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Temperature-dependent nonlinear Hall effect in macroscopic Si-MOS antidot array
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By measuring magnetoresistance and the Hall effect in a classically moderate perpendicular magnetic field in a
Si-MOSFET-type macroscopic antidot array, we found a nonlinear with field, temperature- and density-dependent
Hall resistivity. We argue that this nonlinearity originates from low mobility shells of the antidots with a strong
temperature dependence of the resistivity and suggest a qualitative explanation of the phenomenon.
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Low-field Hall resistance (Rxy) is broadly used to determine
electron density. In two dimensions, one has Rxy = B/ne

[where n is the electron density, B is the magnetic field,
perpendicular to the two-dimensional (2D) plane, and e is the
electron charge]. Remarkably, within the classical treatment,
Hall resistance coincides with Hall resistivity and does not
depend on geometry, e.g., if a hole is drilled in the 2D gas, the
current flow will be redistributed while the Rxy value will stay
the same. On the other hand, such geometrical constriction
effectively admixtures Corbino geometry to the ordinary Hall
bar, thus leading to huge positive magnetoresistance [1].

One of the ways to experimentally tune the parameters of
the drilled holes and 2D gas independently is by a double-gated
antidot array (AA), where the electron density at the dots
and residual 2D gas is controlled by two independent gate
electrodes. Antidot arrays give a vast parametrical space (mean
free path, densities of the 2D gas and antidots, sizes of
the antidots, and distances between them). Their transport
properties might be studied in various magnetic fields at
various temperatures.

As a rule, the bare 2D gas that hosts the AA has a rather high
carrier mobility that allows one to study oscillatory effects: ei-
ther quantum interference effects (Altshuler-Aharonov-Spivak
oscillations [2]) or quantization effects (commensurability
oscillations [3]). Quenching of the low-field Hall effect in
AA was also addressed within classical billiard models [4]
and was even detected experimentally [3].

In order to suppress the above-mentioned ballistical effects,
we study classically large micrometer-sized antidots in low-
mobility 2D gas, i.e., both the size and distance between the
antidots are much larger than the mean free path and magnetic
length for reasonable fields (a few T). The boundaries of our
antidots are also classically smooth (compared to those needed
for clear oscillatory effects—see, e.g., Ref. [5] and references
therein).

Theoretically, the problem of the Hall effect in a two-
dimensional inhomogeneous system is a very longstanding
one (see, e.g., Ref. [6] for a review). The most recent
theoretical calculations were performed by Bulgadaev and
Kusmartsev within the effective media approach [7,8] and by
Parish and Littlewood within the random lattice method [9].
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Both approaches open the possibility for the nonlinear field
dependence of the Hall resistance.

Samples used. We used lithographically defined Hall-bar-
shaped Si-MOSFETs containing an AA with two indepen-
dent gates: one for the antidot array Va and one for the
remaining 2D gas (R2DEG) Vg . Independently on the same
chip we defined separate Hall bars without antidots obtained
within the same processes. We therefore could independently
measure the transport properties of both pristine 2D gas
and R2DEG. The samples were produced similarly to those
used in Ref. [10]. The substrate was doped and preserved a
certain conductivity (R � 1 G�) down to 20 K, therefore all
measurements were performed at lower temperatures.

The dimensions of the Hall bars with AA were 0.4 mm ×
0.4 mm; the dimensions of the Hall bars with pristine 2DEG
were 0.1 mm × 1 mm. All distances and the schematic
geometry of the antidots are shown in Fig. 1. About 400 chips
were defined lithographically on one 4 in. wafer. There was a
variation in sample properties (mobility, gate oxide thickness)
from chip to chip, probably caused by temperature gradients
during the sample fabrication (growth of the thermal oxide, dis-
tribution of impurities). The effects discussed below, however,
were reproducibly observed on several samples with various
parameters.

Measurements. The measurements were carried out in a
temperature range 2–20 K using a PPMS-9 cryomagnetic
system. The measurement current was in the range 50–200 nA
to ensure the absence of overheating. All measurements were
performed in the frequency range 13–18 Hz using lock-in
amplifiers. The resistivity (Hall resistivity) data were collected
during field sweeps (typically from −7 to 7 T) and then
symmetrized (antisymmetrized).

Results. Bare 2D gas manifested a mobility of about
1 m2 V/s at helium temperatures. The magnetoresistance
ρxx(B) was weak and negative: In the lowest fields (<
0.4 T) this negative magnetoresistance originates from the
suppression of weak localization, in larger fields negative
magnetoresistance is always observed in high-mobility Si-
MOSFETs [11–13]—it is probably related to electron-electron
interactions and is still not understood. Starting from ∼ 2 T,
Shubnikov–de Haas oscillations develop.

Hall resistance is a linear function of the magnetic field, as
it should be (see Fig. 2). In the lowest fields (as indicated in
the inset to Fig. 2) there is a small feature close to B = 0. This
feature was already thoroughly analyzed by us (see Appendix
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FIG. 1. (a) Optical image, (b) atomic force microscopy (AFM)
image, and (c) schematics of the gating of the studied antidot array.

B in Ref. [14]): We cannot explain it with any existing theory,
although we can state that it is probably related to weak
localization, similarly to the feature observed by Minkov et al.
[15]. The density of the electrons extracted from the Hall slope
is roughly proportional to the gate voltage n ∝ Vg . Resistivity
of the bare 2DEG does not show any hysteresis with the gate.

The resistivity of R2DEG from the same chip with the
same oxide thickness (sample AA1, Fig. 3) is larger than
that for bare 2DEG (this is evident because of the constricted
geometry and effectively larger l/w ratio). The deviations of
the magnetoresistivity tensor for R2DEG from that for the
bare 2D gas become more and more pronounced as AA gets
more and more depleted. The Va value, however, should not be
negative in order to avoid irreversible changes, accompanied

FIG. 2. Magnetoresistance and Hall resistance Si-MOSFET of
Hall bar geometry for two representative gate voltages at T = 2 K.
The inset shows the Hall slope (Rxy/B) vs magnetic field.

by long equilibration due to recharging of the impurity states.
R2DEG demonstrated relaxation processes after changing the
gate voltage. The equilibration time increased with decreasing
temperature. In order to ensure an equilibrium state we always
swept the gate voltages at elevated temperatures. We present
below the most representative figures for Va = 0 in a wide
range of densities (Vg) [see Figs. 3(a), 3(b), 3(d), and 3(e)].

With antidots the behavior of the Hall effect and magne-
toresistance changed considerably: Magnetoresistance became
essentially positive, and the Hall effect started to deviate
from a linear-in-B behavior. Positive magnetoresistance in a
nonuniform system is not surprising (see, e.g., Ref. [16]) and
follows from simple geometrical constriction [9], whereas the
correction to the Hall effect is much less trivial.

The Hall slope versus magnetic field is shown in Figs. 3(c)
and 3(f). It differs dramatically from those in the inset to Fig. 2.
The features of the Hall slope are as follows: (i) Similarly to
the bare 2DEG, the Hall effect has a low-field feature and
traces of Landau quantization; (ii) the zero-field Hall slope is
temperature dependent, and it appears as carriers are frozen
out as T decreases; (iii) the coefficient c in the low-field

FIG. 3. (a), (d) Magnetoresistance, (b), (e) Hall resistance, and
(c), (f) Hall slope for R2DEG (sample AA1) at (a)–(c) Vg =
6.3 V, Va = 0 V and (d)–(f) Vg = 11.5 V, Va = 0 V for various
temperatures (red, 16 K; orange, 8 K; blue, 4 K; black, 2 K). In
(c) and (f) the dotted lines indicate the parabolic-in-field, low-field
behavior of the Hall coefficient (see text).
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FIG. 4. Temperature dependencies of the fitting parameter c (see
text and Fig. 3) for sample AA1 and various gate voltages, shown in
the panel. The dotted line indicates 1/T dependence.

expansion of the Hall slope (ρxy/B ≈ a + cB2) is temperature
dependent and behaves approximately as 1/T (see Fig. 4);
(iv) the coefficient c weakly depends on carrier density;
and (iv) the value of the Hall slope for the RDEG itself is
essentially higher than one would expect from bare 2D gas
[e.g., in Fig. 3(c) the Hall slope is more than 1 k� per T,
whereas the expected value of the density n = 1012 cm−2,
which corresponds to Vg = 6.3 V for bare 2DEG, should give
a Hall slope about 630 � per T].

Discussion. The above observations imply that the AA
gives rise to corrections to the Hall resistance, similarly
to additional scatterers adding up to longitudinal resistance.
This correction seems to be density independent in a certain
density range and sensitive to temperature and magnetic
field.

An explanation of the phenomenon is required. The
essential ingredients of such an explanation are as follows:

1. The antidots themselves are nonconductive (Va = 0),
however, they are surrounded with a weakly conductive shell
with decreased electron density. The typical width of the shell
might be about 50–200 nm. The width is determined by the
gate oxide thickness.

2. The diameter of the antidot is about 3.5 μm, and the
distance between antidots is effectively about 1 μm (see the
AFM image in Fig. 1). The typical density of the R2DEG is
5–10 × 1011 cm−2, the mean free path is about 80 nm, and in
the shells the mean free path is smaller.

3. For Si-MOSFETs of similar mobility (∼ 1 m2/V s), the
resistivity has a strong “metallic” temperature dependence in
the range of densities n ∼ 2–5 × 1011 cm−2 and temperatures
T ∼ 2–10 K.

We note that qualitatively similar behavior (i.e., the Hall
coefficient growing with field) was obtained theoretically in
all cases for a nonuniform system in Ref. [9]. This behavior
is opposite to that for the frequently used two-liquid model:
In a mixture of two types of carriers of the same sign but
with different mobilities, the low-field Hall coefficient cLF is
determined by higher-mobility carriers n−1

HM, which is always
larger than the high-mobility Hall coefficient cHF that is

FIG. 5. (a) Schematics of the antidots with shell. (b) Carrier
density (or local conductivity) distribution in a lateral direction with
three typical points, indicated A, B, and C. (c) Density dependence of
the mobility for the bare 2DEG of the sample AA1. (d) Temperature
dependence of the resistivity for points A, B, and C, indicated in
(b) and (c).

determined by the total carrier density (nHM + nLM)−1; see,
e.g., Ref. [17].

On the basis of the above facts, we suggest the following
possible explanation for the phenomenon: In 2DEG with an
AA [shown schematically in Fig. 5(a)], the zero-field density or
local B = 0 conductivity distribution is shown in Fig. 5(b). In a
zero magnetic field, electrons in the shells [point B in Fig. 5(c)]
have both a lower density and mobility than R2DEG [point A
in Fig. 5(c)], and weakly participate in the charge transport,
because the conductivity σ = neμ is small. A nonmonotonic
μ(n) dependence, and particularly a drop in mobility at low
densities, is well known for Si-MOSFETs [18] and crucial for
further explanations.

Current redistribution occurs in the magnetic field . Al-
though modeling of magnetotransport through a nonuniform
system is a complicated task, an idea why the lower-mobility
shells contribute more in higher fields may follow from
the simple Drude theory. Indeed, in uniform 2D systems,
in a perpendicular magnetic field, the conductivity tensor
components are expressed as σxx = neμ(1 + μ2B2)−1 and
σxy = μBσxx . It means that the conductivity of lower-mobility
shells drops with field not as rapidly as the conductivity of the
higher-mobility R2DEG, i.e., as the magnetic field increases,
the contribution of the shells to transport grows and the Hall
resistance becomes larger because the density in the shells is
lower than in R2DEG.

A clue to the explanation of the strong temperature depen-
dence of the effect might be the strong temperature dependence
of the resistivity (1/σ ∝ R ∝ A + BT ; see Ref. [19]): Figure
5(d) shows the temperature dependencies of the bare 2DEG
resistivity in points A, B, and C from Fig. 5(b), corresponding
to the R2DEG, the active part of the shell, and the insulating
part of the shell, respectively. The temperature dependence of
the resistivity in the shell is much stronger than that in R2DEG.
At lower temperatures the mobility of the active part of the
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FIG. 6. (a), (c) Hall slope and (b), (d) magnetoresistance for
sample AA2 at 2 K (blue curves) and 10 K (red curves). Va = 0
everywhere. (a), (b) Vg = 6 V. (c), (d) Vg = 2 V. In (c) the dashed
lines indicate a parabolic-in-field correction to the Hall slope.
Constant c of this parabola is indicated in the panel.

shells increases, and their contribution even at zero field also
increases, which explains why the low-field Hall coefficient
grows as T decreases.

The lateral width of the shell is determined by the geometry
of the system (gate thickness). If the density, and hence
conductivity, of the 2D gas becomes very high, the size and
contribution of the high-mobility, low-density area should
become negligible. Figures 6(a) and 6(b) demonstrate the
effect of increased density for sample AA2, which has a
thinner oxide layer compared to AA1 and hence thinner shells
of the antidots. It is easy to see that although Hall effect
nonlinearity exists, its temperature dependence weakens, as
expected. Because of large carrier density, a whole palette of
magneto-oscillations from the bare 2D gas becomes clearly
seen. We note that in sample AA2, in spite of such high
electron densities (∼ 1.5 × 1012 cm−2), another fingerprint
of a nonuniform system, i.e., positive magnetoresistance, is
observed, similarly to sample AA1.

When we decrease the density [see Figs. 6(c) and 6(d)], the
behavior of magnetoresistance and Hall slope in sample AA2
changes: Magnetoresistance at low T becomes negative due to
2DEG, as it used to be close to the metal-insulator transition,
and the correction to the Hall coefficient becomes temperature
dependent. The dependence is weaker than 1/T (c = 8 � T−3

at 10 K and c = 16 � T−3 at 2 K). We believe this is because
2DEG itself has its own strong R(T ) dependence, so the

contribution of the shells to the Hall resistance on top of the
R2DEG is not as distinguishable as it is in sample AA1. The
strength of “metallicity” is also well seen from Fig. 6(d): As
T increases by a factor of 5, the resistivity triples.

It worth noting that since the mean free path and coherence
length are much less than the size of the antidots and
their period, spatial ordering of the AA is not essential for
nonlinearity of the Hall effect. In order to maximize the
effect, one should merely fabricate the sample with a maximal
fraction of the shells, i.e., the gate insulator thickness dG should
be increased, whereas the diameter of the antidot should be
decreased down to a minimal possible value (∼ 2dG, otherwise
depletion in the antidots will not be achieved). The density of
the antidots should also be maximized, e.g., by arranging the
antidots in a triangular lattice.

In order to observe the nonlinear Hall effect we expect that
the local conductivity approximation should be valid, i.e., the
mean free path has to be smaller than all other length scales,
which means that the effect should be preferably observed in
low-mobility systems. It also means that the coexistence of our
phenomenon and well-known commensurability oscillations
is impossible, because the latter are essentially ballistic
phenomena and require that the cyclotron radius rc ∼ lB =
26 nm × √

B (B is measured in T) should be comparable with
the period of the antidot lattice, and no scattering should occur
during the cyclotron rotation, i.e., ωcτ ≡ μB > 1.

To summarize, we have observed an interesting effect
in magnetotransport of the macroscopic gate-defined antidot
array: a positive and temperature-dependent correction to the
Hall resistance. We believe that this correction originates from
the shells of the antidots, which have a lower carrier mobility
than the bare 2D gas. We suggest a qualitative explanation
of the phenomenon: In a perpendicular magnetic field, the
conductivity of the 2D gas drops—the larger the mobility, the
larger is the drop. Correspondingly, with increasing magnetic
field, a current redistribution occurs in favor of the lower-
mobility, lower-density shell regions, and those in turn increase
the total Hall resistance. The temperature dependence of the
effect originates from a strong temperature dependence of the
resistivity in Si-MOSFETs. This qualitative model requires
further justification by microscopic theory.
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