδγ (z). (15)

Equation (15) comprehends the two-dimensional Coulomb
interactions [9,31] between pairs of excitations (βα,δγ ) for
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the case of CDEs in the conduction subband. For the case of
SDEs, only the second term on the right-hand side of Eq. (15)
should be considered. Uxc(z) are functional derivatives for
CDEs or SDEs obtained from the uniform electron gas data
[9] and ϕβα = ψβ(z)ψα(z). Now, associating to each pair of
transitions the harmonic coordinate

xβα =
√

4�ωβαnα[1 − nβ]δV tot
βα

�2
(
ω2 − ω2

δγ + iζδγ ω
) , (16)

Eq. (14) can be rewritten as a matrix whose elements are given
by

�
2(ω2 + iζβαω)xβα =

∑
δγ

Uβα,δγ xδγ + Nβαγ
(2)
βα , (17)

where

Uβα,δγ = NβαCβα,δγ Nδγ + (�ωβα)2δβα,δγ (18)

and Nβα = √
4�ωβαnα[1 − nβ].

In previous work, Anjos and Ioriatti [13] have shown that
with an appropriate choice of the generalized coordinate it
is possible to separate the SPEs and collective contributions
in the inelastic light scattering cross section. SPEs will have
poles on the bare frequency transitions and the collective
excitations will have poles in the eigenfrequencies of the
coupled system. As a consequence, in the near resonance
condition, only excitations with a collective character will
be present. Only under extreme resonance conditions will
the SPE expression be appreciable. Owing to a canonical
transformation, Eq. (17) is an analog to the equation of motion
of a set of forced, damped, and coupled harmonic oscillators.
The laser acts as an external potential and can be identified as
an “external force.” The “laser force” is expressed by γ

(2)
βα . The

electron gas oscillates due to the periodic external potential.
Scattering by impurities provides a damping to the system
(ζβα). Each excitation interacts with all the others, implying
in a coupled system via the Coulomb interaction (Uβα,δγ ).
Thus, the electronic Raman scattering can be identified as
the problem of an infinite set of harmonic oscillators. In this
sense, xβα is the “displacement” of the oscillators. In fact,
this problem can be mapped with the Newton’s pendulum, as
shown in Fig. 2.

FIG. 2. Newton’s pendulum. Mechanical analog of the Raman
scattering in an extreme resonance regime of a 2D electron gas. The
gravitational potential energy corresponds to the laser pump. When
this energy is transferred to the system, two kinds of oscillations
appear: (i) N − 1 ones with small amplitudes—they are identified as
single-particle excitations; and (ii) one which receives most of the
energy and transferred momentum. The analog of this excitation is
the two-dimensional plasmon (collective excitation: CDE or SDE).

FIG. 3. (a) Experimental and (b) calculated polarized resonant
Raman spectra of collective (CDE) and single-particle (SPE)
excitations.

From Eqs. (15) and (18) one can see that the matrix U is
real and symmetric. Therefore, its eigenvectors constitute a
base which can be used to solve the equation of x via LU

decomposition and consequently find the cross sections.

III. DISCUSSION

In Fig. 3, we present the experimental and theoretical results
for the case of CDEs for an incident laser energy of 1.6 eV.
The first low-energy structure appears at the unrenormalized
transition energy from the first to the second subband, and
as a consequence, it is identified as SPE12. Then, there is a
sequence of very sharp peaks. With the exception of the one at
36.6 meV [Fig. 3(a)], which is the excitation of the LO phonon
of the undoped GaAs cap layer, the remaining spectral profiles
represent collective CDEs. Due to the weak coupling between
the excitations originating in different subbands, we coined
them with the label of the subbands that contribute mainly to
their formation. Moreover, the splitting of the CDEs due to the
coupling with the LO phonon are considered. In this way, the
structures around 30 and 40 meV are identified as CDE−

12 and
CDE+

12, respectively. An interesting structure is the sharp one
near the LO phonon. Our calculations identify it as the CDE−

13.
To show that this is so, Fig. 4 shows the collective spectra

where the dielectric function is taken as a constant or with
the fully phonon dependence considered. As the energy of
the collective mode is much higher than the energy of the
phonon, it couples badly with it, resulting in that the CDE−

13
has an energy slightly redshifted from the phonon energy. The
opposite occurs with the CDE+

13. From Fig. 4 one can see also
that the mode CDE12 couples strongly with the phonon as they
have comparable energies. We note that the CDE+

13 cannot be
observed in the experiment as it is obscured by the strong
luminescence signal. Nevertheless, this does not occur when
the laser pump matches the split-off gap (not shown).

Figure 5 displays the results of the SDE with the same
incident light energy as was given previously. In the range
of energies presented, there are two structures. The sharp
one is related to the collective excitation and is labeled as
SDE12. It is redshifted in comparison to the respective SPE
due to exchange-correlation effects. The comparison between
the experimental and theoretical differences in energy of the
two structures is worth noting. They differ by 0.68 meV.
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FIG. 4. Calculated polarized spectra with and without taking
into account the coupling of the CDE with the optical phonons.
The coupling is introduced via the frequency-dependent dielectric
function.

This shows that the time-dependent LDA parametrization
underestimates the value of the exchange-correlation effects,
which corroborates with the results obtained by Gammon et al.
[9]. This also helps us to understand the small discrepancies
in the energy position of the collective structures originating
from the first two subbands for the CDE. Concerning the
discrepancy of the energy of the SPE (1.3 meV) presented in
both mechanisms, it may rely on the fact that in our calculations
the effect of the laser in the electronic density was not taken
into account, i.e., the potential profile of the quantum well may
be modified as well as a band gap renormalization may occur.

Another way to understand physically why the solution of
the set of equations presented here gives rise to SPEs and CDEs
is the formal correspondence between the electronic Raman
scattering and the phenomenon leading to the formation of
the superconducting state in the BCS theory of normal metals
[32]. As stated by Cooper in his Nobel lecture [32]: “The fun-
damental qualitative difference between the superconducting
and normal ground state wave function is produced when the

FIG. 5. (a) Experimental and (b) calculated depolarized resonant
Raman spectra showing the spectral lines of the collective (SDE) and
single-particle (SPE) excitations for an incident laser energy of 1.6 eV.
The estimation of the exchange-correlation effects by the redshift of
the SPE is also shown.

FIG. 6. Correspondence between resonant Raman scattering and
the formation of the superconducting state in the BCS theory.
(a) Second-order inelastic light scattering mechanism involving the
split-off valence band (VB) and conduction band (CB) of GaAs. The
electronic transitions α → β (δ → γ ) are degenerate (E) and coupled
by a Coulomb interaction (Uβα,δγ ). The coupling is the same for any
two pairs of transitions. (b) Formation of the superconducting state
in the BCS theory where k (k′) represent states and ↑ (↓) spin states.
The electron-phonon interaction (U−k′k′,−kk) in the Fermi surface is
responsible for a degenerate coupling between the two electron pairs
(Copper pairs). (c) The schematic matrix common to both situations.
The diagonalization results in a single level separated from the others
with energy given by (N − 1)U (superconducting state ≡ CDE or
SDE) and (N − 1) levels with degenerate energy (normal states of
the metal ≡ SPE). From this analogy, SPEs are in reality collective
unrenormalized excitations.

large degeneracy of the single-particle electron levels in the
normal state is removed.” In normal metals, the Hamiltonian
matrix which results from an attractive two-body interaction
[see U in Figs. 6(b) and 6(c)] is as follows. The diagonal
elements are formed by degenerated Cooper pairs with energy
(E). The off-diagonal elements are constant and represent the
attractive interactions mediated by phonons. Diagonalizing
this matrix will result in a single level identified as the
superconductor state. The other N − 1 eigenvalues will be
degenerated and are identified as normal metal states. This
diagonalization represents a removal of the degeneracy. We
stress that the behavior presented is independent of the physical
phenomenon. Any matrix with the structure shown in Fig. 6(c)
will present N − 1 degenerate eigenvalues and one eigenvalue
different from the others. Such an analogy is shown in Fig. 6
considering the excitations involving the first two subbands.
In Fig. 6(a) the oscillator α → β represents one excitation
in the conduction band. The oscillators are coupled with
each other via Coulomb interactions (CDE or SDE). Dealing
with intersubband processes where the lateral momentum
transferred by the light is zero, we assure that all the transitions
along k‖ will be degenerated in energy and equally coupled [see
U in Figs. 6(a)–6(c)] by Eqs. (15) and (18) for any two pairs
of excitations involving the two subbands. Therefore, we have
a problem of N oscillators with degenerate diagonal terms (E)
and all off-diagonal elements equally coupled (U ), as shown
in Fig. 6(c). The same occurs with the Cooper pairs mediated
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by the phonon interaction at the Fermi surface of a metal in a
superconductor. They are separated by E = 2εF , where εF is
the Fermi energy. The BCS potential (U−k′k′,−kk) corresponds
to the SDE potential (Uβα,δγ ), i.e., attractive. For the CDE
potential the behavior is opposite, i.e., repulsive. Therefore,
for both cases, one has to diagonalize the matrix shown in
Fig. 6(c).

For an N × N matrix the resulting diagonalization will
furnish N states such that one of the states will have its
energy renormalized by the product (N − 1)U . This state cor-
responds to the coherent collective excitation of charge/spin,
or, following our analogy, corresponds to the superconducting
state. The remaining (N − 1) states are not renormalized.
They are the SPEs or the normal states of the metal. The
crucial point is that such excitations are revealed only when the
process is in a condition of extreme resonance, the condition
in which circumstances the SPEs will have a non-negligible
oscillator strength [13]. We remark that the renormalization
of the collective excitations are area independent. The matrix
U depends on the inverse of the planar area of the sample
as shown in Eq. (15). N = ∑

q 1 is clearly area dependent.
Therefore, as the collective excitations depend on the product
of N → ∞ and U , it results in a renormalization which is area
independent or, in other words, finite.

Now, we want to address a final comment. Al-
though the experiments shown were performed in the

fundamental gap (third-order processes), the same Raman
profiles are obtained when the laser pump occurs in the
split-off gap (second-order processes, not shown). This rein-
forces all analogies and discussions performed in the present
article.

IV. CONCLUSIONS

In summary, we have investigated the origins of the
intersubband elementary excitations in modulation-doped
quantum wells. It was shown that the physics that govern the
problem is similar to the one that gives rise to the formation
of the superconducting state in the BCS theory of normal
superconductors and the Newton’s pendulum. In particular,
there are three criteria that should be fulfilled in order to
experimentally observe SPE. The incident light should be
in extreme resonance with the interband transitions involved,
the set of intersubband excitations in the conduction band
should be approximately degenerate, as well as the coupling
between pairs of intersubband excitations. In such a case, it
is unambiguously demonstrated that the nature of the SPE
resides in unrenormalized collective excitations.
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