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Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail
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Multiscale plasmonic systems (e.g., extended metallic nanostructures with subnanometer inter-distances) play
a key role in the development of next-generation nanophotonic devices. An accurate modeling of the optical
interactions in these systems requires an accurate description of both quantum effects and far-field properties.
Classical electromagnetism can only describe the latter, while time-dependent density functional theory
(TD-DFT) can provide a full first-principles quantum treatment. However, TD-DFT becomes computationally
prohibitive for sizes that exceed few nanometers, which are instead very important for most applications. In
this article, we introduce a method based on the quantum hydrodynamic theory (QHT) that includes nonlocal
contributions of the kinetic energy and the correct asymptotic description of the electron density. We show
that our QHT method can predict both plasmon energy and spill-out effects in metal nanoparticles in excellent
agreement with TD-DFT predictions, thus allowing reliable and efficient calculations of both quantum and
far-field properties in multiscale plasmonic systems.
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I. INTRODUCTION

Plasmonic systems have received a renewed great deal of
attention for their ability to localize electromagnetic radiation
at visible frequencies well below the diffraction limit and
enhance the local electric fields a hundred times the incident
radiation [1–3]. These properties make plasmonic structures
valuable candidates for enhancing nonlinear optical phenom-
ena [4], controlling surface reflectance properties [5], enhanc-
ing the far-field coupling with nanometer-sized elements [6–8],
such as quantum emitters, and studying fundamental phe-
nomena [9–11]. In particular, nanostructures supporting gap-
plasmon modes [12] constitute an important platform. Ad-
vances in nanofabrication techniques [13,14] have made it
possible to achieve separation between two metallic elements,
i.e., particles or nanowires, of only a fraction of a nanometer.
At such distances nonlocal or quantum effects becomes non-
negligible. It has been shown that the resonance of nanoparticle
dimers or film-coupled nanospheres can be perturbed by such
effects [9,11,15]. Form the theory stand point, it may be really
challenging, if not impossible, to accurately describe at once
the entire multiscale physics involved in such systems. On
the one hand, one has a macroscopic electromagnetic system
constituted by the whole plasmonic structure, on the other
hand, as the gap closes it is crucial to take into account the
quantum nature of the electrons in the metal [16,17].

A time-dependent density functional theory (TD-DFT)
approach allows the exact calculation of plasmon, as well as
single-particle, excitation energies in both finite and extended
systems [18]. It can be implemented both in real-time propaga-
tion [19,20], and frequency domain linear-response [21], and
can serve as a reference for developing approximate schemes.
In the context of plasmonics, TD-DFT has been largely
applied to nanosystems with an atomistic description [22]
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or employing a jellium model [23,24]. Recently, TD-DFT
has been applied to metallic wires with a diameter up to
20 nm [25,26] and to metallic spheres (and sphere dimers) with
around 1000 valence electrons [27–31]. For larger systems
TD-DFT rapidly becomes computationally prohibitive, as all
single-particle orbitals need to be computed.

An alternative approach is to use a simple linearized
Thomas-Fermi hydrodynamic theory (TF-HT), also known
simply as the hydrodynamic model, which takes into account
the nonlocal behavior of the electron response by including
the electron pressure [32–35]. The introduction of an electron
pressure term in the free-electron model accounts for the Pauli
exclusion principle within the limit of the Thomas-Fermi (TF)
theory [36]. In contradistinction to the treatment of the electron
response in classical electromagnetism, where induced charges
are crushed into an infinitesimally thin layer at the surface
of the metal, the induced electron density in the TF-HT
approach rather spreads out from the surface into the bulk
region [34]. In fact, the TF-HT method is usually combined
with the assumption that the electrons cannot escape the metal
boundaries (hard-wall boundary conditions). The advantage of
TF-HT with respect to full quantum methods is that it can be
easily employed for structures of the order of several hundred
nanometers in size.

The TF-HT model dates back to the 1970s [37–39] and
closed-form analytic solutions exist for the homogeneous
sphere [40–42]. Nonetheless, its applicability in complex
plasmonics has been limited by the absence of experimental
confirmation or the validation by higher level theoretical
methods, which are needed to verify the assumptions and
approximations used in constructing solutions. In the last
decade, however, the improvement of fabrication techniques
and the proliferation of self-assembling colloidal plasmonic
structures have provided a robust platform [43,44] for studying
extremely subwavelength optical phenomena, thus reinvig-
orating the interest in TF-HT [45–53]. In particular, Ciracı̀
et al. applied the TF-HT method to plasmonic nanostructures
consisting of film-coupled nanoparticles and found that the
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model can provide predictions that are both in qualitative
and in quantitative agreement with experiments [9]. More
recently, TF-HT results have been compared with TD-DFT
calculations [25,54], showing some limitations. In fact, essen-
tial effects such as electron spill-out and quantum tunneling
are completely neglected. In order to include such effects,
other methods based on effective descriptions have also been
proposed [26,27,51,55,56], as well as methods based on the
real-time orbital-free TD-DFT [57,58].

To include spill-out effects in TF-HT the first step is
to consider the spatial dependence of the electron density.
This scheme traces back to the 1970s both for finite systems
(e.g., atoms) [59–61] and surfaces [38,62,63], and has been
recently reconsidered using equilibrium electron density from
DFT calculations [64]. When spatial dependence of the
electron density is included, however, one should consider
nonlocal contributions, namely the von Weizsäcker term,
to the free-electron gas kinetic energy, in place of the
simple TF kinetic energy. This approach is usually named
quantum hydrodynamic theory (QHT), and it has been widely
used in photoabsorption of atoms [65], metallic nanoparti-
cles [66,67], plasma physics [68–71], and two-dimensional
magnetoplasmonics [72,73]. Very recently, the QHT method
has been systematically investigated for surfaces [74] and a
self-consistent version of QHT has been presented and applied
to plasmonic systems [75,76]. However, the impact of the
electronic ground-state density on the QHT optical response
is yet unclear.

In this paper, we will first study the influence of the ground-
state electron density profile on the linear response of metallic
nanospheres described by using the QHT method and compare
our results with reference TD-DFT calculations. We find that
QHT can accurately describe both the plasmon resonance and
the spill-out effects only when it is combined with the exact
DFT ground-state density.

Secondly, we will show that by using an analytical model
for the ground-state electronic density, it is possible to
reproduce TD-DFT results and to include retardation effects
simultaneously, thus allowing the calculation of plasmonic
systems exceeding 100 nm.

II. QUANTUM HYDRODYNAMIC THEORY

Within the hydrodynamic model, the many-body electron
dynamic of an electronic system is described by two

hydrodynamic quantities [77,78]: the electron density n(r,t)
and the electron velocity field v(r,t). Under the influence of
the electromagnetic fields E and B the electronic system can
be described by the following equation [35,79]:

me

(
∂

∂t
+ v · ∇ + γ

)
v = −e(E + v × B) − ∇ δG[n]

δn
, (1)

with me and e, the electron mass and the electron charge
(in absolute value), respectively, and γ the phenomenological
damping rate. The energy functional G[n] contains the sum of
the interacting kinetic energy (T ) and the exchange-correlation
(XC) potential energy (UXC) of the electronic system. In
DFT the XC potential energy is defined as UXC = EXC −
(T − Ts) [36,80] where EXC is the XC energy and Ts is
the noninteracting kinetic energy: Thus we have G[n] =
T [n] + UXC[n] = Ts[n] + EXC[n]. In this work we employ
the following approximation for G[n]:

G[n] ≈ Gη[n] =
(

T TF
s [n] + 1

η
T W

s [n]

)
+ ELDA

XC [n], (2)

where T TF
s [n] is the kinetic energy functional in the TF

approximation, T W
s [n] is the von Weizsäcker kinetic energy

functional [36] and ELDA
XC [n] is the local density approximation

(LDA) for the XC energy functional. The expressions for these
functionals can be easily found in the literature (see, e.g.,
Ref. [81]); here we report the expression for their potentials
obtained by taking the functional derivative with respect to n:

δT TF
s

δn
= (

Eha
2
0

)5

3
cTFn

2/3, (3a)

δT W
s

δn
= (

Eha
2
0

)1

8

(∇n · ∇n

n2
− 2

∇2n

n

)
, (3b)

δELDA
XC

δn
= (Eh)

(
−a0

4

3
cXn1/3 + μC[n]

)
= vXC(r), (3c)

where Eh = �
2

mea
2
0

is the Hartree energy, a0 is the Bohr

radius, cTF = 3
10 (3π2)2/3, and cX = 3

4 ( 3
π

)1/3. Equation (3),
as well as other formulas in this paper, are in S.I. units;
expressions in atomic units (a.u.) can also be easily obtained by
considering that Eh = a0 = me = � = 1. The term in Eq. (3c)
is the XC potential vXC(r); the correlation potential μC[n]
(in atomic units) is obtained from the Perdew-Zunger LDA
parametrization [82]:

μC[n] =
⎧⎨
⎩

ln(rs)
(
a + 2

3crs

) + (
b − 1

3a
) + 1

3 (2d − c)rs, rs < 1,

α+( 7
6 αβ1)

√
rs+( 4

3 αβ2)rs

(1+β1
√

rs+β2rs)2 , rs � 1,

with a0rs = ( 3
4πn

)1/3 being the Wigner-Seitz radius. The coeffi-
cients are a = 0.0311, b = −0.048, c = 0.002, d = −0.0116,
α = −0.1423, β1 = 1.0529, and β2 = 0.3334 [82].

The key parameter in Eq. (2) is η, which is in the range
[1,∞] (usually in the literature λ = 1/η is used). While the TF
approximation (η = ∞) is exact only in the bulk region where
the electron density becomes uniform, the von Weizsäcker

term adds a correction that depends on the gradient (i.e.,
on the wave vector k in the reciprocal space). In general
choosing the parameter η = 9 gives a good approximation
for a slowly varying electron density (k � 1), while taking
η = 1 gives exact results for large k [83]. In this work we will
consider both η = 1 and η = 9. The latter has been used in
Ref. [75].
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Equation (1) has to be coupled to Maxwell’s equations.
By linearizing the system with the usual perturbation ap-
proach [84], taking into account the continuity equation, and
the fact that ∂P/∂t = J = −nev, we obtain in the frequency
domain the following system of equations:

∇ × ∇ × E − ω2

c2
E = ω2μ0P, (4a)

en0

me

∇
(

δGη

δn

)
1

+ (ω2 + iγ ω)P = −ε0ω
2
pE, (4b)

where ε0 is the vacuum permittivity, c the speed of light,
n0(r) is the unperturbed (ground-state) electron density, and

ωp(r) =
√

e2n0(r)/(meε0) is the spatially dependent plasma
frequency. The first-order terms for the potential can be
calculated as

(
δGη

δn

)
1

=
∫

δGη[n]

δn(r)δn(r′)

∣∣∣∣
n=n0(r)

n1(r′)dr′, (5)

with n1 = 1
e
∇ · P being the electron density first-order pertur-

bation. Clearly E, P, and n1 are complex quantities and depend
on ω. Using the expressions (3) and Eq. (5) the first-order terms
for the potentials are

(
δT TF

s

δn

)
1

= (
Eha

2
0

)10

9
cTFn0

−1/3n1, (6a)

(
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4
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0
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0
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]
, (6b)
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)
1

= (Eh)

(
−a0

4

9
cXn

−2/3
0 n1 + a3

0μ
′
C[n0]n1

)
, (6c)

with

μ′
C[n] =

⎧⎨
⎩

− 4π
9

[
a + 1

3 (1 + 2 ln (rs))crs + 2
3drs

]
r3
s , rs < 1,

απ
27

5β1
√

rs+(7β2
1 +8β2)rs+21β1β2r

3/2
s +16β2

2 r2
s

(1+β1
√

rs+β2rs)3 r3
s , rs � 1.

In the following the system of Eq. (4) will be named QHTη,
i.e., QHT1 if η = 1 or QHT9 if η = 9.

It is useful to notice that Eq. (4b) reduces to the TF-HT
model if the XC and the von Weizsäcker functionals are
neglected, and assuming that the equilibrium electron density
is uniform in space, n0(r) ≡ n0. In this case, in fact, the first
term on the right-hand side of Eq. (4b) becomes β2∇(∇ · P)
with β2 = 10

9
cTF
me

n
2/3
0 = v2

F /3 [34,54]. As already pointed out
in the introduction, TF-HT will always be associated with
hard-wall boundary conditions, i.e., P · n̂ = 0, at the metal
boundaries, with n̂ being the unit vector normal to the surface.

The equations QHTη can be solved with a plane-wave
excitation for a range of frequencies ω; the solution vectors E
and P can then be used to compute the linear optical properties.
We have implemented a numerical solution of the system of
Eq. (4) within a commercially available software based on
the finite-element method, COMSOL multiphysics [85] (see
Appendix). In particular, we have implemented the method
using the 2.5D technique [86], which allows to easily compute
absorption spectra for spheres or, more generally, axis symmet-
ric structures of the order of a few hundred nanometers in size.

III. JELLIUM NANOSPHERES

The results of the QHT approach will directly depend on
the input ground-state electronic density n0(r), which defines
the system under consideration. This is very different from
classical plasmonics, where the system is defined by its local
dielectric constant.

Ideal systems to test the QHT approach are represented by
jellium nanospheres [23], where Ne electrons are confined by
the electrostatic potential generated by a uniformly charged
sphere of radius R = rsN

1/3
e with positive charge density

n+ = (r3
s 4π/3)−1 inside, and zero outside; here rs is the

Wigner-Seitz radius, ranging from 2 to 6 a.u. in real metals.
In this work we consider rs = 4 a.u., which represents
sodium. In order to exactly include all quantum effects,
n0(r) should be the exact quantum-mechanical density of the
system under consideration, obtained, for example, from a
full ground-state Kohn-Sham (KS) DFT calculation. We have
developed an in-house code for the self-consistent solution of
the KS equations for jellium nanospheres, with the LDA XC
functional. Calculations are performed with finite differences
on a linear numerical grid up to R + 50 bohr. The final
ground-state electron density can be written as

nKS
0 (r) =

Lmax∑
l=0

nl∑
n=0

f
2l + 1

4π
Rnl(r)2, (7)

where Rnl(r) is the solution of the radial Schrödinger
equation and f = 2 (we consider only the spin-restricted
case). The electronic configuration of a jellium nanosphere
is characterized by Lmax and a sequence of shell number S =
[n0,n1, . . . ,nLmax ] with n0 � n1 . . . � nLmax , i.e., there are nl

occupied orbitals with angular momentum l. The total number
of electrons is then Ne = ∑Lmax

l=0 nlf (2l + 1), which can be
called shell-closing numbers. The so-called “magic-number”
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clusters not only have a shell closing but also a (large) positive
KS energy gap [87–90].

We have implemented a code that computes all magic-
number jellium nanospheres up to an arbitrary number of elec-
trons. Starting from S = [1], i.e., a system where there are only
Ne = 2 electrons in the lowest 1s shell, the program tries to fill
other shells in order to keep the KS energy gap as large as pos-
sible. In the first step the program thus compares the KS energy
gap between jellium nanospheres with S = [2] and S = [1,1],
and obviously it finds that the latter is the next magic-number
jellium nanosphere. Then the same procedure is applied to
S = [1,1], comparing S = [2,1] and S = [1,1,1] and so on.
In this way the first jellium nanospheres obtained are Ne =
2,8,18,20,34,40,58,68,90,92,106,132.., which are well es-
tablished in the literature [91]. However, jellium nanospheres
with Ne = 68,90,106,... are characterized by a negative KS
energy gap (i.e., there are occupation holes below the highest-
occupied molecular orbitals): This means that the so obtained
electronic density is not a ground-state density and these
clusters are not magic-number clusters. Moreover, we note
that when Ne is very large, the electronic configuration cannot
be established using simple models [89–91], due to the almost
degeneracy of the high-lying KS orbitals. In this work, we con-
sidered all shell-closing magic-number jellium nanospheres
up to Ne = 5032 (see Table S1 in the Supplemental
Material [92]).

In Fig. 1 we compare the results of the TF-HT approach
for a jellium nanosphere with Ne = 508 electrons with the
solution of the QHT equations with η = 1 (QHT1) using
the exact KS ground-state electronic density; this approach
will be referred to as KS/QHT1. While the TF-HT approach
assumes that n0(r) = n+ [see Fig. 1(a)], the KS ground-state
density spreads out from the jellium boundary [see Fig. 1(e)].
The resulting induced density n1(r) from the TF-HT model is
confined inside the jellium boundary [see Figs. 1(b) and 1(c)],
whereas there is a significant spill-out in the KS/QHT1 method
[see Figs. 1(g) and 1(h)], as recently discussed in Ref. [75].
This difference will lead to a different description of the
electric field at the surface, which is the key quantity for
plasmonic applications, such as enhancement of the sponta-
neous emission rates [6], sensing [14,93], and nonlinear optical
effects [94,95].

In the following of the paper, we aim to verify if
KS/QHT1 yields correct n1(r) and plasmon energies, and
to investigate alternative paths to compute the ground-state
density.

IV. INPUT GROUND-STATE DENSITIES

The computation of the KS ground-state density is out
of reach for all but the smallest systems [computational cost
scales as O(N3

e )]. An alternative, computationally cheaper but
less accurate, is to use OF-DFT to compute the ground-state
density (nOF

0 (r)). In this case we have to solve the Euler
equation [36]:

δTs

δn0(r)
+ vXC(r) − eφ(r) = μOF, (8)

where μOF is a constant representing the chemical potential and
φ(r) is the total (i.e., from both electrons and the bare positive
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FIG. 1. Jellium nanosphere (rs = 4) with Ne = 508 electrons
(R = 31.9 a.u.) as obtained from the TF-HT (a)–(d) and the KS/QHT1
(e)–(h) approaches. Ground-state density n0(r) (a) and (e); real and
imaginary part of the induced charge density n1(r) at the plasmon
resonance (b) and (f); imaginary part of n1(r) at the cross-section
plane (c) and (g); norm of the induced electric field at the cross-section
plane (d) and (h).

background) electrostatic potential. Equation (8) can be recast
into an eigenvalue equation for the square root of the electron
density [96]; if the kinetic energy (KE) is approximated as
T TF

s + (1/ηg)T W
s it takes the form,

(
1

ηg

�
2∇2

2me

+ δT TF
s

δn0(r)
+ vXC(r) − eφ(r)

)√
n0(r)

= μOF
√

n0(r), (9)

which we solved as a self-consistent KS equation (see
above), considering only the lowest eigenvalue (with angular
momentum l = 0). The self-consistent calculation of nOF

0 (r)
can be, in principle, obtained for spherical nanoparticles of
any size [computational cost is O(Ne)], even if we experienced
very slow convergence, especially for η = 9.

A third approach is to use a model expression that
approximates the exact density. For a sphere, the approximated
unperturbed electron density can be described by using the
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model [66,67,97,98],

nMod
0 (r) = f0

1 + exp (κMod(r − R))
, (10)

where r is the distance from the center of the sphere and R

is the radius of the nanosphere. The expression (10) has to be
normalized such that the total charge equals the total number
of electrons:

4π

∫ +∞

0
nMod

0 (r)r2dr = 4

3
πR3n+ = Ne. (11)

This approach, if successful, is particularly useful to
compute the spectral response of arbitrary big systems, since it
provides the ground-state density without any computational
cost. We underline that Eq. (10) is not employed for a vari-
ational calculation of the ground-state density [66,67,97,98].
Instead we will fix κMod, which describes the asymptotic decay
of the electronic density and is the only parameter in Eq. (10),
as described in the next section.

V. ASYMPTOTIC ANALYSIS

In the KS or OF approach, if we assume that vs(r) =
vXC(r) − eφ(r) goes exponentially to zero (this is the case
for a neutral system and using LDA for the XC functional),
then the density asymptotically decays as [36]

n0(r) → A

r2
exp(−κr). (12)

In the OF approach, if the KE is approximated as T TF
s +

(1/ηg)T W
s we have

κOF =
(

1

a0
√

Eh

)
2
√

−2μOF√ηg. (13)

In the KS approach we have [36]

κKS =
(

1

a0
√

Eh

)
2
√

−2εHOMO, (14)

and εHOMO is the eigenvalue of the highest occupied molecular
orbital (HOMO). Note that εHOMO < 0 for stable electronic
systems and it coincides with the negative of the ionization
potential only for the exact XC functional [99].

The values of μOF1 (i.e., OF-DFT with η = 1), μOF9

(i.e., OF-DFT with η = 9) and εHOMO for all the jellium
nanospheres considered are reported in Fig. 2. It is found
that |μOF9| is only a factor 1.1–1.4 smaller than μOF1. Thus,
unless ηg = 1, we have that the density computed in OF-DFT
is decaying faster than the exact one, as numerically shown
in Fig. 3 for a jellium nanosphere with Ne = 338 electrons.
This is consistent with the fact that the von Weizsäcker KE
approximation is exact in the asymptotic region [36,100].

We remark that Eq. (14) is valid only in the asymptotic
region, i.e., where the density is dominated only by the HOMO.
However, in the case of jellium nanospheres, there are several
KS orbitals with energies very close to the HOMO, so that
the asymptotic limit will be reached only very far from the
jellium boundary, in a region that is not relevant for total
energies, nor for the optical properties (see Fig. 4). If in the
“near” asymptotic region (i.e., within the simulation domain)
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FIG. 2. Eigenvalues versus the inverse of the jellium nanosphere
(rs = 4 a.u.) diameter; chemical potential (μOF9) of orbital-free DFT
calculations with η = 9 (purple squares); chemical potential (μOF1)
of orbital-free DFT calculations with η = 1 (orange circles); HOMO
eigenvalues (εHOMO) of KS-DFT calculations (blue diamonds);
effective eigenvalue (μeff ) from the KS-DFT electronic density decay
(green triangles); see text for details.

we assume that the density decays as in Eq. (12), with κ = κeff

then we can define an effective energy:

μeff = −(
Eha

2
0

) (κeff)2

8
. (15)

The values of μeff are also reported in Fig. 2, and they
are clearly larger (in absolute value) than the εHOMO; the
difference increases with the number of electrons, due to
the increasing contribution of other (low-lying) orbitals. For
an infinite number of electrons, a linear extrapolation gives
μeff,∞ ≈ −3.75 eV. We then use this value to define

κMod =
(

1

a0
√

Eh

)√
−8μeff,∞ ≈ 1.05. (16)
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FIG. 3. Ground-state electronic density (in a log scale) for a
jellium nanosphere (rs = 4) with 338 electrons (R=27.8 bohr)
computed by KS-DFT, OF-DFT with ηg = 1 (OF1) and with ηg = 9
(OF9), and the model density. The inset shows the ground-state
electronic density in a linear scale inside the nanosphere.
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far asymptotic region (e.g., for r > 150 bohr) μeff approaches εHOMO

indicated by a horizontal green dashed line. In the simulation domain,
indicated by the vertical red line, εeff is significantly larger than εHOMO.

Figure 3 shows that very good agreement is obtained in the
asymptotic region, between the model and the KS density.

We now move to consider the asymptotic solution of the
QHTη equations for spherical systems, extending the work in
Ref. [74], where only slabs have been considered, and the early
one in Ref. [65]. If we assume the ground-state density decay
in Eq. (12) then we want to verify if Eq. (4) has solutions of
the type,

n1(r) → B exp(−βr) cos(θ ), (17)

hereby limiting our investigation to dipolar excitations. To
proceed, we take the divergence of Eq. (4b), and we use
the quasistatic approximation (so that ε0∇ · E = ∇ · P = en1),
obtaining

∇ · en0

me

∇
(

δG

δn

)
1

+ (ω2)en1 = − e2

me

(
e

ε0
n0n1 + ∇n0 · E

)
.

(18)

In Eq. (18) we also assume no damping (i.e., γ = 0) and no
external field (i.e., we are considering only free oscillations).
The asymptotic solution of Eq. (18) can be easily found
considering that the second term on the left-hand side is
proportional to n1: Thus all terms which decay exponentially
faster than n1 can be neglected. These are: The TF and XC
contributions in the first term on the left-hand side, which are
proportional to n

2/3
0 n1 and n

1/3
0 n1, respectively [see Eqs. (3a)

and (3c)], and the first term to the right-hand side (proportional
to n0n1). The second term on the right-hand side requires
special attention. Asymptotically it decays proportionally to
(n0d)/r3, where d is the dipole moment of n1. Thus Eq. (18)
has an asymptotic solution only and only if n0 decays faster
than n1, i.e., if

β < κ. (19)

0 0.5 1 1.5 2
 ω/ω

c

-0.5

0

0.5

1

1.5

 β
/κ

β1

β2

β3

β4

FIG. 5. Graphical representation of the solutions in Eq. (21); see
text for details.

Using Eqs. (12) and (17) in Eq. (18), we obtain (after some
algebra) that Eq. (18) is asymptotically satisfied if(

Eha
2
0

me

)
1

η

(
κ2β2

4
+ β4

4
− κβ3

2

)
= ω2. (20)

This equation has four solutions of the type,

β = κ

2
± κ

2

√
1 ± ω

ωc

, (21)

where the critical energy is

�ωc = �
κ2

8

√(
Eha

2
0

me

)
1

η
= |μ| ηg√

η
, (22)

where we used Eq. (13). Note that it turned out that these
solutions are identical to the slab case [74].

The four solutions are shown in Fig. 5. Solution β1 is
negative, i.e., it is asymptotically increasing, thus it is excluded
by the boundary conditions. Solution β4 is excluded by the
condition in Eq. (19). Solution β2 and β3 are real only for
ω < ωc. For ω > ωc, β2,3 are complex with the real part fixed
to κ/2. The above results are consistent with the TD-DFT
calculations of finite systems (η = ηg = 1), where �ωc =
εHOMO can be interpreted as the ionization threshold [101]. In
fact, in TD-DFT the computation of excitation energies higher
than εHOMO (i.e., the plasmon peak, too) can be challenging
because all the continuum of virtual orbitals must be accurately
described. In the same way the spectra calculated within QHT
are well convergent up to energy �ωc.

When the sphere is excited by photons with an energy larger
than �ωc, we experienced a large dependence on the domain
size. This is due to the fact that the induced charge density
acquires a propagating characteristic typical of electrons in
vacuum. The boundary condition we used (P = 0) is no longer
valid since it produces an artificial scattering of the electrons at
the simulation boundary and appropriate boundary conditions
should be developed [65,102]. For the jellium nanospheres
considered in this work we have that μeff ≈ 3.5 eV (see Fig. 2)
which is a bit above the Mie energy �ωMie = (Eh)

√
1/r3

s =
3.4 eV. Numerically we found that only the calculation of the
main (first) plasmon peak is stable.
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FIG. 6. Absorption cross section (σ ) normalized to the geomet-
rical area (σ0) for a jellium nanosphere (rs = 4 a.u.) with Ne = 338
electrons as obtained form TD-DFT, OF9/QHT9, KS/QHT1, and
Mod/QHT1. All the spectra have been obtained using an empirical
broadening of 0.066 eV.

VI. PLASMON RESONANCE AND SPILL-OUT EFFECTS.

In Fig. 6 we plot the absorption cross section σ , normalized
to the geometrical area σ0 = πR2, for a Na jellium sphere
(rs = 4 a.u.) with Ne = 338 and thus R = 27.86 a.u. (D =
2.94 nm), using different approaches.

Figure 6(a) reports the reference TD-DFT results. TD-DFT
calculations (in the adiabatic LDA) have been performed using
an in-house developed code, following the literature [24,103–
105]. Details of our TD-DFT numerical implementation,
which allows calculations for large nanospheres will be
discussed elsewhere. In TD-DFT (where no retardation is
included) the absorption cross section can be computed as

σ (ω) = ω

cε0
Im[αzz(ω)], (23)

where the frequency-dependent polarizability is

αzz(ω) = −e2
∫

drdr′zχ (r,r′,ω)z′, (24)

and χ (r,r′,ω) = δn(r)/δ(eVext(r′)) is the interacting density
response function [18].

Figures 6(b)–6(d) report the QHT absorption cross section
computed as

σ (ω) = 1

I0

ω

2

∫
Im{E · P∗}dV , (25)

where Io is the energy flux of the incident plane wave.
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FIG. 7. Induced density (complex modulus of n1) at the plasmon
energy for a jellium nanosphere (rs = 4 a.u.) with Ne = 338
electrons (R = 27.86 bohr), as computed from TD-DFT, OF9/QHT9,
KS/QHT1, and Mod/QHT1.

Figure 6(b) shows the spectrum obtained by applying
the QHT method with η = 9 (QHT9) to the OF9 density;
this approach will be called self-consistent OF9/QHT9 and
coincides with the approach of Toscano et al. [75], with the
only difference being the choice of the XC functional. The
energy position of the first peak (≈3.2 eV) is in very good
agreement with the TD-DFT result (≈3.15 eV). Obviously
TD-DFT results are much broadened due to quantum size
effects as Ne is quite small. However, the decay of n1 is
very different from the reference TD-DFT results. In fact from
Eq. (22) we obtain that �ωc = 3|μOF9|. From Fig. 2 we see that
μOF9 ≈ −2.4 eV and thus the critical frequency is artificially
moved to very high energy (�ωc ≈ 7.2 eV). A good point of
the OF9/QHT9 approach is that the computation of all the
spectrum (i.e., up to 7.2 eV) will be numerically stable. On
the other hand, from Eqs. (21) and (13) we see that the first
solution will have a decay βOF9/QHT9 ≈ 0.87κOF9 ≈ 2.61κKS,
i.e., much more confined than the reference TD-DFT results,
as numerically shown in Fig. 7. Recall that in TD-DFT the
induced density will also decay as in Eq. (17) with κKS/2 �
β � κKS as discussed in Ref. [26]. The so-called spill-out
effects in computational plasmonics, which indeed refer to
the profile of induced density, are thus largely underestimated
in the OF9/QHT9 approach. Thus the good accuracy of
the OF9/QHT9 resonance energy seems originating from
error cancellation between the too confined ground-state
electron density (from OF9) and the approximated kinetic
energy-kernel (QHT9, which is valid only for slowly varying
density).

In Fig. 6(c) we report the results from the KS/QHT1
approach, already introduced in Fig. 1. In this case the
resonance peak (≈3.13 eV) is in even better agreement with
the TD-DFT results. Almost the same results are obtained by
applying the QHT1 method to the model ground-state density
(Mod/QHT1), as shown in Fig. 6(d). More importantly Fig. 7
shows that the induced density n1 from KS/QHT1 has almost
the same decay of the TD-DFT result, i.e., the KS/QHT1
approach correctly describes the spill-out effects of the induced
charge density.

It is useful to remark that, despite the fact that all the
spectra presented in Figs. 6(b)–6(d) result quite similar, QHT
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FIG. 8. Plasmon resonance for jellium nanospheres (rs = 4 a.u.)
as a function of the inverse of the sphere diameter, as computed by
different approaches. The behavior for large particles is shown in the
inset.

is very sensible to the density tail. Using a model density
with a larger (smaller) κMod yields a red-shifted (blue-shifted)
plasmon peak. In a similar way, using the QHT1 method
with the OF1 ground-state density yields a plasmon peak
red-shifted by about 0.3 eV (data not reported). This is not
surprising considering that the OF1 density is decaying much
more slowly than the effective one, see Fig. 2. As mentioned
at the end of Sec. V, spectral features appearing at energies
higher than the ionization energy (�ωc) are not stable and
will be investigated elsewhere. We also point out that QHT
with η = 9 (which yields the exact dielectric response for
small wave vectors [71]) cannot be used in combination with
a ground-state density with the exact asymptotic decay. This
seems surprising, but it can be easily justified by looking at
Eq. (22). If ηg = 1 and η = 9 we obtain �ωc = |μeff|/3 ≈
1.16 eV, i.e., the critical frequency is three times smaller than
the Mie frequency, so that the whole absorption spectrum can
be hardly computed.

We now move on to describe the shift of the plasmon reso-
nance as a function of the particle size. This problem has been
extensively studied in the literature, both theoretically [41,106]
and experimentally [107–109], and it represents a relevant
benchmark for estimating the accuracy of QHT. In Fig. 8 we
report the energy position of the main resonance peak as a
function of the inverse of the jellium nanosphere diameter D.
The exact energy position of the main peak has been extracted
from the computed spectra (with an empirical broadening of
�γ = 0.1 eV and using a spline interpolation). This procedure
is not unique for some of the smallest clusters, where there are

many peaks with similar intensity (for the large cluster there
is always a unique main peak).

The dot-dashed horizontal line represents the Mie plasmon
energy (�ωMie = 3.4 eV). Note that for the diameters consid-
ered in Fig. 8, retardation effects can be neglected.

The first thing to notice is the striking difference obtained
using TF-HT. It predicts in fact a resonance shift toward
higher energies (shorter wavelengths) as the particle radius gets
smaller, as previously observed in other systems [33,110,111].
For all the other cases the peak resonances slide to lower
energies (longer wavelengths) as the particle radius shrinks.
While for noble metals like Au or Ag the plasmon resonance
undergoes a blue shift as the radius R decreases [112,113], this
is not the case for Na. The origin of the blue shift for noble
metal nanoparticles is due to size-dependent changes of the
optical interband transitions [114,115].

We now compare the QHT models investigated in this work,
with respect to the TD-DFT results, which can be considered as
a reference. As widely investigated in the literature for jellium
nanospheres [106], the TD-DFT main peak oscillates for small
Ne, but it converges to �ωMie for large Ne.

Results for the OF9/QHT9 approach are significantly blue-
shifted with respect to TD-DFT (note that OF9/QHT9 predicts
a red shift with respect to TF-HT, as also found in Ref. [75]),
and do not present quantum oscillations. In fact, it is well
known [116] that orbital-free (OF1 or OF9) electronic density
does not show quantum (i.e., Friedel) oscillations inside the
nanosphere (see inset of Fig. 3). On the other hand when
QHT1 is applied to the KS density, quantum oscillations
are clearly visible for small nanospheres, even if TD-DFT
features are not fully reproduced. For Ne � 338, KS/QHT1
reproduces TD-DFT plasmon energies with great accuracy
(with a maximum error of 20 meV, about half of the error
obtained with the OF9/QHT9 approach; see Table S1 in the
Supplemental Material [92]).

Finally, we analyze results for Mod/QHT1. Also in this
case no quantum oscillations are present, and for Ne �
338 TD-DFT results are reproduced almost exactly, with a
maximum error of only 10 meV. Thus using a simple model
density it is possible to match the whole range of nanoparticle
sizes.

The comparison between TD-DFT and KS/QHT1 is im-
portant because both approaches use the same KS density
(in the former additional information is used from the KS
orbital and eigenvalues). The good accuracy in Fig. 8 means
that for large nanospheres the full TD-DFT linear response
can be well approximated by the simpler QHT1 method. The
very good results obtained for Mod/QHT1 are even more
important. In fact it means that QHT can be used without
the need of calculating the KS ground-state density, which is a
bottleneck for large system [scales as O(N3

e )]. Moreover, the
simple model density employed here can be constructed at no
cost for systems of any size, and can also be generalized to
the nonspherical case. The parameter κMod, is clearly material
dependent (e.g., will depend on rs) but can be parametrized
once and for all.

In Fig. 9 we show the absorption spectrum for particles
with a diameter going from 2 up to 50 nm. The solid
black line shows the trajectory of the Mie resonance as the
particle size increases: For particles with R > 10 nm the Mie
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resonance peak undergoes a red shift due to retardation effects.
The red curves represent the spectrum calculated within the
Mod/QHT1 method. For small nanoparticles the peaks follow
the TD-DFT trajectory, moving toward higher energies. As
the particle size grows the plasmon energy tends toward the
Mie trajectory, up to the big particle regime, where retardation
effects become predominant (see Fig. 8). It is striking how
Mod/QHT1 can describe the full range of effects going from
the nonlocal/spill-out effects up to retardation effects. That
is, the resonance shift due to microscopic and macroscopic
effects are incorporated in a single model, which makes the
potential of QHT with respect to the DFT approach very clear.
Although this advantage was already outlined by the authors of
Ref. [75], we remark that their method was only qualitatively
verified for nanowires.

VII. THE INDUCED CHARGE DENSITY

So far we have seen that KS/QHT1 or Mod/QHT1 re-
produce with very good accuracy the reference TD-DFT
results, both the energy position and the asymptotic decay
of the induced density. In this section we closely analyze the
near-field properties. Accurate induced density translates into
a good description of the local fields at the surface of the
plasmonic system. Such knowledge is crucial for estimating
the maximum field enhancements, and hence nonlinear optical
efficiencies, and more in general light-matter interactions.

In particular we compare the QHT1 induced polarization
charge density to the full TD-DFT calculations. The polariza-
tion charge density αzz(r) of a sphere excited by the incident
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FIG. 10. Induced polarization charge density (normalized by R3)
at the plasmonic resonance ω0 for different jellium nanospheres.

field E0 = ẑE0 can be defined from

n1(r,θ,φ) = −eE0
1

r2
cos(θ )αzz(r,ω), (26)

so that

αzz(ω) = 4π

3

∫ +∞

0
αzz(r,ω)rdr. (27)

In Fig. 10 we plot the imaginary part of the induced
polarization charge density for different particles sizes in
correspondence with the plasmon resonance ω0. For the
smaller particles big oscillations of the density can be seen
in the case of the TD-DFT calculations that are not present
if not in a very modest form in the case of QHT1. These
oscillations are in fact due to a purely quantum size effect
(Friedel oscillations). As the particle size increases, however,
these oscillations diminish. The main induced peak, however,
is very well reproduced by the QHT1 approach, both with the
KS or the model ground-state density.

VIII. APPLICATION TO THE SPHERE DIMER

Up to this point we have considered spheres. In this
section we are going to extend the applicability of QHT to
axially symmetric structures. Our 2.5D implementation (see
Appendix) makes this task really easy and the only difference
is in the excitation field. Because the response of a spherical
system is independent from the direction and polarization
of the incident wave, in the previous calculations we have
assumed for convenience a plane wave propagating along the
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FIG. 11. Dimer of Na spheres constituted by Ne = 398 electrons
each, and separated by a distance g = 1 nm. The dimer is excited by
a plane wave oscillating with energy �ω = −2.8 eV; γ = γ0 + vF /R

has been used with �γ0 = 0.066 eV. (a) Geometry and incident field.
(b) Real part of the induced charge density normalized with respect to
the bulk positive charge density. (c) Electric field norm distribution.

z axis so that we would need to solve our equations just
for the cylindrical harmonic with azimuthal number m = 1
(the case for m = −1 can be obtained by taking into account
field parities). For axis-symmetric structures, in general, it
is not possible to arbitrarily choose the incident wave and it
becomes necessary to solve the problem for several azimuthal
numbers. For subwavelength structures, however, the number
of cylindrical harmonics mmax needed to accurately describe
the problem remains very small (mmax < 3).

A relevant example of axially symmetric structure is the
sphere dimer. This structure has been extensively studied in
the literature for its ability to strongly enhance local electric
fields with respect to the incident radiation [117–119] and
its potential to exhibit quantum effects [16,17,28]. Here, we
consider a dimer of Na spheres constituted by Ne = 398
electrons each, and separated by a distance g = 1 nm. The
dimer is excited by a plane wave propagating orthogonally
to the dimer axis whose electric field is polarized along z

[as depicted in Fig. 11(a)] and is oscillating with energy
�ω = −2.8 eV. In Figs. 11(b) and 11(c) we plot the induced
charge density and the electric field norm, respectively, for
the case of Mod/QHT1 where the same equilibrium charge
density as the single-particle case has been used. Although,
our TD-DFT implementation can only be applied to spheres,
Fig. 11 and in particular Fig. 11(c) can be directly compared

to results of Ref. [28] in which TD-DFT calculations for the
same jellium Na dimer are reported. It can be seen that the
electric field distribution in the gap and in the vicinity of the
jellium edge is accurately reproduced both qualitatively and
quantitatively.

It is worth noting that results obtained with Mod/QHT1 are
valid as long as the equilibrium electron density of a dimer can
be approximated to that obtained by summing the densities of
two single spheres. For very small gaps (g < 0.4 nm) this is
not necessarily true and particular attention needs to be paid
to the choice of the equilibrium density in the overlapping
region.

IX. CONCLUSION

In this work, we have investigated how different models
based on QHT can describe the plasmonic properties of
spherical nanoparticles in comparison with reference TD-DFT
results.

The main finding is twofold:
(i) The accuracy of QHT strongly depends on the choice

of the ground-state density. In particular the self-consistent
approach with η = 9 produces correct results only for the
plasmon resonance energy, whereas the induced density spill-
out is largely underestimated. Using the exact KS electron
equilibrium density within the QHT method with the full von
Weizsäcker kinetic energy, allows one to predict the plasmon
energy for Na jellium nanospheres within an error of about
20 meV in comparison with TD-DFT predictions, as well as
the correct induced density.

(ii) QHT yields similar high accuracy (with a maximum
error of only 10 meV) if an analytical model density with
the correct asymptotic behavior is used (the Mod/QHT1
approach). This finding is of utmost importance because it
allows one to circumvent the bottleneck given by the necessity
of computing the exact KS ground-state density, allowing the
QHT method to be directly applied to macroscopic systems
that still require a precise microscopic description, such as
gap-plasmon structures [9–11].

By using a finite-element implementation based on the 2.5D
technique we were able to investigate spherical nanoparticles
under a plane-wave excitation and extend our calculations to
big particles maintaining retardation effects. We showed that
our implementation can be used to study nanoparticle dimers
and in general can be applied to arbitrary geometries that
possess axial symmetry, such as cones, nanoparticle dimers,
disks, or film-coupled nanoparticles. These systems are in fact
quite frequent in experimental setups.

We believe that Mod/QHT1 is quite promising and can
be further improved by adding extra terms [74] and more
accurate kinetic energy functionals [120] in order to be more
reliable toward UV frequencies and for describing valence
electrons in noble metals, for which a dynamical kinetic energy
functional might be necessary. Although the QHT approach is
not suitable to directly describe interband processes, these can
be approximately taken into account by considering a local
polarizability contribution [75,114]. Moreover, QHT can be
straightforwardly generalized to higher order terms so that
nonlinear optical effects that are generated at the surface of a
plasmonic system can be included in the calculations.
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APPENDIX: NUMERICAL IMPLEMENTATION OF THE QHT

We solved the system of Eq. (4) using a commercially available software based on the finite-element method (FEM): COMSOL

Multiphysics [85]. The problem Lu = 0, where L is a linear differential operator and u the independent variable vector can be
described by means of the weak formulation: ∫

L1u · L2vdV = 0, (A1)

where v is a test function and the operators L1 and L2 are linear operators containing derivatives of order smaller than L. In
general, it is possible to go from L to L1 and L2 simply by integrating by parts. In FEM this step is necessary since one wants to
keep the functions ui approximating the solution u � ∑

i αiui as simple as possible.
In the case of the Eq. (4b) we obtain integrating by parts and, assuming the integral on the boundary to equal zero, the

following weak expression: ∫
− e

me

(
δG

δn

)
1

(∇ · P̃
) + 1

n0

[
(ω2 + iγ ω)P + ε0ω

2
pE

] · P̃dV = 0, (A2)

where we distributed the derivatives to the test functions P̃. This allows us to avoid calculating the gradient of the energy
functional of Eq. (6). However, since the expression of the energy functional contains second-order derivatives, we introduce
the working variable F = ∇n1 with n1 = 1

e
∇ · P, so that ∇2n1 = ∇ · F, and our system of equations contains only first-order

derivatives.
In order to take advantage from the symmetry of the geometry, we implemented our equations assuming an azimuthal

dependence of the form e−imφ with m ∈ Z. That is, for a vector field v, we have v(ρ,φ,z) = ∑
m∈Z v(m)(ρ,z)e−imφ . Maxwell’s

equation and the polarization equation are written assuming the following definitions:

∇ · v(m) ≡
(

1

ρ
+ ∂

∂ρ

)
v(m)

ρ − im

ρ
v

(m)
φ + ∂v(m)

z

∂z
,

∇ × v(m) ≡ ρ̂

(
−∂v

(m)
φ

∂z
− i

m

ρ
v(m)

z

)
+ φ̂

(
∂v(m)

ρ

∂z
− ∂v(m)

z

∂ρ

)
+ ẑ

(
v

(m)
φ

ρ
+ ∂v

(m)
φ

∂ρ
+ i

m

ρ
v(m)

ρ

)
.

Analogously, the test functions are assumed to have a dependence of the form eimφ . It is possible then to reduce the initially
three-dimensional problem into (2mmax + 1) two-dimensional problems. The system to solve in the unknown variables E (electric
field), P (polarization field), and F (working variable), reads

2π
∫

(∇ × E(m)) · (∇ × Ẽ(m)) − (
k2

0E(m) + μ0ω
2P(m)

) · Ẽ(m)ρdρdz = 0,

2π
∫ − e

me

(
δG
δn

)(m)

1
(∇ · P̃(m)) + 1

n0

[
(ω2 + iγ ω)P(m) + ε0ω

2
p

(
E(m) + E(m)

inc

)] · P̃(m)ρdρdz = 0,

2π
∫ −(∇ · P(m))(∇ · F̃(m)) − eF(m) · F̃(m)ρdρdz = 0.

Note that for the case of an incident plane-wave propagating along the z axis, one has to solve the problem just for m = ±1.
Moreover by taking into account field parities, the solution for m = 1 can be related to the solution for m = −1, so that a single
two-dimensional calculation becomes necessary [48,86].

Note that for the electromagnetic module COMSOL uses by default curl elements for the in-plane components and Lagrange
elements for the azimuthal component. We found that using Lagrange elements for each component provides much more
stable solutions. Since COMSOL does not give the possibility to use different type of elements for the built-in physics (in our case
electromagnetism) we had to re-implement the electromagnetic module ourselves by using the general weak form implementation.
Perfectly matched layers have been used in order to emulate an infinite domain and avoid unwanted reflections.
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