PHYSICAL REVIEW B 93, 205408 (2016)

Fluctuating-bias controlled electron transport in molecular junctions
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‘We consider the problem of transport through a multiterminal molecular junction in the presence of a stochastic
bias, which can also be used to describe transport through fluctuating molecular energy levels. To describe these
effects, we first make a simple extension of our previous work [Phys. Rev. B 91, 125433 (2015)] to show
that the problem of tunneling through noisy energy levels can be mapped onto the problem of a noisy driving
bias, which appears in the Kadanoff-Baym equations for this system in an analogous manner to the driving
term in the Langevin equation for a classical circuit. This formalism uses the nonequilibrium Green’s function
method to obtain analytically closed formulas for transport quantities within the wide-band limit approximation
for an arbitrary time-dependent bias and it is automatically partition free. We obtain exact closed formulas for
both the colored and white noise-averaged current at all times. In the long-time limit, these formulas possess
a Landauer-Biittiker—type structure which enables the extraction of an effective transmission coefficient for the
transport. Expanding the Fermi function into a series of simple poles, we find an exact formal relation between the
parameters which characterize the bias fluctuations and the poles of the Fermi function. This enables us to describe
the effect of the temperature and the strength of the fluctuations on the averaged current which we interpret as a
quantum analog to the classical fluctuation-dissipation theorem. We use these results to convincingly refute some
recent results on the multistability of the current through a fluctuating level, simultaneously verifying that our
formalism satisfies some well-known theorems on the asymptotic current. Finally, we present numerical results for
the current through a molecular chain which demonstrate a transition from nonlinear to linear /-V characteristics
as the strength of fluctuations is increased, as well as a stochastic resonance effect in the conductance of this

system.
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I. INTRODUCTION

In classical conductors, the effects of a fluctuating voltage
on the current characteristics have been well understood since
1928. In this landmark year for classical electronics, a linear
relationship was found to hold between the fluctuation strength
of the potential difference and both the electrical resistance
of a conductor and its temperature. This relationship was
demonstrated first in experimental work carried out by Johnson
[1], and then explained in a theoretical model proposed
by Nyquist [2]. The so-called Nyquist theorem has found
wide applications in classical thermoelectric systems, but
has an additional historical significance as one of the first
statements of the fluctuation-dissipation theorem [3]. The
(classical) fluctuation-dissipation theorem states that, in all
linear dissipative systems driven by a fluctuating generalized
force, the friction (or admittance) of the system is proportional
to the magnitude of the fluctuations in the force and to
the temperature [4-6]. Another example is provided by
the Brownian particle, whose friction coefficient is directly
proportional to the correlation function of the random force
and to the temperature [5]. The possibility of fluctuation-driven
transport of Brownian particles through spatially asymmetric
systems has stimulated a great deal of research during the past
two decades [7-12], and has been shown to enhance the signal
at certain resonant values of the parameters characterizing
the noise, in a phenomenon known as stochastic resonance
[13—17]. These studies involve the solution of a Langevin
equation for the particle mobility and include periodically
driven systems with various types of added stochasticity
[18-23]. The exciting possibility of stochastically enhanced
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quantum transport has been demonstrated in recent theoretical
studies which use a master equation approach to treat exciton
transport in photosynthetic systems [24,25]. These studies
have shown that a noisy environment can simultaneously
destroy quantum coherence whilst enhancing the system trans-
mission. This effect occurs when environmental perturbations
open up new channels for excitation transfer, and was verified
experimentally in related work on optical cavity networks [26].

Whereas the classical electronic response to a fluctuating
bias is well characterized, the analogous physics in nanoscale
electronic devices has only recently begun to be explored
[27-31]. A typical molecular junction is portrayed schemati-
cally in Fig. 1, consisting of a central molecular structure C
coupled to two leads L and R. The leads serve as reservoirs for
the electrons, which propagate to the C region and scatter on
the potential of the molecule. The extension to multiterminal
nanojunctions is trivial theoretically and has been realized in
several recent experiments [32,33].

In the vast majority of work done on molecular transport to
date, the conducting molecule is assumed to possess a static
conformation, and the accessible energies on the molecule are
contained within a time-independent Hamiltonian [34-37].
Initially, each lead is kept at temperature 7 and chemical
potential p, before a bias V,, is added to lead « at the switch-on
time #y. The most physically intuitive and popular approach
to the calculation of the nanoscale current response to the
bias switch-on is provided by the Landauer-Biittiker (LB)
formalism [38—41], which expresses the current in lead « of a
multilead system in terms of an energy-dependent transmission
probability 7,,(w) between leads y and « multiplying the
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kL (t > to) = exr + Vi (1)

ekr (t > to) = exr + VR (t)

FIG. 1. Schematic of a typical two-lead molecular junction
consisting of the left (L) and right (R) leads bridged by a molecular
system (C). In this schematic, C is a molecular wire composed of
N; =5 atomic sites with nearest-neighbor hopping.

difference in Fermi functions of the leads:

1
I = ;ij/dw[ﬂw—va W

—fw— Vy - M)]Tya(w)- (1)

This expression (1) suggests the interpretation of 7, as the
probability for an electron in lead y to be scattered into lead
«. This formula is valid at long times after the switch-on of a
constant bias, when the system has relaxed into an ideal steady
state [42]. The problem of static transport therefore reduces to
calculation of the T}, which can be done, e.g., using scattering
state solutions of the time-independent Schrodinger equation
[41]. For future reference, any description of a formula as
being of the LB type means that it has the same mathematical
structure as Eq. (1).

However, the assumption that the molecular energies and
external bias are fixed in time will not be true in real
systems, where the energies on the molecule are caused to
fluctuate rapidly, i.e., for molecules immersed in a solution
[30,43,44]. One of the first papers to acknowledge this fact
was that of German et al., in which effective transmission
probability functions were derived for electron tunneling
through a fluctuating single level [27]. In this paper, a negative
exponential two-time correlation function was used for the
random part of the site energy, so that the interplay between the
strength of fluctuations, environment-dot coupling strength,
and correlation time could be analyzed. An approach based on
transition state theory was later used to study hopping transport
through a one-dimensional (1D) molecular chain whose sites
fluctuate in time due to electron-electron interactions [45].
One may also consider another source of fluctuations in the
junction of Fig. 1: random fluctuations of the bias applied to
the leads, which is the quantum analog of the Nyquist problem.
This kind of stochasticity has been studied experimentally in
carbon nanotube field effect transistors [46,47] and in bistable
nanoscale switches [48,49], where an enhancement of the
switching due to stochastic resonance was observed. Both
kinds of noise, the random fluctuations of the molecular levels
and of the applied bias, can effect the current passing through
the system, and addressing these is the main objective of our
paper.

To tackle the general problem of electron transport through
a molecule with stochastic levels (applied bias), it is necessary
to go beyond static transport schemes and use methods in
which explicit time dependence can be taken into account.
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One such approach is based on the nonequilibrium Green’s
function (NEGF) formalism, an extremely general method
for the computation of time-dependent ensemble averages
[42,50-53]. It involves the solution of the Kadanoff-Baym
(KB) equations, a set of integrodifferential equations for
various components of the two-time Green’s function, with
integrals taken over a complex time contour. A numerical
propagation scheme based on NEGF has been used to study
time-dependent (TD) transport through a single fluctuating
level, and analytic results were obtained for this system
which confirm the numerics [29]. In this work, a stochastic
resonance effect was observed in the current characteristics of
a quantum dot system. In addition, a recent study investigated
the problem of fluctuating site energies using a numerical
time-stepping method based upon the NEGF formalism [30].
They compared numerical results of this TD-NEGF scheme
with those obtained from the static LB formula (1), into which a
“snapshot” of the system parameters is substituted at each time
step. As expected, they found that static snapshot approaches to
fast fluctuating systems cannot be accurate because they omit
nonadiabatic effects such as ultrafast dephasing due to the
presence of transient modes, and changes in the amplification
of the current response.

Recently, we presented a TD-NEGF approach which was
shown to capture all these time-dependent features, amongst
others [54,55]. In this work, we assumed the electrons to be
noninteracting and also used the wide-band limit approxima-
tion (WBLA), which neglects the frequency dependence of the
embedding self-energies. This led us to an exact closed solu-
tion to the Kadanoff-Baym equations for a system subjected
to an arbitrary time-dependent spatially homogeneous bias in
the leads. A closed integral formula was then obtained for the
current in lead «, into which the time-dependent bias V,(¢)
enters exclusively in the form of phase factors:

I
ei‘//a(tl’tZ) = exp (l f d'L' Va(f)> (2)

15}

In both our previous work [54] and this paper, we set i = 1
and work in arbitrary units. The real advance of our formalism
on earlier work was to combine explicit time dependence
with the partition-free approach developed first by Stefanucci
and Almbladh [56], and later extended to a closed formula
for the current response to a static bias switch-on which
includes short-time transient effects [42,57]. In partition-free
approaches, the lead-molecule coupling is present in the
Hamiltonian at equilibrium, prior to the switch-on of a bias.
In partitioned approaches, the lead-molecule coupling and the
bias are added to the Hamiltonian at 7y simultaneously [58].
This is unlike the situation in real experiments, where the leads
equilibrate with the molecule prior to the bias switch-on time
tp [59], making a partition-free approach a necessity for an
accurate description of the transient regime. In Ref. [56], it
was proven that the long-time limit of the current does not
differ depending on whether the partitioned or partition-free
approaches are taken (the theorem of equivalence), and that it
is a unique function of the bias if the bias tends to a fixed value
in the long-time limit (the memory-loss theorem). A recent
numerical work on noninteracting transport through a single
fluctuating level [31] has recently made several questionable
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claims, e.g., the claim that colored noise fluctuations can be
switched on and off but still affect the long-time value of
the current, thereby violating the memory-loss theorem. An
analytic model which can resolve this apparent contradiction
is therefore highly desirable.

To tackle the problems of fluctuations in the molecular
levels and the applied bias, we first in Sec. II generalize the
formalism developed in [54] to the case in which the system,
driven by an arbitrary time-dependent bias on each lead, is
also subjected to a time-dependent spatially homogeneous
perturbation on the molecule. This leads us to a proof of
the physically intuitive equivalence between shifting all the
molecular energies by a time-dependent quantity, and shifting
all the leads by the same amount. This fact enables us to
treat both kinds of stochastic influence on the same formal
footing. Modern derivations of the Nyquist theorem use a
Langevin equation approach to solve for the electric current,
in which the stochastic bias acts as the generalized fluctuating
force [3]. In Sec. III, we consider the quantum-statistical
analog to the Langevin equation, in which the time-dependent
inhomogeneities in the KB equations fluctuate in time. The
bias in each lead contains a Gaussian stochastic part with
negative exponential correlation function, characterized by
the correlation time 7, and fluctuation strength D. From a
general expression for the current averaged with respect to
the fluctuating bias, we first consider the quasistatic limit of
large 7., and find an an exact analytical formula for the current
average. This expression is of the LB type in the steady-state
limit, so that a closed expression can be found for an effective
transmission function, which reduces to the formula in [27]
for transmission through a fluctuating dot level. Next, we
obtain a general formula for the average current for any t,
expressed in powers of Dt.. This new formula contains the
transient which follows the switch-on of the noisy bias. In
addition, those terms due to the system preparation can also
be identified and are shown to vanish at long times, which
demonstrate once again the equivalence of the partitioned and
partition-free approaches at long times, even when the driving
field is stochastic. The resulting formula for the current also
has the particular virtue that it takes an asymptotic (long-time)
value which is of the LB form (1), and we can therefore
extract an effective transmission function fromit. Inthe . — 0
limit of white noise fluctuations, this transmission function
again reduces to the one published in [27]. We next present
a numerical scheme for calculating the current response to a
noisy bias, based on the Matsubara expansion of the current
formula which removes all frequency integrals. This massively
increases the computational efficiency of this method and
makes fast calculation of noisy transport through complex
nanostructures (for instance, graphene nanoribbons [60]) a
real possibility. We show that for arbitrary extended systems,
the fluctuations effectively modify the complex poles of the
Fermi distribution function, so that the effect of fluctuations
is equivalent to a thermal “smearing” of resonances in the
transmission function. We interpret this as a generalized
Sfluctuation-dissipation relation for quantum transport. We
end Sec. III with a demonstration that our current formula
satisfies the memory-loss theorem, and we go on to find direct
counterproofs to each of the main claims of Ref. [31]. Finally,
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in Sec. IV we apply this numerical scheme to the problem
of tunneling through the five-site molecular wire illustrated
in Fig. 1, in both the transient and steady-state regimes.
We find that there is a transition from nonlinear to Ohmic
behavior in the /-V characteristics of the steady-state current
as the fluctuation parameter D is increased. In addition, we
observe the existence of a stochastic resonance effect in the
conductance spectrum of the molecular wire.

II. GENERALIZED TD-LB FORMALISM

A. Hamiltonian on the contour

The NEGF formalism can be used to calculate ensemble
averages at times ¢ following the switch-on event at #y, which
sends the system out of equilibrium. In this section, we
specify a Hamiltonian which is very similar to the one in
Ref. [54], but here that work will be extended to a slightly
more general class of systems. The Hamiltonian for the system
is specified everywhere on the so-called Konstantinov-Perel’
contour, which consists of an “upper” branch C_, running
from 79 +i0 to r 4+ i0, a “lower” branch C. running back
from ¢t — i0 to 1y — i0, and a vertical branch Cy; from t, — i0
to to —if (where B =1/kgT is the inverse temperature)
that corresponds to the equilibrium state of the system.
The variable z denotes the contour “time” variable on the
Igonstantinov—Perel’ contour, so that the Hamiltonian operator
H (z) appearing in the contour equations of motion describes
the system both in equilibrium, and when it has been driven
away from equilibrium by the switch-on of the bias. We may
write the Hamiltonian as

Hz) = Zhij(Z)dAjdA‘, 3)
ij

where we sum over all orbitals i, j of the leads and the central

system. Here, d; (dj) correspond to the annihilation (creation)
operators of either the leads or the C region. The h;;(z) are
elements of a matrix h(z), which can be conveniently sectioned
into blocks, obtained by projecting it onto the molecule or lead
subspaces. h,¢(z) is the block of h(z) with matrix elements
[hac(D)]in = Tra.m(z) that describe the coupling between lead
« states (labeled ko) and molecular states (labeled m). hee(z)
is the block of h(z) with matrix elements [hec(2)),,, = Tnn(2)
that describe both the hopping processes and the onsite
potential within the molecular region. We furthermore assume
that there is no lead-lead coupling, so that hy, = §4yhyy, and
we can identify the “bare” lead blocks of h(z) with matrix
elements [hy, (2)1,;, = 8y Skk €ka(z). The Hamiltonian matrix
thus has the structure

h(z) 0 hic(2)
0 hy,(2) hyc(2)

h(z) = : : : (€]
hci(z)  hea(2) hce(z)

The contour formalism provides an elegant way of under-
standing the difference between partitioned and partition-
free approaches: in the former, the lead-molecule “blocks”
hy,c(z) =0 for all z € Cy, whereas in the latter case it
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generally holds that for any z, hyc(z) # 0. We assume that
prior to the switch-on at time #, the whole electronic system
was in thermodynamic equilibrium characterized by the unique
chemical potential © and inverse temperature . Then, at f
the battery of the external circuit is used to apply an arbitrary
time-dependent bias V,(¢) to each lead «.

Our modification to the Hamiltonian studied in [54] is to
alter the molecular energy integrals as follows for ¢ > #;:

hee(t > to) =hee +uce + Ve(H)lee
=hee + Velee. Q)

Here, ucc is in general a nondiagonal time-constant matrix,
considered, e.g., in Ref. [60], introduced to enable description
of a switch-on of a static field in the central region. The
last term is diagonal and corresponds to a time-dependent
perturbation that factorizes into a time-dependent scalar V()
and the particle number of the CC region. This type of
modification of the molecular Hamiltonian was considered
in a recent model of a carbon nanotube quantum pump [61],
and in Ref. [62], where time-dependent modulation of the
lead-molecule coupling was also considered.

Hence, each block of the nanojunction Hamiltonian at every
contour time z is specified as follows:

[eka + Vo]0, 2=t € C_ @ Cy
h,. )= 6
[hao (2)]k { (bt — Sip. 2 € Ciy (6)
[heo (D] = Tnka, ZEY @)

hmn + Upn + VC(t)Smnv z€eC_® C+

h = i
[ CC(Z)]mn { hmn _ M8mil» z € CM ( )

This Hamiltonian describes a nanojunction which has a time-
dependent bias switched on in the leads, simultaneously with a
spatially homogeneous time-dependent shift of the molecular
energy levels.

B. TD-NEGF formalism for the current

We now briefly describe the main features and results of
the TD-NEGF formalism that we will use to model systems
described by the Hamiltonian of Sec. Il A. We first define in
the molecular basis the i, jth component of the one-particle
Green’s function on the Konstantinov-Perel’ contour:

Tr{e #1"T, [CZ,H(ZOCZ;,H(Zz)] }
Tr[e—#H"]

©))

Gij(z1,22) = —i

The elements G;; of the Green’s function form a matrix G
defined on the whole space of orbitals of all leads and the
central region; correspondingly, one can introduce diagonal,
Gc¢c and Gy, as well as nondiagonal, G¢, and G, blocks
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of this matrix:

G(z1,22)
Gi1(z1,22)  Gia(z1,22) Gic(z1,22)
G21(z1,22)  Go(z1,22) Gac(z1,22)
= . . . (10)
Gei(z1,22)  Gea(z1,22) Gee(z1,22)

Notice that in this matrix there are lead-lead coupling terms
Gy, , where a # y, unlike in the Hamiltonian matrix (4). If one
introduces the reduced Green’s function g, (z1,z2) satisfying

o d
|:l_ _haa(zl)}gaa(zlaZZ) = 1010(8(21722)’ (11)
dz

then one can show that the full Green’s function G¢¢ for the
central region satisfies the equation of motion [42]

d
|:id_ - hCC(Zl)i|GCC(Zl,Zz)
21

= lcc5(Z1,Zz)+/dZ Ycc(z1,2)Gece(Z,22), (12)
y

where 1¢¢ is the unit matrix defined on the orbitals of C, and

Sce(ziz) = Y hea(2)8ua(z1.22)hac(z2)  (13)

is the matrix of the embedding self-energy, while the non-
diagonal matrix blocks of the Green’s function are given by
integrals on the contour, e.g.,

Goc(z1,22) = / dZ 80a (21,200 (D)Gcc(Z,22).  (14)
¥
The equation of motion (12), along with its complex conjugate,
is then projected onto various subspaces defined by combina-
tions of the two contour times z1,z,. These are denoted by
superscripts, for example, the “greater” and “lesser” Green’s

functions (GFs) are denoted G?C(tl,tz) and can be used
to describe the number of holes/electrons in the molecular
region of the nanojunction. Their rigorous definition, and the
definitions of the retarded, advanced, left, right, and Matsubara
Green’s functions, can be found in Ref. [54]. Each type
of Green’s function so defined obeys a particular equation
of motion, and these are referred to collectively as the KB
equations. Here, we simply note that the retarded KB equation
can be found by application of the Langreth rules [63] to
Eq. (12):

. d .
<l an hcc)Gcc(h 1)

t
— Lecd(t — ) + / A7 S (6. DGL(F1). (15)

4]

On the right-hand side of this expression, there is the retarded
component of the effective embedding self-energy

r — E —iYq(t1,12) io(t—t)
[ECC(tl’t2)]mlz - - e / 27.[6

X |:A01,mn(w) - %Fa,mn(a))] ) (16)
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where the level-width matrix is defined as

Fa,mn(w) =2r Z Tm.kaTka,nS(w - Eka)7 (17)
k

which forms a Hilbert transform pair with Ay u,(®). The
phase factor v,(t;,5;) is defined by Eq. (2). In the WBLA,
one replaces all elements Iy, ,,, (@) of the level-width matrix
I', with a frequency-independent value Ty, ,,,,, (€.g., calculated
at the equilibrium Fermi energy ¢f of lead « [58], although
they could also be considered as fitting parameters). Due to
the fact that the coupling matrices h,¢(z) and bare lead matrix
h,(z) are unchanged from Ref. [54], all the components of
the self-energies for the system we consider are the same as in
that work, so we do not reproduce them here.

In the derivation of the generalized LB formalism given
in [54], in which the bias applied to each lead is time de-
pendent, the retarded/advanced Green’s functions Grc/g(tl,tz)
are functions of the time difference #; — #, and can be easily
represented in Fourier space. However, a time-dependent gate
voltage on the molecule of the form in Eq. (5) means that this is
no longer true. For example, the retarded component satisfies
the equation of motion

. d Te r
|:l E — thfC:|GCC(l‘1,l‘2)
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where Hecﬁc = Ecc — %Za I’y is an effective Hamiltonian of
the central region, with complex eigenvalues that lead to a
finite lifetime of unstable eigenmodes there. Equation (18) has
the general solution

Glc(t1.) = =it — tp)e Mot =mivetin) - (19)

where we make the definition of the phase factor associated
with the molecular time dependence:

ocltinh) = / deVe(o). (20)

5]

Likewise, the advanced component is given by
Fpeff Ntop i
Gec(ti,n) = i0(1 — )e M) mmlpmiven) o (21)

These cannot be represented as functions of a single frequency
in Fourier space, and we shall henceforth use these expressions
in convolution integrals involving both time arguments. In
Appendix A, we present analytic expressions for the other
components of G¢¢(z1,22), and some details of their deriva-
tion. Here, we simply remark that a more compact notation
can be used to represent the current and the lesser and greater
GFs than was used previously. Specifically, if we introduce the

=08(t; — 1) + Ve(t)Icc G (th,12), (18)  matrix
J
- t ~
Su(t,10; ) = e*ihgg;(t*fo)e*iWC(tqtn) |:G2‘C(w) —i / dfgi(wlhgrc)(flo)ei(%%)(f_,tn)il’ (22)
To

where G (w) = (0l — hecffc)_l (i.e., defined without the tilde on the effective Hamiltonian), and ¢¢ is defined in Eq. (20), then

the greater and lesser GFs can be expressed as follows:

d ,
Giclhin) = Fi f S FIF(@ = T Y_S, (1.10: )T S (1200, 23)

14

From here on we omit the CC subscript as all Green’s functions will be those of the central region. The electric current in

lead « is defined as the time derivative of the average charge in that lead, 1,(f) = ¢(

dN, (1)

(where due to spin degenerac
dr P g y

Na =2x) kc?,:raﬁka). Following the method outlined in Ref. [54], it may be expressed in terms of the S, (taking electron charge

qg=-—1):

1 . .
L) = — / dof(w — p) Tre [2 Re[i[ye! @0 eiVet08 (1 10: w)] — raZsy(t,to;w)rys; (.10 a)):|. (24)
T

This expression enables us to model electron transport in
response to the switch-on of an arbitrary time-dependent
bias in the leads, as well as a spatially homogeneous time-
dependent perturbation in the molecule, within the WBLA. It
represents progress on the work published in [54] because
it enables us to study the interplay between the driving
fields in the lead and molecular regions, but reduces to the
published formula when ¢¢ = 0 and hee = hee. We note
in this connection that if V,(¢) = V(¢) is independent of the
lead index «, and V(t) = V¢ (¢), then ¥, = ¢¢ and it follows
[from the fact that the explicit time dependence enters into (24)
only in the form e!We=¢c)":1)] that the current is completely
equivalent to that obtained in the static bias case. This is arather
intuitive result: it just means that if all energies in the system are

14

(

simultaneously raised and lowered in the same way, then there
is no effect on the transport through the system; the transport
is governed by energy differences only. We also observe that
it is physically equivalent to choose either (i) Vo (#) = 0 and
V() = V() forall ¢ or (ii) Vo (t) = —V(¢t) and V,(t) = O for
all «. This means that an identical perturbation across all the
leads is equivalent to the negation of that perturbation in the
CC region alone, and one has a freedom of choice in where
to place the time dependence. In the following derivations,
we shall assume that the bias is applied only to the leads.
Hence, in what follows, ¢¢(1,#;) = 0. For simplicity, we shall
assume from now on that the matrix u = (u,,,) = 0 and hence
Eeff — heff
cc cc:
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III. QUANTUM MODEL OF THE STOCHASTIC BIAS

A. Classical model and the quantum analogy

The problem of transport through a classical circuit with
a stochastic applied driving bias has been studied using the
Langevin equation method. In the simplest case, one solves
the equation which encodes Ohm’s law for the current [3,18]

dI
L+ RI@) = V(). (25)

Here, L and R denote the inductance and resistance of the
circuit, respectively. In the simplest case, the driving bias
V(t) is zero on average, but “flickers” around this average
value so that small bursts of current can be observed through
the conductor. If the experiment is carried out over a long
enough time, the current averaged across realizations of
the experiment will be equal to zero. It is then assumed
that the bias is a Gaussian zero-mean process, and that the
autocorrelation function of V(r) is localized, such that its
statistical weight integrated over all times is proportional to
some fixed parameter D which quantifies the fluctuations of
the bias. From these assumptions, the current can be found,
along with the time-dependent variance of the current, and
both contain modes which decay on a time scale of ., = L/R.
One can also derive the following well-known result, a version
of the second fluctuation-dissipation theorem [4,64]

where Jy(w) is the power spectrum of the bias fluctuations
defined for positive frequencies. The expression (26) states
the direct equivalence of the resistance of the conductor R and
fluctuations of the bias, quantified by D, which at first sight
appear to have a disconnected physical origin. The reason for
this equivalence is that in a macroscopic conductor, both the
macroscopic resistance of the circuit and the fluctuations of
the bias arise from thermal motion of charge carriers [4].

This observation provides us with indications of the quali-
tative behavior to look for in the analogous nanojunction. To
study such a junction, we specialize the formalism described in
Sec. II to the situation in which a bias in each lead is switched
on at fy before fluctuating about some mean value V,,. The
stochastic bias in lead « has the form

Vot > tg) = Vo + V3 (1). 27

Here, V;;(¢) is assumed to be zero-mean, stationary, Gaussian
stochastic process. This means that even-ordered statistical
moments can be decomposed into products of pair correlation
functions, and odd-ordered moments vanish:

V() =0, (28)

V@) Vi) = Vit —)Vi0) =C(t — 1), (29)
Vi) . Vit = Y Clty, =) - Cltp,, — 1)
P

(30)

Vi(t)... Vitnsr) = 0. €29
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» , denotes a summation over all permutations of pairs of
the time variables, and the bar denotes the average taken with
respect to the stochastic bias. From the discussion in Sec. II B,
this is equivalent to assuming that the driving term V¢ (¢) on the
right-hand side of the Kadanoff-Baym equations is stochastic,
and equal to —V*(¢), with a constant bias V,, switched on in
each lead. In analogy with the classical approach in [3], we
assume that

oo
/ dtVi(t)Vs(0) = 2D, (32)
—00

where D is some parameter characterizing the magnitude
of bias fluctuations. As noted in the Introduction, the time-
dependent stochastic bias enters into our formula for the
current via exponential factors of the form (2), so we make

use of the following general theorem for taking the average of
these [65]:

etiv’(nh) = exp (ilf dTVS('L'))

4]

1 1 1%
= exp [_Ef dn/ du,C(t — 1:2)]. (33)
151 131

Note that C(t; — 1) is independent of the sign on V*(¢) so
that an expression containing an average of the form (33)
will be identical to one in which all energies on the molecule
are shifted by £V*(¢t). To proceed further with numerical
implementations, one needs to assume a specific functional
form for C(7; — 12). In the simplest case, the white noise
correlation function is assumed:

C(t) — 1) = 2D8(1) — ). (34)

Noting that the value of the function (33) must be invariant
under the exchange #; < t,, we see that for the white noise
stochastic bias it must be given by

etivt () — e—D\n—tz\' (35)

One may also choose a correlation function which involves a
parameter w. = 1/1., defining a finite correlation time 7., over
which the bias is statistically correlated:

C(t1 — 1) = Dwee™@m—™l, (36)

This correlator arises, e.g., in approximate microscopic models
of molecular energy level fluctuations caused by electron-
phonon interactions, in which case w, is a measure of the
phononic band width [66,67]. It should be noted that this
means of incorporating the effects of a phononic environment
on the molecule is valid only for T greater than the Debye
temperature [68]. Inserting (36) into (33) gives

_ 1
etig*(t,n) — exp {—D|:|t1 _ t2| _ _(1 _ e—a)(tl—tz)jH.
w,

(&

(37

In the case of the white noise, the correlation time is zero.
Notice that the expression (37) tends to the white noise
expression (35) in the w, — oo limit, and that (37) tends to
1 when w. — 0. Also, we observe that either case satisfies

205408-6



FLUCTUATING-BIAS CONTROLLED ELECTRON ...

(32). In practice, values for the fluctuation parameter D may
be determined from experiments that measure the two-time
correlation function. We could also permit D to have some
dependence on w, [69]. For example, in the Gauss-Markov
model of exciton transport [66,67,70], and in Ref. [27] the
correlation function (36) with D = oz/wc is used, where

o = V[VS(1)]? is the standard deviation of molecular site
fluctuations. By the arguments in the previous section, this

J

1
I,(@) = ;
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model is formally equivalent to the one we are considering
with a fluctuating bias in the leads. Using the fact that

TP (1) v (h13) — eiiwx(fzqfs)’ (38)
we can perform the average over the stochastic bias on the leads

in formula (24) and write in expanded form the bias-averaged
current:

t
/dw flo—w)Trely {2Re (iei(m’v‘*_hecfg)(’_"))ei‘/“(f’f0>G’(a)) + / dfei(w+v“_hecﬂc)(t_”ei‘/’x(fvf)>

fo

t
- —fh%‘fr<f—’°>2[c’(w)r G“(w)+2Re<iG’(w)ry f drei@Wv—hecf?xf—fweiw(wo))

fo

/ dr/ dT e i@ +Vy—hE)T— zO)F oYy —heThE— 10) g—ig*(t.7) r)} ihgffg(zto)}’ (39)

where the averages of the exponential bias-containing terms
are given by (37). This general formula is the central result
of this paper. We drop the CC notation on Green’s functions
defined in the molecular region basis for notational simplicity.
In the last term of Eq. (39), the double integral is in general
no longer separable into single integrals over the variables
7, T due to the presence of the phase average which binds
these variables into a single function of the difference v — 7.
This leads to slight mathematical complications which will
be addressed in Secs. III B and III C. Due to the grouplike
property (38), one can similarly derive an expression for
the current-current two-time correlation function 1,(z)1,(t’),
which depends on both times ¢, ¢/, and not only on their
difference.

B. Quasistatic limit

Before proceeding to develop the full theory for a Gaussian
color noise with correlation function given by (36), we present
results for the quasistatic limit of large 7.. This corresponds
to a stochastic bias that undergoes fluctuations over a very
long time scale relative to the intrinsic time scales of the
nanojunction. This case was addressed in Ref. [27] for the
single-level CC region, so it provides an important check on
the validity of our theory. Expanding the exponent in (37) in
powers of w, and keeping only the first term, we find that the
phase factor is effectively replaced by a Gaussian:

exiv 1) ~ exp [~ 1 Do |ty — 11]%]. (40)

Notice that in the limit of w. — 0, (40) tends to 1, because in
this limit V*(¢) is frozen at its mean value of 0 and therefore this
case is equivalent to the limiting case of a static bias switch-on
process. This expression is then substituted into (39), and all
time integrals can be analytically performed. As detailed in
Appendix B, this is only possible if we follow Ref. [60] and
project the current formula onto the right and left eigenvectors
of the matrix heCffC:

Wl |of) = & lef)  (of hSE = &i(ef . (41)

(

Generally speaking, |¢F) # |¢F) because hEf. is non-
Hermitian, and the eigenenergies & are complex due to the
presence of —ig in h%“c The full derivation of the current is
given in Appendix B; here, we only note that in the long-time
limit it reduces to an expression which is of the LB type:

Z/dw[f(w Ve
@V, i) @)

with

of | Telof ot Ty |of )
Tyo(®) = | / -
yel® 2Da)cz % |(pj |(pk >l(£] — &)

X {e_(z(uzvgj-)zl:l—l—erf(i—(w_éj) >]+cc i }
V27 Do, ek
(43)

where we denote c.c.; to denote the complex conjugation
of the preceding term with indices j and k exchanged. At first
sight, this expression bears little resemblance to the formula
obtained in [27] for the high-7, transmission probability, which
is a convolution integral of Gaussian and Lorentzian functions.
To illustrate the connection with their work, we specialize to a
system consisting of a quantum dot sandwiched between two
terminals, such that & j = =gy — z , where ¢ is the dot energy,
I' a scalar and &; — & = —il’. In this case, the transmission
probability for electron to pass from lead y to lead « becomes

Tyol) = 2 ( r , —(w — so))
Do, T 2/2Dw, +2Dw.
o o0 r,T,
- m/w “w—eo—eY+T2/4
8/2
X exp (— Do, ), (44)
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where

Hah = _/ (z—b)2+a2

= Re[e“TP7[1 — erf(a + ib)]] (45)

is the Voigt function [71,72].

If one makes the replacement D — o2 /w., one sees
that the expression (44) is identical to the formula (12) in
Ref. [27], which was obtained by completely different means.
We emphasize that our approach is much more general than
that of German et al. because it generalizes their formula for
the transmission function to multiple leads and a multilevel
Hamiltonian. Most significantly for this work, it enables us to
study the effect of a strongly correlated energy fluctuation on
the transport in all time regimes, for both the partitioned and
partition-free switch-on processes.

C. Expansion for arbitrary t.
1. Effective transmission and the white noise limit

A general theory of fluctuating-bias driven transport must
include calculation of the current and transmission of a system
for all values of the correlation time 7., including as a special
case the white noise limit described by (34) when 7, — 0.
To this end, we expand the color noise phase average (37) in

J

Tu@, D) = 3 (of |Talof)

ok ((p] |(P )( If|90k )i(gj - 8k)n=0
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powers of Dt,:

o0 n n m
etig' () — § : 2 § : =D e~ (DHmoo)ln—n|
3 (n—m)\m!
n=0 m=0

(46)

When we insert (46) into (39), we once again project onto the
left/right eigenbasis and evaluate all time integrals explicitly.
The details of the resulting formula are given in Appendix C.
Here, we focus on the long-time limit when the resulting
bias-averaged current converges to a finite value given by
a LB-type expression containing an effective transmission
probability depending upon both D and w,:

Jim L0 = 18000 =~ Y [ dol -V, ~ w
v

— flo =V, = wlTye(w,D,w). (47)

We note that those modes of the current which die out, are, as
in Ref. [54], exactly those which result from the preparation of
the system, and therefore the asymptotic bias-averaged current
satisfies the theorem of equivalence; in this limit it has the same
value whether one takes the partitioned or the partition-free
approach [56]. The effective transmission can be shown to
equal a sum of Lorentzians centered on (£; 4 &;)/2 with a
level width that increases with D:

(=" i(5; — &)+ 2(D + mao,)

¢L|]—‘y|(pkL> 2./ D\"<
(o) X

=0(n —m)!m! (w —

SN 4 HiGs; — 80) + 2D + mo)?
(48)

If the additional assumption is made that all the level width matrices are proportional, i.e., I', = x, I', then the summation indices

decouple and (48) is reexpressible as

D\"<&  (—=D"
o= () B

n=0

From this result, we can establish a second connection with
published work, by taking the white noise limit (v, — 00)
of T)o(w,D,w.) and once again considering the simple case
of the single-level system studied in Sec. III B. In this limit,
all terms in the expansion (49) of the transmission probability
vanish with the exception of the n = 0 mode:

r,r, I+2D
(w —89)* + (I'/2 + D)?’

lim T, .(0,D,0.) =

We—> 00 F

(50)

This agrees exactly with the formula (15) in Ref. [27]. Clearly,
the effect of large fluctuations of the bias about its mean value
is to flatten the transmission function and therefore eliminate
the resonance at frequencies close to &;. The resonance
is sharpest at D = 0, in which case the transmission (50)

Tre{le G [w + i(D + mw )T + 2(D + mw )]G [w — i(D + mw.)]}. (49)

(

assumes the well-known Breit-Wigner form [27,42], and the
resulting current formula is given exactly by the steady-state
LB formula. We remark in passing that the analytic results of
Ref. [29] lead to the same effective transmission as Eq. (50)
under the appropriate limits.

InFig. 2(a), we plot the transmission function (50) for a two-
lead system with symmetric coupling I'y = 0.5 = I'g, and
dot energy g9 = 1. The transmission function is a probability
distribution in frequency space, so that by virtue of the
Heisenberg energy-time uncertainty principle, we interpret a
narrow distribution as corresponding to eigenmodes of the dot
with a long lifetime. In all previous treatments of steady-state
quantum transport, it has effectively been assumed that D = 0
so that this lifetime is given by approximately 7, ~2/T.
However, here the bias is not assumed perfectly static, but
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FIG. 2. (a) Variation of the frequency-dependent transmission function as the fluctuation parameter D is increased from O to 1. (b) Setting
w, = 1, we plot the difference T (w,D,w.) — T(w,D,w. — 00). Both plots assume coupling parameters I', = 0.5 = I'g, and dot energy

8():1.

is instead allowed to fluctuate about its fixed value, and the
lifetime of molecular modes is decreased to T, ~ 1“/2%'
This is clearly illustrated by Fig. 2(a), where this decrease of
temporal uncertainty is mirrored by a complete flattening out
of the transmission function at all frequencies. The qualitative
effects of this on the /-V characteristics of a system with white
noise fluctuations will be discussed in Sec. IV.

2. Fluctuation dissipation

It is a well-known result that, in the steady state following
the switch-on of a static bias, the transmission function can be
expressed in terms of Green’s functions of the C C region [41]:

Tyo(®) = Tre[To G ()T, G (w)]. (51)

On inspection, one can see that for a single-level dot in
the D — 0 limit, Eq. (50) reduces exactly to the formula
(51) for the transmission function. Therefore, for the case
of the quantum dot, the effect of adding a stochastic part
to the bias is identical to the effect of adding another lead to the
junction with self-energy —i DI, although the two sources of
dissipation on the dot are physically distinct. More generally,
if one considers the structure of the summand in (49), it
is strikingly similar to that of (51). The expression (49) is
identical to a weighted sum of transmission functions of the
form found in (51) for a molecule whose coupling to each lead
y # « is enhanced:

ry, - I, +x,2(D+ mo)L (52)

The relation (52) relates the self-energy, which describes
the broadening and dephasing of molecular eigenmodes,
to the fluctuation of the bias placed across the molecular
junction. This is analogous to the Nyquist theorem, which
relates fluctuations in the bias to the dissipative quantity R.
However, in contrast to the classical circuit, in the quantum
case the fluctuations make a modification to the “frictional”
term I' which is additive. Formally, the effects are similar

to the self-energies used in phenomenological theories of the
electron-phonon coupling strength, in which the influence of
the e-ph coupling is equivalent to that of a fictitious probe
coupled to the system [73,74].

The relation (52) applies only to systems satisfying the
condition that I, = x,, I", which should hold for very small or
dotlike systems, but in other circumstances it is not exact and
should only be used to guide physical intuition. It would be
desirable to find a general principle that relates the smearing
out of quantum features in the transport to the fluctuations
in the bias (or, equivalently, of energy levels in the molecule),
valid for arbitrary I',, . This can be done if we expand the Fermi
function into a sum of N,, simple poles defined in the complex
energy plane [75-78]

1 1 il 1 1
= —— =——1i .
e efr+1 2 Ngrcl”;m[ﬁx‘l‘ié“l +l3x—i§l]

(53)

This is equivalent to the well-known Matsubara expansion
if we choose n; =1 and ¢ = 7w (2] — 1). The full formula
for the time-dependent current in terms of special functions
obtained from a Matsubara expansion is given in Appendix C.
However, for numerical implementations, the Padé expansion
converges much more rapidly for increasing N,, and has
been used to speed up several time-dependent transport
schemes [29,79,80]. In contrast to the Matsubara expansion,
the ¢; are spaced unevenly along the imaginary axis, and the
residues n; are all real and positive valued, obtained from a
numerical diagonalization procedure. In either representation,
the Fermi function has poles distributed symmetrically along
the imaginary axis in the upper and lower half-planes. If
the temperature of the system is increased, then each pole
g/ B is shifted further away from the real axis; therefore, a
uniform shift of all the poles tends to flatten out the Fermi
function around x = 0, and to “smear” out quantum effects
in this region. Inserting Eq. (53) into (47) and performing the
resulting contour integrals, we obtain the following formula
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for the current in terms of the poles:

j X /(D\' (=D (0 [Tal@f ey Ty ot )
I"(D.w) ==Y \(Vy— V) (—) AL
0= 20 L) i 2l elof ot i, 0

1
= [[éj—Va—u—i(D+mwc+%)][éj—vy—u—i(D+me+%

)] +c.c.j<_,k:|. 54)

In the white noise limit, (54) is exactly equal to the regular LB formula, in which all poles of the Fermi function undergo the shift

QQQTD (55)

BB
so that the formal effect of the fluctuating white noise bias thermal gradient [17,81-83]. Substantial work has been done
is therefore to shift all of the poles of the Fermi function on directed noise-induced transport resulting from broken
lying on the imaginary frequency axis by a constant value symmetries [9,11,20,69]. In particular, it was shown that
D. We expect that this will generate similar physics to an  in ratchet structures a net current can be established from
increase in temperature, as the latter change also has the fluctuating forces, given that the fluctuations are non-Gaussian
effect of increasing the magnitude of the positive and negative and that all odd statistical moments of the fluctuations are
imaginary poles :I:%. For the general case of the colored noise, vanishing [20,69]. Furthermore, Luczka et al. demonstrated
we can assert the following result: The asymptotic value of the ~ that if the structure is reflection symmetric, then there is
average current through a molecule subject to bias fluctuations no current unless the fluctuations are asymmetric, i.e., with
with magnitude D and correlation time t. is a weighted sum of ~ odd-ordered moments that are nonzero [9,11]. Consistently
LB-type formulas evaluated with Fermi functions whose poles ~ with Eq. (54), this work implies that the quantum ratchet

are shifted as effect cannot be observed in any system if the net bias
¢ ¢ is zero and the fluctuations are Gaussian. However, in our
LU + D +m/t,, (56) previous work [54] it was usually assumed that the fluctuations
P B were spatially homogeneous. By contrast, one can show with
where m is an integer. a straightforward extension [via the replacement V*(t) —

Although this statement is valid for fluctuations described V2 (#)] of our formalism that one could generate a net current
by the correlation function (36) and hence as such is not with zero net bias if the fluctuations in each lead are of a
completely general, it can obviously be generalized to a  different magnitude, even if they are Gaussian. In this case
correlation function fitted to a sum of negative exponentials the fluctuation parameter D acquires a lead index « and the
and can therefore be used to describe a vast number of Gaussian formula for I5B(D,w.) would no longer be of the LB type. The
stochastic processes. We therefore expect that the effect of  resulting current is a kind of stochastic “pump” as it results
a nonzero stochastic bias should affect its resistance in a  from a stochastic dynamical asymmetry in the fluctuating lead
similar (but not identical) way to a temperature increase: at Fermi levels, even though there is zero net bias [84]. As we
large temperatures, Eq. (54) implies a linear dependence of  are not focusing on asymmetry effects here, we defer proper
the resistance on temperature, as in the Nyquist theorem. An investigation of this stochastic pump to a future work.
exact formula for the multilevel resistance is further illustrated
by considering the resistance of the single-level model in
Sec. IV. We note in passing that in Ref. [54] we identified
those terms in the current which arise from either the initial
condition for the lesser Green’s function or from vertical In Ref. [56], two key theorems of noninteracting quantum
contour convolutions. These terms contain information on the transport were established. The first, known as the theorem
way the system was prepared, as they arise from the Matsubara of equivalence, states that the long-time limit of the current
Hamiltonian. One can see during the derivation of Eq. (C5) response to an arbitrary time-dependent bias is the same for
that those terms which are notpreparation dependent conform both the partitioned and the partition-free approaches. Our
to the relation in Eq. (56). So, we conclude the following: TD-NEGF formula was shown [54] to satisfy this theorem,
The relation (56) is also true for all the time-dependent modes and so any asymptotic formulas for the current derived in this
of the lesser Green’s function and current which arise from paper are valid in either framework. The second, called the
real-time convolutions taken on the horizontal part of the memory-loss theorem, states that if the bias V,(¢) tends to a

3. Multistability and asymptotics

Konstantinov-Perel’ contour. static value V,, as t — ty) — oo, the current also possesses a
Finally, we can conclude from the LB-type structure of  unique asymptotic value which is a function of V, [56]. In
Eq. (54) that, if there is no net bias across the junction, i.e., Ref. [54], we proved that our formula satisfies this theorem

Vo =V, for all y, then no current can flow, regardless of  as well and that the value of the asymptotic current is given
the molecular structure. A ratchet is a structure described by an expression of the LB form. A recent paper on transport
by a spatially periodic potential V(x) which lacks reflection  through a fluctuating level [31] has brought these theorems into
symmetry, and is of interest for the understanding of transport ~ question by suggesting that tunneling through a fluctuating
processes in biological systems, which can efficiently transport ~ energy level can generate multistability in the long-time
molecules across a system with no applied potential or current in a manner that violates the memory-loss theorem.
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Specifically, Ref. [31] considered tunneling through a single
fluctuating level of energy ¢y, which is symmetrically coupled
to left and right leads, so that the level width matrices
become scalars obeying I'y = % = I'g. They calculated the
symmetrized current, which in our formalism can be written
as follows:

Ip(t) — Ir(t)
2

1 .
— f dof(w — p)Re[i[e! @t
2

I R(2)

X (VLW S, (1,19 ) — eV Sy (10 )], (5T)

where Sy, Sk are scalar functions defined as in Eq. (22) and the
effective Hamiltonian h%“c — b = gy — i['/2. Numerical
simulations on this model are reported in [31] which appear to
provide support for the following propositions: (i) If the noise
on the level is white, then there is no effect on the asymptotic
current, even if the noise is present at all times, including in
the asymptotic limit. (ii) If the noise on the level is colored and
switched on during the transientregime ¢ € [#y,2/ I'] following
the switch-on, then the asymptotic current is suppressed with
respect to its LB value, even if the noise is switched off
subsequent to the transient regime. (iii) Any kind of noise
switched on only after the transient regime has elapsed (i.e.,
for t > 2/T") can have no effect on the asymptotic current. In
this work, a partitioned approach is used within the WBLA,
and in addition to the lead-dot coupling, the dot energy
acquires a stochastic time dependence V(¢) at time #y. The
method used to establish (i)—(iii) was based on a numerical
time-stepping scheme, which calculates long-time currents
for different trajectories of V(¢) before averaging across the
resulting ensemble for the ensemble average of the current.

Clearly, claim (ii) of the above violates the memory-loss
theorem because it implies that one can have a static bias in
the long-time limit without the corresponding relaxation to a
unique value of the current. In addition, (i) implies that one can
have a level which is constantly undergoing fluctuations due
to interactions with its environment, but if they are completely
uncorrelated in time then there is no effect on the transport.
(iii) also implies this, but in addition implies that correlated
fluctuations also have no effect if they are switched on after
the crucial initial period. A complete theory of transport
through a fluctuating level must be able to address these rather
fundamental claims.

The formula (50) is proof that white noise fluctuations on a
dot energy level can affect the asymptotic value of the current
passing through it, so long as lim,,_,oD # 0. This contradicts
claim (i) of Ref. [31], where it was asserted that the electrons do
not “see” the fluctuations in the energy level and so therefore
the transport is unaffected. However, there are good physical
reasons to suppose the contrary: we have already discussed
numerical work in the Introduction where fluctuations lead to
changes in the steady-state current [29,30]. Physically, one can
see that during the transport process, a dot energy with white
noise can jump frequently to values far from the mean energy
&o. This means that, in the time it takes for an electron to hop
across the junction, the energy gradient across the junction can
switch sign and the electron has an equal probability to hop
in any direction. There is no longer a resonance at &y because

PHYSICAL REVIEW B 93, 205408 (2016)

electrons with this energy are no longer “privileged” in the
transport process with respect to electrons of other energies.
In Fig. 2(b), we illustrate the effect of a finite correlation
frequency of w. = 1 on the transport through the single-level
system, by plotting the difference in the transmission (48) and
the white noise transmission function (50). We find that as
D is increased, this difference grows larger, before flattening
out, so that the effect of color noise on the transmission is
to slow down its decay with increasing fluctuation strength.
Physically, this means that the energies on the dot are not
completely random, so there are still some privileged energy
values at which the electron will be transported.

Claim (ii) is straightforward to check. Choosing the time
t, as the upper bound of the transient regime, we can simply
set VJ(t) =0 for any ¢ > 1, [so that V,(t) =V, is constant
at these times] and evaluate the long-time limit of the main
ingredient of the current (24):

lim el@—t)eiVat.008  (t,10; w) = G (w + V). (58)
11—
Indeed, the first term in e’;f"’(’_"])e"ﬁ”“SO,l contains the time-
decaying exponent e!(@17hcc)(=) ~ p=3T(=%) which van-
ishes in the + — oo limit. In the second term

t .
—i / drei(‘“I*h?fc)(’*f)g*i%(t,r)’

Iy

we split the integral by the time #,. The integral over the interval
7 € [to,1,] vanishes because e="""(=7) goes to zero for all T
in this integrand. The second integral taken over the interval
t € [t,,t] can be easily calculated yielding

G (0 + Va)[ei[(w+vu,)1—hgfg](z—z0) —1].

As the exponential term tends to zero at long times, we imme-
diately obtain (58). Replacing ¢/ ~¢iVe S, with G" (w + V)
in the formula (24) for the current, we recover the LB
formula. Hence, at long times the unique value of the current
corresponding to the stationary result is established even if the
color noise is only present during the transient. Although this
is sufficient to contradict claim (ii) on its own, it is actually a
much weaker condition than the memory-loss theorem, which
implies that the bias could fluctuate in any way at any finite
time, so long as it takes a static value asymptotically, and the
value of the current will be a unique function of that value. This
theorem can be proven for any system within the WBLA by
recognizing that the time #, can be taken infinitesimally close
to ¢, resulting in the LB value for the asymptotic current even
in this case. Thus, we have explicitly verified the memory-loss
theorem for any TD bias within the WBLA and ultimately
demonstrated that claim (ii) of Ref. [31] is false. As this
theorem is true for any realization of the ensemble defined by
the noisy bias V;(¢), it is also true for the ensemble average,
which explains the limit (58).

The equation for the current contains the transient following
the switch-on of the noisy bias, and we can therefore use it to
verify the validity of claim (iii). We can easily check this
by setting V;(t) = 0 for ¢ € [#,t,] and choosing V/(¢) as a
generic color noise characterized by the parameters D, w,.
The following limit can then be calculated using the same
methods as in Sec. III C, and considering the convergence of
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FIG. 3. (a) The time-dependent symmetrized current I, z(¢) computed as a function of D using parameters k7 = 0.1, V, = 10, Vg =
0, =0.5,Tss =0.5, E =1, X = 0.1. (b) The time-dependent bias-averaged particle number N¢(¢) in the molecular wire.

the integrand in the regions t € [fy,7,] and T € [1,,¢]:

tlirgoeiw(t*lo)ei%(t,tg) S, (t,10; )

00 D n n (_l)m .
— Z<_) Z—G’[a) + Vo +i(D + mo.)].
W, (n —m)!m!

n=0 m=0 :

(59)

This result is clearly not equal to the final value of G" (w + V),
which would result from a static bias switch-on process.
We note that our conclusion is strongly supported by the
numerical work published in Ref. [29]. Therefore, claim (iii)
of Ref. [31] is also contradicted because it implies that a
constantly fluctuating bias switched on outside the transient
period should result in the LB current.

IV. NUMERICS

To get an idea of how the voltage dependence of the
current varies with the bias fluctuations, we consider the
current through a molecular wire consisting of Ny = 5 atoms,
coupled to two leads L and R, as illustrated in Fig. 1. This
system was previously studied using the method developed in
Ref. [55] for a sinusoidal driving bias. We describe this system
using a tight-binding model for the wire with nearest-neighbor
hopping, as described in [85,86]. Specifically, we assume that
there is one state per site (atom) in the chain, and that the
interaction of the chain orbitals with those in the leads is
only via the end sites. Within the WBLA, the self-energy
components are given by Eq. (17), so that in our model
only the I';; and I'ss elements of the self-energy matrix are
nonzero. Effectively, we are describing a chain of quantum
dots coupled to each other by a nearest-neighbor hopping,
leading to a tridiagonal molecular Hamiltonian matrix h¢e
with elements [hecli, = E and [heeli i1 = [hecliix = 2
[87,88]. Additionally, we choose the chemical potential © = 0
and the matrix elements £ =1, A =0.1, I';; = 0.5 =Ts5
which define the energy and time scales in arbitrary units. The

mean values of the fluctuating bias are written Vo(t) = V; and
Vr(t) = Vi.

We first consider the effects of white noise on the 7-¢
characteristics of the system, using the formula (C5) with
.=0, E=1, V, =10, and Vg =0, and using the Padé
expansion with N, = 20 to evaluate all special functions. In
Fig. 3(a), we plot as a function of both the time ¢ and fluctuation
parameter D the long-time average of the symmetrized current,
defined for an arbitrary coupling to the leads as

10— I

I r(t) = >

(60)

Whereas for low D there is an oscillatory “ringing” transient
signal following the switch-on of the bias, for strong fluctu-
ations these oscillations are washed out. The time-dependent
effects of the fluctuation on the decay of modes can be
clearly seen in the general formula (C5). The time scale
of the decaying modes is influenced by the imaginary part
of the complex eigenvalues &; = h; — iy;, from which the
decay time can be given roughly as T = Max{1/y;} [55]. In
addition to terms for which this is the only source of decay,
we note the existence of modes with prefactors of the form
e "™k for integer n, so that an increase in temperature
has the dynamical effect of pushing the system more rapidly
towards its stationary state. Fluctuations on the bias or energy
levels increase the rate of decay in these modes of the current,
which acquire a prefactor of e~ (P+7@)(=) for the mth term
of the summation. The fluctuations therefore speed up the
loss of stable molecular eigenmodes into the leads in a
similar (but not exactly equivalent) way to the temperature
and the level width I', consistently with the discussion of
Egs. (52) and (56) given above. In Fig. 3(b), we show the
time dependence of the bias average N¢(¢) of the particle
number N¢(t) = —2i Trc[GZ5(¢,¢)], which can be evaluated
via the same methods used for the current. The central region
undergoes a fast filling process before asymptoting long after
the most dramatic oscillations in the current have died down,
att ~ 100. This is due to the sparsity of the level width matrix,
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as discussed in Ref. [55]. One can show that in the long-time limit the particle number is given by the expression

(ol lof ey Ty k)
L

|
lim Ne(r) = ;Re;
VELSYS

m=0

Here, W(z) =dInI'(z)/dz denotes the digamma function,
discussed in Appendix C. The plot shows that the steady-state
value of N approaches the half-filled value of 5 as D is
increased, a trend that was also seen in Ref. [29]. We can,
however, make a more general statement about Eq. (61) in the
limit of large D, as the digamma function vanishes and the
resulting expression is simplified using the idempotency rela-
tion (B1) and the fact that ((pf|F|g0,f) = —i(5; — éj)((pflfplf)
to give

Ny
lim Ne() = lim } P!V = N, (62)
k=1

D,t—o00

i.e., it equals half the number of available states (in a spin
degenerate system) for any value of w,.

Now, we move to the steady-state regime and focus on
the effects of white noise on the /-V characteristics of the

J

~ =" T, 1

(0 [Talef ey Ty of)

o0 D n
(o ef Nof |0 )& — éf)n:o<‘76)

(61)

>- %[gj —u—v, —i(D—i—mwc)])]-

(

system, using the formula (C6). Fixing Vx = 0, we vary V,,
so that the molecular chain energy levels are always located
in the bias window where the transport occurs. In Fig. 4(a),
we plot as a function of both the bias V =V, — Vi and
fluctuation parameter D the long-time average of Iy g(¢). In
order to focus solely on the effects of the fluctuations, we
set kgT = 0.1. Whereas the characteristic nonlinear steplike
structure is observed at low values of D [8§9-94], there appears
to be a smooth transition to a linear /-V relation as the
magnitude of the bias fluctuations is increased.

In order to rationalize this behavior, we consider the zero-
temperature limit of (47) for arbitrary noise. The problem
of transport with site fluctuations at low temperature is of
specific interest in the Anderson insulator problem considered
in Ref. [45]. It also provides us with guidance on the qualitative
features one may expect to see in the current as a function of
the bias and the fluctuation parameters D and w,. The formula
(47) in this limit assumes the form

2
. LB Z
}I_IH)]"‘ (Do) = m &
Jiky

Vot 1= (& +ED)2

(o} lof ok lod)ies — 2D

o~ (D\'5~_ =D
)Z<_> 2 G0y

w,
¢ m=0

V, +u— (& +E)2

X | arctan -
|: <D+ma)c+l(é‘,~—

(63)

— )—arctan( — — >]
£1)/2 D +mo. +i(E; — &)/2

As D is increased, the region in which the arctan is approximately linear also increases, and the current’s dependence on the bias
becomes exactly linear, as can be seen from the D > V,,, limit of (63):

lim

(of|TalefNor Ty g )

4
ILBD, ) 2 —
Do) > —

T—0,D% Ve, ”
Jk.y

(ot ef Mol |wd)ig; — &0

n=0 ¢ m=0

© / p\"" (—1y" .
X [Z(w_> Z(n —m)!'m! 2(D + mw,) + i(8; — éz)i|(Va - V).

The obtained expression shows that the fluctuations drive a
transition from nonlinearity in the /-V characteristic current
to an Ohmic regime. It also demonstrates that, when the
noise is white, Ié‘B tends to 0 in the D — o0 limit, i.e., there
is zero net current across the nanojunction. This explains
the approach of N¢(¢) to the half-filling value in the
steady-state and high-D limits: in a given time interval,
electrons have an equal probability of tunneling from the o
lead onto the molecule or in the opposite direction due to
the random flipping of the sign on the potential gradient, so
their probability of occupying the molecular region must be
1 In addition, this nonlinear to linear transition contradicts

2
another key claim of Ref. [31], where it was stated that no

(64)

(

change in the shape of the I-V characteristic results from
the fluctuating level, except that the amplitude of the current
signal is suppressed. To provide some physical insight into
this behavior, we plot in Fig. 4(b) the I-V characteristics of the
same molecular chain system with the fluctuation parameter
kept fixed at D = 0.1, and we instead vary kg T . Interestingly,
this case leads to qualitatively similar results to Fig. 4(a), in
that the current plotted appears not only to have very similar
absolute values, but it also approaches linearity. As discussed
in Sec. IIC for both dynamical and static modes of the
current, the effect of raising the magnitude of the fluctuations
is physically similar to raising the temperature throughout the
system, explaining the classical behavior at large values of D.
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(b)

FIG. 4. (a) The symmetrized current as a function of voltage V and fluctuation D, with kg7 = 0.1, Vxkp =0,I';; =0.5,ss = 0.5, E =
1, A = 0.1. (b) The current in the left lead as a function of V and kT, with D = 0.1 and all other parameters as in (a).

One might intuitively think that the loss of coherence due to
increasing fluctuations in the bias/molecular energies always
tends to weaken the current signal. However, when systems
possess some sort of activation threshold for a transport
process, and a nonlinear dependence on the input signal [95],
it is possible for a noisy environment to actually enhance the
output signal, in a phenomenon known as stochastic resonance
[13-15,17]. Notice in Figs. 4(a) and 4(b) that for V > 1, the
current is always decreasing with D, whereas when V < 1,
the current possesses a negative maximum for a particular
value of D before approaching zero. In the latter case, we
see that the current is a nonmonotonic function of D, as it
approaches a negative resonant peak for a particular value
of D, before decaying to zero. This behavior was seen for a
single-level system in Ref. [29] and is also similar to results
obtained for the Langevin dynamics of Brownian particles in
the asymmetric problems discussed in Sec. III C2 [7,8,12,96].
We emphasize that whereas the resonance of this Brownian
particle occurs in “noise rectifiers” with zero applied bias,
we are instead discussing the effects of noise on a system
with a nonzero average bias. One can interpret the stochastic
resonance in Fig. 4 either in terms of the fluctuating bias or
in terms of fluctuating levels. When V > 1, the molecular
wire energies are always located within the [V, V] transport
window, whereas for V < 1, E is always above this window.
Taking the bias to fluctuate, one should have in mind a
picture of the system where increasing D causes the entire
bias window to fluctuate until it overlaps with the molecular
energy levels, at which point the transport is enhanced. If the
fluctuations are located in the molecular levels, a qualitative
interpretation of the resonance derives from the effective
broadening of the spectral density of states due to a modified
level width [note, however, that Eq. (52) is not strictly valid
in this multilevel system as I'; is not proportional to I'g]
[24,29].

In Fig. 5(a), we plot for 7. = 0 the bias dependence of the
conductance

AT r(t — 00)

G(V;D,w.) = v

(65)

obtained from the long-time limit of I () for the same
parameters considered in Fig. 4(a). We see (as observed

in Ref. [27]) that the conductance behaves similarly to the
transmission function for this system, with a central peak at
Vi =1, because at this point the chain energy E overlaps
with the bias window. This peak then decays with increasing
D, and in understanding the high-D limit it is useful to
once again consider the symmetric single-level system of
Sec. IIIC 1. In this model, one can use Eq. (64) to show
that, for white noise with a large fluctuation magnitude, the
zero-temperature effective resistance R = G~ is given by the
constant

I'+2D
g T +2D)

T (66)

The physics when D is large in our theory is therefore
qualitatively similar to the physics of the Nyquist theorem,
where R scales linearly with D. However, the most interesting
feature of Fig. 5(a) is the existence of a D-dependent resonant
peak occurring for D ~ 1 at all voltages far from the main
resonance. This conductance illustrates that the fluctuations
have two effects on the transport, which compete with each
other in enhancing/destroying the current signal. The main
peak always decreases with increasing D, as this defines the
bias at which resonant tunneling is enabled, and increasing
the fluctuations broadens the energy levels involved in this
quantum process. To illustrate the basic mechanism here,
in Fig. 5(b) we plot G(V; D,w, — o0) for Vg =2 (dashed
lines) beside the conductance for Vg = 0 (solid lines) in the
molecular wire system. This exchanges the positions of Vi
and E without altering the magnitude of |E — Vg|. Hence, the
position of the main conductance peak is shifted to V = —1,
but at large V the conductance is independent of the bias,
and is instead enhanced at an intermediate value of D (red
curves). This value of D corresponds to an optimal spread in
energy levels achieved at the point where they overlap with
the transport window, without being so large that there is a
complete loss of phase in the transport (i.e., when a very small
statistical weight is assigned to resonant energies) [24]. In
Fig. 5(c), the D dependence of the conductance at V = 10 is
shown for different values of the gap |E — V|. The resonant
peak occurs when D ~ |E — Vg|, i.e., the noise provides the
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(d)

FIG. 5. (a) G(V; D,w, — o0) at Vg =0, varying V. (b) G-V characteristics at D = 0 (black), D =1 (red), D =5 (blue) for Vx =0
(full line) and Vi = 2 (dashed line). (c) D dependence of the conductance at V = 10, for |[E — Vg| = 0.5 (black), |E — Vg| =1 (red), and
|E — Vg| =2 (blue). (d) G(V; D,w. — 00) as a function of both D and t. at V, = 10, Vx = 0. All plots use the parameters kg7 = 0.1, I';; =

0.5,ss =05, E=1,A=0.1.

extra energy required for the molecular wire to enter the
transport window. This may have applications in devices where
resonant tunneling is not viable in practice, and the value
of the voltage can only be controlled to lie within a certain
range. Such devices may be tuned so that their conductance
is stochastically enhanced for most values of the potential
difference. Finally, in Fig. 5(d) we plot for the same parameters
as in Fig. 5(a) the V = 10 conductance as a function of D and
T.. In the limit 7, — 0, the white noise conductance shown in
Fig. 5(c) is recovered, with the resonance at D ~ |E — Vg|.
As 7, is increased, this resonance is shifted to a value that is
greater than | E — Vg|, and the rate of decay with increasing D
is slowed down in behavior that is reminiscent of the effect of
color noise on the transmission function, as illustrated above in
Fig. 2(b). In the quasistatic limit of large 7., the conductance
decays to its D = 0 value, as taking 7, — 00 is equivalent
to the zero D (frozen bias) limit in Eq. (40). However, when
the ratio D/t,. ~ 1, the rate of decay to the frozen bias limit
with increasing 7. is slowed down, indicating that there is
competition between very strong fluctuations and increasing
correlation time in the quasistatic regime. This is also apparent
from the general Eq. (48), as increasing D tends to cause
spreading in the effective transmission whereas increasing 7,
has the opposite effect. This behavior in the conductance is
similar to that observed in Ref. [69] for the current through

a ratchet driven by fluctuations with the same correlation
function as Eq. (36).

V. CONCLUSIONS

In this paper, we showed how to calculate the current
through a molecular multiterminal junction due to arbitrary
time dependence of the applied bias and an arbitrary ho-
mogeneous time-dependent shift of the energy levels of the
molecule. First, we showed that the effect of the time-
fluctuating molecular levels can be incorporated into the time-
dependent bias on the leads of the junction, and hence both
effects can be treated on the same mathematical footing. Then,
we assumed that either the bias or molecular energies fluctuate
in time around some time-constant values with a correlation
function given by a single exponential time-decaying function
corresponding to a colored noise with the strength D and
decaying time t.. Under the t. — O limit, this noise becomes
the white one. Hence, an exact analytical formula has been
worked out for the current averaged with respect to this colored
(white) noise at all times. Simplified analytical expressions
have been worked out in each case (white and colored noise,
for long and transient times) which enable straightforward
implementation for realistic systems instead of restricting
ourselves to single-level molecules. Compared with numerical

205408-15



MICHAEL RIDLEY, ANGUS MACKINNON, AND LEV KANTOROVICH

approaches to this problem, which must average across many
realizations of the stochastic bias, our method provides a
massive computational speedup. It will therefore provide an
exact benchmark and source of ideas for the qualitative effects
of noise on transport through interacting systems, or systems
that go beyond the WBLA.

In the long-time limit, the current resulting from a noisy
time dependence has the LB form, and from this an exact
formal relation was derived between the conductance, the
temperature, and the fluctuation strength, which we interpret
as a quantum analog to the classical Nyquist theorem relating
the electrical resistance of a conductor to the temperature and
the strength of the bias fluctuations. We have also discussed
a number of claims made in the literature [31] concerning the
long-time behavior of the current in the junction due to initial
fluctuations of the molecular levels. We find that, at least within
the model considered, both the initial preparation of the system
and initial bias (or energy levels) fluctuations do not affect the
long-time behavior of the current, i.e., our equations do satisfy
the memory-loss theorem [56]. Consequently, we were able to
prove the claims made in Ref. [31] to be false.

Analytic results, as well as the results of our numerical
calculations, performed on a simple five-site atomic chain
bridging two electrodes, show that the current-voltage char-
acteristics of our five-atom system transforms from being
nonlinear at small D to a linear at large D, something which
may have implications for nanodevices. We find that for
very large D the conductance is suppressed, as would be
expected from the classical Nyquist theorem. However, there
exist intermediate values of D at which the conductance may
actually be enhanced, due to a finite-energy threshold that
needs to be crossed for electronic states to enter the transport

J
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window. This “stochastic resonance” occurs due to a tradeoff
between quantum coherence and classical noise, although
similar physics can be seen in the noise-assisted transport of
Brownian particles in spatially asymmetric systems.

A further area for investigation is that of driven noisy
systems, which have attracted attention recently in the context
of quantum pumps created with stochastically deformable
molecules [97]. With our formalism we are able to study
the interplay of ac driving frequencies with the inverse
correlation time and fluctuation strength in an analytically
exact way, combining approaches from [55] and from this
paper. The stochastic resonance effect was initially studied
in driven systems [13,14], and we anticipate the appearance
of frequency- and amplitude-dependent resonances in the
transport for different values of 7, and D, in similar fashion
to studies which add a driving term to the classical Langevin
equation [12,17,19,21-23]. Finally, we have assumed that the
fluctuations in each lead are of the same nature, i.e., that the
fluctuation magnitude D and its decay time t, are independent
of the lead index . However, the formalism developed above
can be easily extended to the treatment of transport caused
by asymmetric fluctuations through the introduction of lead
indices on D and 7.
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APPENDIX A: LINE INTEGRAL FOR THE GREATER GREEN’S FUNCTION

We first note that the Hamiltonian for the vertical part of the contour is identical to that used in Ref. [54], and so the Matsubara
components of the central region Green’s function specified by the Hamiltonian in Eq. (8) has already been published there.
Using the expression for the retarded self-energy from Ref. [54], the equation of motion for the right Green’s function component

is manipulated into

1
dt

d -~ il | l
['— — hﬂG (t1,12) = [2 % GM(y 1) + Ve ()G '(11,12),

(AD)

where “+” denotes an integral taken along the vertical part of the contour, and all matrices in bold type are defined in the CC
matrix block. Equation (A1) can be solved if one makes the substitution

G (1.1p) = e MO iec G (1) 1)), (A2)
We can therefore obtain the following equation for the reduced object (~}j(t1 ,T0):
dG (1,7 o A
d(tll 2) = —jeih "(fl—to)elwc(tl,to)[z—‘ * GM](tl,rz)v
which is solved by taking into account the appropriate boundary condition G—I(Z‘Q,Tz) =G (f),1n) = GM (0T, 1,):
e . i _ Yleff . -
G (. 1p) = M iect) [GM@*@) —i / di Mg GMJO-,T;] (A3)
1y
Similarly, the left component is given by
t ~ s ~
Gr(‘tl ) = |:GM(‘L'1 0t +i / ’ df[GM « E'_](T t_)ei(hC")T(ffo)eiwc(fyfo)i|ei(h°”)*(fzto)eifpc(fz-,to) (A4)
) ’ 1s *
fo
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Note that the obtained expressions contain exponential functions of the matrix heff, and O* is slightly larger than 0. Formally,
Egs. (A3) and (A4) for the right and left Green’s functions in terms of different components are identical to those given in [42]
for the constant bias switch-on case, with the addition of the ¢¢ phase factors. For completeness, we add that the Matsubara
component of the Green’s function is unchanged from the expression given in [42,55] (note that h* is defined without the tilde):

i i [(wy + w)lee —h~1 Im(w,) > 0
GM , — l_ —wq(‘fl—‘m)GM = l_ —a)q(‘fl—‘[z) q q AS
=3 ;e @)= ;e ! [0, + Wlec — BN, Im@p <0.

When we project Eq. (12) and its complex conjugate onto the greater component, using appropriate Langreth rules and the known
expression for the retarded self-energy, we obtain the following equations of motion for the greater Green’s function:

d
[ an heﬁ:|G>(f1,fz) =[2G+ 3« Gy + Ve(t)G” (11,12), (A6)

. d 1 eff r > a >
G>(t1,tz)[—z£—hﬂ =[G - X7 4+ G * 4.0 + G (11.0)Ve(tr). (A7)

Here, the “centerdot” denotes an integral taken along the horizontal part of the contour. We now look to put the WBLA
Kadanoff-Baym equations for the greater Green’s functions into a form suitable for the integration. This is done by introducing
the “tilded” greater Green’s function G~ (¢;,1,) via the transformation

G (t1,hh) = e*lh (tlfto)G>(t1’tz)elhTCff(trto)e*iwc(tlJz)_ (A8)

This is substituted into the WBLA Kadanoff-Baym equations (A6) and (A7) to finally obtain integrable first-order differential
equations for Gg . (t1,1):

3G~ (1.1)

- _ieiﬁer{(n _to)[2> el + ET . Gr]([],tz)e_imerr(lz—lo)eitﬂc(llJz)’ (Ag)
1
~> ~ ~
G a(ttl,m) _ ieiheff(tlfm)[Gr T4 G‘l N Er](ll’lz)efihfeﬂ(tzﬂn)e[wc(tl,12). (A10)
2

The analyticity of the Green’s function (proven in Ref. [54]) means that the tilded Green’s function is calculated using a line
integral along the path (#p4,t—) —> (t1+,%—) —> (t1+.»—) on the (¢1,;) plane, where tp_ = fy + i0 is the time #; on the upper
horizontal part of the contour, while 7y, = fy — i0 is the later time lying on the lower horizontal track of the Konstantinov-Perel’
contour. Hence, the greater GF can be found from the line integral

~ ~ I s L
G™(t1,10) — G™ (to4 .10 ) = —i / di ™ O[S LG B % G g g e

fo

15 ~ ~ 4
. — peffos —ihteff (7, — i
—H/ di MG BT 4+ G x By, e M ) pivcnd) z§ G- (A11)

Ty i=1

To evaluate the boundary condition (}>(t0,t0) = GM(0%,0), we use the theorem [42]

*©d +
= Z Qe = / Sl = f@)e ™ [Q(w+i0) = Q( = i0)]. (A12)

This lets us extract the functional form of the initial condition for the line integral in (A11):

~ d
G (to1.10-) = —i /_ 5l S 1Y Ao (A13)

Above, we have introduced the spectral function A, (w) = G"(w)[", G*(w) for the o lead. We now present some details of the
analytic evaluation of the convolution integrals G7,. This derivation is based upon the similar derivation of [42] for the lesser
Green’s function of a single time, and details for the lesser Green’s function can be found in Ref. [54]. There are now four
convolution integrals to perform. First, we can see that Qa) = 0 because

t eff - . —
(27 - Gy = / di'S> (F,7)i0(ty — 7')e M T gmive@) —

lo

Next, we must consider the object [X ' » Gr]@, w_)- From the exact expressions derived for the right and Matsubara GFs, and the
fact that [Z "« GM » £"]7 7 = 0, it quickly follows that

—iw(f—ty)

dow e "
=iy (f,10) M —w40
(57 %Gl , = zrez )3 /Zm — G e

g=—00
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Using the identity (A12) and doing the resulting contour integrals, one can remove the Matsubara summation
o F do o
E . — —iy(f,10) —iw(t—to)
[2 *G I = —I;Fae Wa(tlo / E[l — flw — p)]e "G (w).
The remaining part of the integral taken between f( and #; is then expressible as
> d(l) a

Ga = —Xaj / 51— @ — K110 0)T oG @),

where we have defined the following matrix object for the o lead:

t ~ e
K, (t.t0; 0) = / dF e~ 1(@1=0")T—10) yilpc —Ya)(F.10) (A14)

fo

Note that this definition of the K, only differs from that given in [54] by the phase factor /¢ and the modified Hamiltonian h.
The third convolution integral is obtained from G” - £~, which is easily evaluated using Eq. (19) and the self-energy component
from Ref. [54]:

d
Gay =iy / Sl = (@ = IKa(i1.00: K (12,1030,

We have in the final term the vertical contour convolution

“heff P Teff,
(G 2 iy =" (tlZO)Ele(tl’tO)l:[GM*Er](m,f)—i f dil ™ et 5 GM x B g, ,>]

Io

Using similar techniques to those in [42,54], and making use of the identity (A12), we obtain
G = Z/ TN~ flw — WIG @K (110:0)
(4)—a 7 w ol (12,00, ).

Collecting all the terms together now, we map back from the transformation (A8) and use the initial condition (A13) to get the
greater GF:

. STeff d
G™(t1,1y) = —e Wel) TN~ / %[1 — fl@— w1 _{Ka(t1.10;0)T oG (@) — G (@)K (12, 10; )

i [Ka (11,03 )T KL (12,103 @) + Ag (@) om0 fve0, (A15)

A similar formula to Eq. (A15) can be found for the lesser Green’s function, but we can represent it more compactly than in
previously published work if we introduce the matrix S, defined in Eq. (22). It is then seen that the greater and lesser Green’s
functions can be written as in Eq. (23), and all transport quantities can be represented in terms of the S,,.

APPENDIX B: QUASISTATIC FORMULAS

To project the formula (39) onto the left/right eigenbasis, we insert (40) in all places where the phase average appears and
make use of the following idempotency relation:

sl s lelel] .

J|(pJ) ]‘QD/)

This identity is used twice in the part containing the double-time integral in the current formula (39), and once everywhere else,
to give for the bias-averaged current

ei(wfs,»)(tfto)
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- T [D D) (0 —E))
+ i erf t—t +l erf( i ——2= | | +cc.ion
\/2ch{ w—V,—& |: ( ~ 0) V27 Do, a)L> ( «/27Tch>:| ! k}
+e i EmE00) / Cdx /  dy eiomm iy = B ("‘”2> (B2)
0

Here, we use the notation c.c. ;. to denote the complex conjugation of the preceding term with indices j and k exchanged.
The double integral on the final line can be removed with the aid of the mathematical identity

A . 1 . . p? D | D
/ dxerf[B(x 4+ C)]e!P* = — | ePAer[B(A + C)] — erf(BC) — e PCe~ i | erf( B(A + C) — 2= ) — exf( BC — = ) |}
A iD 2B 2B

Following some tedious but mathematically trivial manipulations, one finally ends with a closed expression for this double
integral. To simplify the resulting formula, we note that because I' = i (h*f — h°ff"), the identity

(ofITulef) = i@ — Do) lof) = D (eI |of)

y#a
must be valid and so the following relation can be proven:
(e} |Talef) o |Talei ey [T lot) o |Talof Ny [Ty le)
fa X [fa f A —x Cj. (BS)
B RO W o AR DR v e

In this expression, f, can be any function of parameters which depend on the lead index y. This leads us finally to reexpress
(B2) as a sum of a term that decays to zero asymptotically and a term which is of the LB type:

1
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where we make the definition of the time—dependent transmission probability:

of |Talof o7 Ty |of)
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The LB term therefore depends on ¢ — 7, at finite times but has an asymptotically finite value given by Eq. (43), while all other
modes of the current vanish asymptotically. It should also be noted that in the long-time limit, all the dependence on the lead
index y goes into the Fermi function and level width matrix.

APPENDIX C: EXACT TIME-DEPENDENT CURRENT FOR COLORED NOISE BIAS

When deriving the bias-averaged current for arbitrary values of 7., one inserts (46) into (39), and evaluates the subsequent
formula in the left/right eigenbasis as was done for Eq. (B4). Once again using the relation (B3), it is possible to split the formula
for the time-dependent current into a part that converges to a fixed value and a part that decays to zero with increasing ¢t — #y:

L0 =3 [dolf@= Vo= 0= f@=V, = WITu(o.D.0)
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where Tgq(w,D,w,) is given by Eq. (48).

For numerical implementations, it is useful to replace the frequency integrals in Eq. (C1) with summations. This can be done
by inserting Eq. (53) into the current formula and removing all time integrals explicitly, as discussed in Sec. III C2. One can
use either the Padé or Matsubara expansions to do this. If the Matsubara expansion is used, all integrals can be analytically
carried out and the resulting summations expressed in terms of special functions. The first of these is the so-called Hurwitz-Lerch
transcendent ® [98]:

o n

(z.5,0) = Z(n ia)s. (C2)

n=0

This arises from Eq. (C1) via integrals over terms of the form ¢’“? /(w — z), where z is a complex valued pole. We also need the
digamma functionW, defined as the logarithmic derivative of the complex gamma function [58]. The difference of two digamma
functions is equal to the infinite series which arises from terms with a double-pole structure:

V() —¥() 1
= . C3
21— 22 ;(n+m)(n+12) ©

We introduce the following compact notation:

&(B,7,2) = exp <—%’>q><e—2”ﬁ’,1,% n 2%) (C4)

The average current can then be expressed entirely in terms of embedded summations over special functions:
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In the long-time limit, one can use the theorem (B3) to show that (C5) reduces to the following form:

R N (el [Tale Yoy Ty k)
toglzloola(t) - ;Z(a)_c) Z(n —m)!m!jZ<

n=0 m=0

¥zt i) o
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2 2nm

1B , 1
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2 2w

R A )

5 %[éz —u—=Vy+i(D —l—ma)c)]).
B

5 ﬁ[é:—u—vyw(mmwc)])}. (C6)

It can be easily seen, by inserting the Matsubara poles into the expression for IO%B(D,a)C), Eq. (54), that it is equivalent to (C6).
However, Eq. (C6) allows for a much faster numerical implementation of the asymptotic current average.
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