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We present a theory of the isotropic-nematic quantum phase transition in the composite Fermi liquid arising
in half-filled Landau levels. We show that the quantum phase transition between the isotropic and the nematic
phase is triggered by an attractive quadrupolar interaction between electrons, as in the case of conventional
Fermi liquids. We derive the theory of the nematic state and of the phase transition. This theory is based on the
flux attachment procedure, which maps an electron liquid in half-filled Landau levels into the composite Fermi
liquid close to a nematic transition. We show that the local fluctuations of the nematic order parameters act as an
effective dynamical metric interplaying with the underlying Chern-Simons gauge fields associated with the flux
attachment. Both the fluctuations of the Chern-Simons gauge field and the nematic order parameter can destroy
the composite fermion quasiparticles and drive the system into a non-Fermi liquid state. The effective-field theory
for the isotropic-nematic phase transition is shown to have z = 3 dynamical exponent due to the Landau damping
of the dense Fermi system. We show that there is a Berry-phase-type term that governs the effective dynamics
of the nematic order parameter fluctuations, which can be interpreted as a nonuniversal “Hall viscosity” of the
dynamical metric. We also show that the effective-field theory of this compressible fluid has a Wen-Zee-type term.
Both terms originate from the time-reversal breaking fluctuation of the Chern-Simons gauge fields. We present
a perturbative (one-loop) computation of the Hall viscosity and also show that this term is also obtained by a
Ward identity. We show that the topological excitation of the nematic fluid, the disclination, carries an electric
charge. We show that a resonance observed in radio-frequency conductivity experiments can be interpreted as a
Goldstone nematic mode gapped by lattice effects.
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I. INTRODUCTION AND MOTIVATION

Electronic nematic phases have been a focus of attention
during the past few years in several areas of quantum
condensed matter physics [1]. An electronic nematic is a
state of a strongly correlated electronic system in which
rotational invariance is broken spontaneously without breaking
translation symmetry. Unlike their classical liquid crystal
cousins [2,3], whose tendency to exhibit orientational order
can be traced back to the microscopic cigar-shaped nature of
the constituent nematogen molecules, an electronic nematic
phase arises from the self-organization of electrons in a
strongly correlated material.

The electronic nematic state belongs to a class of phases
of strongly interacting quantum-mechanical electronic matter,
known as electronic liquid crystal states [4,5], which are
characterized by the spontaneous breaking of the spatial
symmetries of a physical system. Electronic nematic phases
have by now been discovered experimentally in many different
systems ranging, among others, from high-temperature cuprate
superconductors, such as in YBa2Cu3O6+x [6–8] for a broad
range of doping levels, and in underdoped Bi2Sr2CaCu2O8+δ

[9], to iron-based superconductors such as Ca(Fe1−xCox)2As2

[10], and also to the bilayer ruthenate Sr3Ru2O7 [11].
However, the first and to this date the most spectacular

experimental evidence for an electronic nematic state was
discovered in two-dimensional electron gases (2DEG) in
high magnetic fields in the middle of the second, N = 2,
Landau level (and higher), in regimes in which the 2DEG

is compressible and the fractional quantum Hall (FQH) effect
is not observed [12,13]. In these experiments, longitudinal
and Hall transport measurements were made in the center of
the Landau level for Landau levels N � 2. It was found that
the longitudinal transport properties exhibit a strong spatial
anisotropy (with a ratio of resistances as large as 3500 in the
cleanest samples at the lowest temperatures, originally down
to T � 25 mK). This anisotropy has a fairly rapid increase
at a temperature T � 65 mK from a nominal anisotropy of a
fraction of a percent at T ∼ 1 K. Importantly, in this regime,
the I -V curves are linear at low bias and, hence, do not show
any signs of translation symmetry breaking, e.g., no threshold
electric fields, characteristic for a charge-density-wave ground
state, were ever detected in this regime. In contrast, in the
same samples and at the same temperatures, a reentrant integer
quantum Hall plateau is observed away from the center of the
Landau level, and, in this regime, an extremely sharp threshold
electric field is seen, with a sharp onset of narrow-band
noise for larger electric fields [1,14,15]. Nevertheless, these
experiments were originally interpreted as evidence of a striped
ground state, an interpretation still used in the literature.

Hence, in the compressible anisotropic regime, down to
the lowest temperature accessible in the experiments (which
currently go down to about 10 mK), the 2DEG behaves
as a compressible charged fluid with a large anisotropy
which onsets below a well defined temperature. This behavior
strongly suggested that there is a (thermal) phase transition
of the 2DEG, rounded by a very weak native anisotropy
(with a characteristic energy scale estimated to be ∼3–5 mK,
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whose microscopic origin has remained unclear [16]) to a
low-temperature electronic nematic state [5]. The nematic
nature of the state was verified by detailed fits of the transport
anisotropy data to classical Monte Carlo simulations of the
thermal fluctuations of nematic order [17,18].

Subsequent experiments in 2DEGs in quantum wells,
earlier by tilting the magnetic field [19,20], and, more recently,
by the application of hydrostatic pressure in the absence of an
in-plane magnetic field [21], have revealed the existence of a
complex phase diagram in which compressible nematic phases
were found even in the first Landau level, N = 1, competing
with the famous, presumably non-Abelian, paired, FQH state
at filling fraction ν = 5/2. More recent tilted field experiments
have also revealed the existence of an incompressible nematic
FQH state in the N = 1 Landau level at filling fraction
ν = 7/3, competing with the isotropic Laughlin-like FQH
state at that filling fraction [22,23]. No nematic state has ever
been reported in the lowest, N = 0, Landau level.

Early Hartree-Fock theories of the 2DEGs near the center
of the Landau level, for Landau level index N large enough,
have predicted a stripelike ground state, i.e., a compressible
state in which the electron density is spontaneously modulated
along one direction [24–26]. For this reason, the anisotropic
states in the compressible regimes in Landau levels N � 2
were originally referred to as striped states. Most microscopic
theories for the anisotropic state at ν = 9/2 (and in higher
Landau levels) were built on this proposal [27–33]. The
resulting picture of the stripe state is an array of “sliding”
Luttinger liquids [34–37].

On the other hand, an exact diagonalization study by Rezayi
and Haldane [38] for a system of up to 16 electrons for
half-filled Landau levels in a toroidal geometry gave strong
evidence for both a paired FQH state and a stripelike state as
a function of the effective interactions in the Landau level.
We should note that in such small system (and in a toroidal
geometry) finite-size effects can blur the distinction between
a stripe state and a nematic state, but it is an evidence for at
least short-range stripe order.

Interest in nematic quantum Hall states attracted renewed
attention after the experimental discovery of an incompressible
nematic phase inside the fractional quantum Hall state in the
N = 1 Landau level at filling fraction ν = 7/3 by Xia and
coworkers [22,23]. This state has been studied theoretically
by several groups [39–45]. These studies have revealed that
nematic fluctuations are intimately related to the geometric
response of the quantum Hall fluid and, in particular, to the
Hall viscosity. The incompressible nature of nematic fractional
quantum Hall states strongly constrains the behavior of the
nematic fluctuations and largely determines the structure of
the effective behavior at low energies. These studies have
also shown that the nematic transition inside the FQH state
is triggered by a softening and condensation of the stable
collective mode of the FQH fluid, the Girvin-MacDonald-
Platzman (GMP) mode, at zero momentum.

The close vicinity of nematic order of a compressible state
or a FQH state (which is hence incompressible) strongly
suggests that the nature of the effective interactions in the
2DEG in Landau levels N � 1 favor both paired and nematic
ordered states. In this context, it is surprising that, in spite
of all the work on nematicity in the incompressible state,

there has been almost no work on the compressible nematic
state for more than a decade. Aside from the notable semi-
phenomenological theory of the quantum Hall nematic of
Radzihovsky and Dorsey [46], based both on a microscopic
theory and on quantum hydrodynamics, and of the work
of Wexler and Dorsey [47], who made estimates of the
dislocation-unbinding transition of a quantum Hall stripe
state to a quantum Hall nematic based on the Hartree-Fock
theory of the stripe state, except for a variational Monte
Carlo wave-function study by Doan and Manousakis [48], the
compressible nematic state has not been studied.

In principle there are two logical pathways to reach a
nematic phase by a quantum phase transition: (a) by quantum
melting of a stripe phase, or (b) by a (Pomeranchuk) instability
of an isotropic Fermi-liquid-type state. Although the close
vicinity of the isotropic compressible Fermi liquid state to
the observed nematic state in Landau levels N � 1 suggests
that the latter may be a suitable starting point, the fact
that exact diagonalization studies find local stripe order [38]
suggests that the actual physics is likely to lie somewhere
in between these two regimes. Also, it is possible that the
state is nematic above some critical temperature while the
ground state may be a stripe phase. However, the fact that
there is strong evidence for rotation symmetry breaking but
not of translation symmetry breaking, down to the lowest
experimentally accessible temperatures, suggests that the
ground state may be a nematic state (perhaps close to a
quantum phase transition to a stripe phase).

The purpose of this paper is to develop a theory of the
compressible nematic state of the 2DEG in large magnetic
fields. Throughout this work we will use the mapping of
electrons in Landau levels to composite fermions in the same
Landau levels but now coupled to a Chern-Simons gauge
field [49,50], i.e., a flux attachment transformation. At a formal
first-quantized level this mapping is an exact identity. However,
the resulting theory has no small parameter and in practice
a mean-field theory, the average field approximation, must
be used. For FQH states, which have a finite energy gap
already at the level of the mean-field theory, this approach
has been shown to yield exact predictions of the universal
properties of the fractional quantum Hall fluid, including the
Hall conductance, the charge and statistics of the excitations,
degeneracy on a torus, and the Hall viscosity and related
geometric responses [50–52]. On the other hand, here we
will be interested in compressible phases which do not have
a gap (by definition) and hence the theory is not as well
controlled as in the FQH regime. As our starting point we
will consider the isotropic Fermi liquid state of Halperin, Lee
and Read [53,54] (HLR) of composite fermions [55], which
is based on the same mapping, and look for a Pomeranchuk
quantum phase transition to a nematic state. This is a natural
point of view which has been used extensively as a description
of nematic Fermi fluids [56]. However, the HLR Fermi liquid is
a non-Fermi liquid to begin with which makes the application
of these ideas not straightforward.

At the level of mean-field theory, the HLR (or Jain) Fermi
liquid states are the limiting state of the FQH states in the Jain
sequences [55] with filling fraction ν = p/(2np ± 1), where
p and n are two non-negative integers. In Jain’s picture, a
FQH state of electrons can be viewed (in mean-field theory)
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as an integer quantum Hall state with filling fraction ±p of
composite fermions, which is made of gluing 2n fluxes to every
electron, in a partially screened magnetic field B/(2np ± 1).
In the compressible limit, |p| → ∞, the effective magnetic
field felt by the composite fermions vanishes (on average) or,
equivalently, the effective charge of the fermions vanishes in
the same limit. In this regime, the charge-neutral composite
fermions fill a Fermi sea and form a (composite) Fermi
liquid [57]. This simple picture, and its subsequent extensions,
has given a successful description of numerous experiments
in the compressible regime [58–61]. Also, a current picture
of the microscopic origin of the non-abelian paired state in
the first, N = 1, Landau level, at filling fraction ν = 5/2,
is a paired state in the px + ipy channel of composite
fermions [62,63]. It is then natural to look for a similar quantum
transition to a compressible nematic state from the HLR
state.

In Ref. [41], we worked out a theory of the incompressible
nematic state in a fractional quantum Hall state using the flux
attachment via fermion Chern-Simons gauge theory [49] as
a quantum phase transition in a Laughlin FQH state. Much
as in the case of the nematic transition in a conventional
Fermi liquid [56], we showed that the quantum phase tran-
sition (the Pomeranchuk instability) can be caused by an
effective quadrupolar interaction of among the electrons if it
becomes sufficiently attractive. Furthermore, we showed that
the electrons feel fluctuations of the nematic order parameter
as an effective dynamical metric field. A direct consequence
of this coupling is that the effective Lagrangian of the nematic
fluctuations has a time-reversal breaking parity-odd Berry
phase term, which is closely related to (but not equal to) the
Hall viscosity. Due to this parity odd term, the quantum critical
theory has dynamical exponent z = 2. There are also Wen-
Zee-like term in terms of the “effective” dynamical metric,
i.e., nematic order parameters. In the nematic phase, there is
a topological soliton, the nematic disclination, which in this
fluid carries an (unquantized) electrical charge. The resulting
effective-field theory of the nematic fractional quantum Hall
state obtained by this approach has the same structure and
properties as the one proposed on symmetry grounds by
Maciejko and coworkers [45].

The theory of the compressible nematic state that we will
present here is naturally connected to our earlier work on the
incompressible nematic FQH state. Thus, we will represent
the problem of the half-filled Landau level and, in fact, for
all the compressible limiting states of the Jain sequences, at
filling fraction ν = 1/(2n), as a system of composite fermions
minimally coupled (i.e., in gauge-invariant way) to both the
external electromagnetic field Aμ and to the statistical gauge
field aμ, which implements the flux attachment. Hence, here
too, the action also includes a Chern-Simons term (with a
suitable coefficient).

Also, in addition to the Coulomb interaction, which only
involves a coupling of the local densities, as in the case of a
Fermi liquid [56], we will also include an attractive interaction
in the quadrupolar channel, i.e., an attractive interaction
between the nematic densities. The coupling constant of this
quadrupolar interaction is nothing but the F2 Landau parameter
of a Fermi liquid. By gauge invariance, the quadrupolar
coupling of the fermions also involves both the gauge fields,

Aμ and aμ, since the nematic densities are bilinear of the Fermi
fields which necessarily involve spatial derivatives.

We will not attempt here to provide a microscopic derivation
of the value (and sign) of the effective quadrupolar interaction.
Nevertheless, it is well known that the effective interactions
of composite fermions are quite different than those of
electrons [61], and depend on the Landau level index, as
well as on properties of the heterostructure (or quantum
well) which define the 2DEG. In addition, the estimate of
values of Landau parameters, which is notoriously difficult
even for conventional Fermi liquids, is much harder in the
case of composite fermions. The currently available numerical
estimates [64] for F2 obtain values that for N � 1 are very
close to −1.

However, the physics of the compressible state is actually
quite different from the FQH states, and the extension of this
theory to the compressible state involves several problems.
One is the lack of a small expansion parameter to control the
theory. In the incompressible FQH states this is not a serious
problem provided that one focused only on the long distance
and low energy regime where it behaves as a topological
fluid. This simplification is absent in the compressible state
since it is gapless. Even though at the level of mean-field
theory the state is predicted to be a Fermi liquid, the
coupling of the fluctuations of the statistical gauge field turns
the (mean-field) HLR state into a non-Fermi liquid. Thus
already at the leading perturbative order, imaginary part of
the composite fermion self-energy �′′(ω) overwhelms the real
part [53,65], i.e., �′′(ω) ∝ |ω|2/3 for short-range interactions
although it is milder for Coulomb interactions, �′′(ω) ∝ |ω|
(a “marginal” Fermi liquid), and the composite fermion
quasiparticles become ill-defined. In addition, a calculation
of the Landau parameters Fl for the HLR theory [66] revealed
that, for all angular momentum channels l � 1, all the Landau
parameters are equal to the Pomeranchuk value, Fl = −1.
Therefore the quasiparticle picture breaks down and even the
relic of a Fermi surface appears to be prone to instabilities
(such as a nematic instability). Current numerical estimates
in the half-filled Landau level yield negative values of F2

and close to the Pomeranchuk instability value [64]. Already
the conventional theory of the nematic transition is nontrivial
since at the Pomeranchuk point the Fermi liquid breaks down,
and in the HLR state the Fermi liquid picture has been
already broken down due to the coupling to the fluctuating
gauge field. Nevertheless, properties of the fluid determined
by gauge-invariant currents and densities are well behaved, in
the sense that they are free of infrared singularities, although
the results are at best qualitative since the theory does not have
a small parameter [67,68].

A further complication is the lack of particle-hole symmetry
in the HLR theory [69]. This problem is the focus of intense
current work [70–78]. It has also been a focus of attention in
the theory of the paired (Pfaffian) FQH state [79,80]. Particle-
hole symmetry in the half-filled Landau level can exist only
in the absence of Landau level mixing and if only quadratic
interactions are allowed. On the other hand, although the flux
attachment transformation is an exact mapping, at the level of
the average field approximation there is a large reorganization
of the Hilbert space which involves a large mixing of Landau
levels. For this reason, the Jain wave functions are projected
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onto the Landau level. However, in the field-theory approach,
there is no such projection.

In the incompressible FQH states, the effects of Landau
level mixing become negligible at long distances and at low
energies provided that the quantum fluctuations (“one-loop”
or “RPA”) are included, as a consequence of incompressibility,
Galilean and gauge invariance [81,82]. The correct universal
properties, encoded in the effective topological field theory,
of the FQH states are reproduced only after these leading
quantum corrections are included. These quantum corrections
at long distance and at low energies turn the composite
fermions into anyons with fractional charge and fractional
statistics and, in this sense, there are no composite fermions
in the spectrum of states of the FQH fluids. On the other
hand, because of the absence of a small parameter, the
theory yields quantitatively incorrect values for dimensionful
(and nonuniversal) quantities, often by significant amounts
although improvements have been made [68]. These problems
become more complex in the case of the HLR state and,
for this reason, theories of the compressible state projected
onto the Landau level have been introduced [83,84]. These
theories are technically more complex and nonlocal, and are
only qualitatively understood.

In what follows we will set aside these important caveats,
and develop a theory of the compressible nematic state as an
instability of the HLR composite Fermi liquid (CFL) state.
In Sec. II, we present the theory of the nematic composite
Fermi liquid, following closely the structure and results
of the theory of the nematic Fermi fluid of Oganesyan,
Kivelson, and Fradkin [56] and of the composite Fermi
liquid of Halperin, Lee, and Read [53] Here we introduce
the gauge-invariant quadrupolar interaction, and present the
basic structure of the effective action for the nematic order
parameter fields. In Sec. III, we derive the parity-even part
of the nematic fluctuations, and in Sec. IV, we derive the
parity-odd component, which yields the Hall viscosity using a
diagrammatic approach. In Sec. V, we derive a set of important
Ward identities, which we use throughout the paper. In Sec. VI,
we discuss the effective quantum dynamics of the nematic
fields and their electromagnetic response, which is relevant to
resonance experiments. In Sec. VII, we derive the Wen-Zee
term for the CFL. Here we find that, due to the nonlocal nature
of this term in the compressible state, not only its coefficient is
not quantized (as it is in the incompressible FQH state [41]) but
its relation with the Berry phase term for the nematic fields (i.e.,
the effective Hall viscosity of the CFL) is not straightforward.
In Sec. VIII, we derive the geometrical response of the
CFL and in particular the Hall viscosity of this compressible
fluid. Here too, contrary to what happens in the FQH states,
this response is not quantized and it is not universal. In
Sec. IX, we discuss the connection of our theoretical results
on the nematic CFL states with various experiments showing
transport anisotropy in half-filled Landau levels. Section X
is devoted to our conclusions and open questions. Details of
our calculations and of previous results are presented in the
appendices. In Appendix A, we give a summary of the theory of
the quantum phase transition to a nematic state in a Fermi liquid
of Oganesyan and coworkers [56], and in Appendix B, we
summarize the HLR theory of the half-filled Landau level [53].
Details of the derivation of the Berry-phase-type term for the

nematic fields are given in Appendix D and for the Wen-Zee
term for the nematic fields in Appendix E. The derivation of
the nematic correlators is given in Appendix F, and the vertex
correction for the nematic polarization in Appendix G.

II. THEORY OF NEMATIC PHASE TRANSITION OF THE
COMPOSITE FERMI LIQUID

In this section, we consider the nematic-isotropic quantum
phase transition inside the CFL. We will construct the theory
using the theory of the nematic transition in a Fermi liquid of
Oganesyan, Kivelson, and Fradkin [56] (OFK), summarized in
Appendix A, and the theory of the isotropic CFL of Halperin,
Lee, and Read [53,54,85,86], summarized in Appendix B, as
our starting points.

Our starting point is the action for electrons in a half-filled
Landau level of HLR with a quadrupolar interaction

S =
∫

dtd2r�†(r,t)
[
iDt + D2

2m
+ μ

]
�(r,t),

− 1

2

∫
dtd2rd2r ′V (r − r ′)δρ(r,t)δρ(r ′,t)

− 1

2

∫
dtd2rd2r ′F2(r − r ′)Tr(Q̂(r,t) · Q̂(r ′,t)),

(2.1)

where Dμ = ∂μ + iAμ is the covariant derivative and the index
μ = t,x,y (not to be confused with the chemical potential
which is also denoted by μ!). Here, V (r − r ′) is the pair
interaction potential, and the quadrupolar interaction F2 in
momentum space is represented as

F2(q) = F2

1 + κq2
. (2.2)

Here we will use the same prescription we used in Ref. [41] in
the context of the nematic FQH state, and we will be careful
to include the gauge field Aμ in the definition of the nematic
order parameter, the traceless symmetric tensor Q̂(r),

Q̂(r) = 1

2m
�†(r)

(
D2

x − D2
y 2DxDy

2DxDy D2
y − D2

x

)
�(r), (2.3)

where Dx and Dy are the x and y components of the
covariant derivative, which is explicitly dependent on the
gauge field Aμ. Hence the nematic order parameter couples
to the electromagnetic gauge field as a quadrupole [41].

A. Flux attachment and nematic order

Now we proceed to attach the flux using the Chern-Simons
term and follow the same strategy as in the conventional CFL
theory of Appendix B to find the following effective theory.
In addition to this, we perform a Hubbard-Stratonovich trans-
formation to decouple the quadrupolar interaction in terms of
a field M(r,t) = (M1(r,t),M2(r,t)) (see also Appendix A), to
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find an action of the form

S =
∫

dtd2r�†(r,t)
[
iDt + D2

2m
+ μ + α D4

]
�(r,t) − 1

2

∫
d2rd2r ′dt

1

16π2
δb(r,t)V (r − r ′)δb(r ′,t)

+
∫

dtd2r
εμνλ

8π
(δaμ − δAμ)∂ν(δaλ − δAλ) +

∫
dtd2r

[
M1

2m
�†(r,t)

(
D2

x − D2
y

)
�(r,t) + M2

2m
�†(r,t)(2DxDy)�(r,t)

]

−
∫

dtd2r
1

2F2
[M2 + κ(∇M)2], (2.4)

where the covariant derivative now is Dμ = ∂μ + iδaμ, where
δaμ is the fluctuating component of the Chern-Simons gauge
field (see Appendix B), and where we have used the Chern-
Simons constraint to replace the density fluctuation δρ(r,t)
with the Chern-Simons flux fluctuation δb(r,t) (as shown in
Appendix B).

The action of Eq. (2.4) is the theory that we will analyze
in this paper. This action now also contains a higher-order
gradient term, α D4, in the fermion dispersion needed to
stabilize the nematic phase, i.e., making the sign of the
quartic term of the free energy of the nematic order parameter
positive [56]. However, we will be mainly interested in the
leading scaling behaviors of the various correlators in q
and ω for small q � kF where we linearize the kinetic
energy of the fermion near kF to calculate the correlators.
Then the higher-order dispersion does not affect the leading
scaling behaviors of the dynamic properties of the correlators.
Therefore, from here and on, for the most part we we will drop
the α D4 term when calculating the dynamical properties of
the CFL. We note that in our earlier work on the nematic
fractional quantum Hall states [41], it was necessary to
include a term of order D6 to stabilize the nematic state,
whereas here, in the compressible case, a term of order D4 is
sufficient.

Our goal in this paper is to derive the effective the-
ory for the external electromagnetic gauge field δAμ and
for the nematic order parameters M. In this section, we
will sketch the calculation and highlight the important
features of the results. The derivations of the main re-
sults are presented in the following sections and in the
appendices.

We will proceed in two stages. First, we will expand the
effective action resulting from integrating out the fermions
about the isotropic HLR state. The result is an effective action
that depends also on the fluctuating piece of the Chern-Simons
gauge field δaμ (as it is done in Appendix B for the HLR
theory). After integrating out the composite fermions, we
obtain the following effective action:

Seff[δaμ,M,δAμ]

= −itr ln

[
iDt + D2

2m
+ μ + α D4

+ M1

2m

(
D2

x − D2
y

) + M2

2m
2DxDy

]

+
∫

d2rdt
1

8π
εμνλ(δaμ − δAμ)∂ν(δaλ − δAλ)

− 1

2

∫
d2rd2r ′dt

1

16π2
δb(r,t)V (r − r ′)δb(r ′,t)

−
∫

d2rdt
1

2F2
[M2 + κ(∇M)2]. (2.5)

Since we are interested in deriving an effective-field theory
near the nematic (Pomeranchuk) quantum phase transition,
we will expand the fermion determinant (the first two lines on
the right-hand side of this effective action) up to the quartic
order in the nematic fields M (and quadratic orders in their
spatial derivatives). We will also expand the effective action
up to the quadratic order in the fluctuations of the Chern-
Simons gauge field δaμ. Notice that the only trace of broken
time-reversal invariance in this effective action is in the Chern-
Simons action (the third line of this effective action), and
that the fermion determinant represents a system of composite
fermions at finite density (the HLR composite Fermi liquid)
coupled to the fluctuations of the Chern-Simons gauge fields
δaμ and to the nematic fluctuations M.

The result of this expansion is an effective action for the
nematic fields M and an effective action for the fluctuations of
the Chern-Simons gauge fields δaμ. The effective action has
the general form

S[M,δaμ,δAμ] =Sn[M] + SCFL[δaμ,Aμ]

+ Sa,M [δaμ,M] + Sa,M,a[δaμ,M].
(2.6)

The first two terms of the right-hand side are the expected
terms for the effective action for nematic fields alone, Sn[M],
identical to the result of OKF for effective nematic theory
[shown in Eq. (A7) of Appendix A, and subsequent equations],
and terms for the Chern-Simons gauge fields alone, SCFL

identical to the HLR result [given explicitly in Eq. (B6) of
Appendix B]. Thus the nematic order parameter fields M
condense at the Pomeranchuk instability and become over-
damped (with dynamical critical exponent z = 3). Likewise,
the Chern-Simons gauge fields are overdamped and also
have z = 3 dynamic critical exponent. In both theories, the
fermionic quasiparticles are destroyed by these overdamped
fluctuations.

The physics of the nematic composite Fermi fluid originates
in the last two terms of the effective action of Eq. (2.6).
Although the nematic order parameters are charge-neutral,
they still couple to the gauge fields but as a quadrupole. This
coupling leads to two new terms in the effective action, not
present either in the theory of the nematic Fermi fluid, or in
the theory of the composite Fermi liquid. The effective action
Sa,M in Eq. (2.6) has the form [see Eq. (C6) of Appendix C
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for details]

Sa,M [M,δaμ] = −1

2

∫
q,ω

Mi(q,ω)Tiν(q,ω)δaν(q,ω). (2.7)

This term is a mixed bilinear form in the nematic field M
and in the Chern-Simons gauge field δaμ, and represents the
quadrupolar coupling.

The other new term, represented by the effective action
Sa,M,a of Eq. (2.6), has the form of [see Eq. (C8) of Appendix C
for details]

Sa,M,a[δaμ,M] = −1

2

∫
q,ω

δaμ(q,ω)Vμν[M]δaν(−q,−ω),

(2.8)

which represents the parity-even coupling Maxwell-type terms
of the Chern-Simons gauge fields to the local fluctuations of
the nematic order parameters. In this last term, the nematic
fields M couple to the gauge fields as a fluctuating spatial
metric.

The couplings between the Chern-Simons gauge fields and
the nematic fields in Eq. (2.6) imply that these fields mix. This
has important consequences for the effective dynamics of the
nematic fields. This is found in our third and last step in which
we now integrate out the fluctuations of the Chern-Simons
gauge fields. Since the effective action of the Chern-Simons
gauge fields has a Chern-Simons term which is odd under
parity and time reversal, this step leads to parity-odd terms
in the effective action of the nematic fields. Also, from the
form of the coupling to the external electromagnetic fields, we
will now obtain an effective action for these probe fields (the
same as in the HLR theory) plus their quadrupolar coupling
to the nematic fields. This last effective coupling leads to the
signatures of the nematic fluctuations (and order) in the current
correlation functions.

In Ref. [41], we presented a theory of a nematic FQH state
based on a Chern-Simons gauge theory of flux attachment. An
important feature of that theory is that already at the mean
filed level (i.e., the average-field approximation), the effective
action of the nematic fields has a Berry phase term, originating
from the broken time-reversal invariance, which dictates the
quantum dynamics. The actual coefficient of this term can be
exactly obtained at the level of mean-field theory, and further
gauge fluctuation correction does not modify the result. This
coefficient is part of the actual, universal, value of the Hall
viscosity. However, in the case of a nematic composite Fermi
liquid the situation is quite different since at the mean-field
level (where the gauge fluctuation is ignored) the gapless
composite fermions do not see directly a broken time-reversal
invariance, which is encoded in the Chern-Simons action
of the gauge field fluctuations. We will see below that the
fluctuations of the Chern-Simons gauge fields will induce a
Berry-phase-type term for the nematic fields although this term
will be nonlocal and its coupling constant is unquantized (and
nonuniversal). The same holds for the Wen-Zee term and the
Hall viscosity.

B. Effective-field theory of nematic fluctuations

Before proceeding further, we first relate the various
parameters appearing in Eq. (2.4), i.e., the Fermi momentum

and the effective mass of composite fermions, to the natural
scales in a landau level: the magnetic length l0 and effective
interaction strength between electrons. In the Landau level,
the density of electron is naturally related with the magnetic
length. On the other hand, the density is related with the Fermi
momentum kF , resulting in the standard relations

kF =
√

4πρ = 1

l0
, (2.9)

where we use units in which �/ec = 1. On the other hand,
the mass of the composite fermion is renormalized by the
interactions between electrons. In the limit of a large magnetic
field, the effective mass is expected to be determined by the
scale of electron-electron interactions alone, as shown by
the work of Halperin, Lee, and Read [53]. We can estimate
the mass of composite fermions in terms of the interactions
via the dimensional analysis (see Appendix B). Hence we
obtain an estimate of the effective mass m of the composite
fermions in terms of the density-density interaction V (q) as

m = C

V (0)
, (2.10)

where C is a numerical constant. In the case of Coulomb
interactions, HLR showed that the energy scale is the Coulomb
energy at the scale of the magnetic length. Here we are working
with a model with short-range interactions and hence we will
set the effective mass to be given by Eq. (2.10). Further, the
high-frequency cutoff �̄ is naturally the Fermi energy, i.e.,

�̄ = ECFL
F = �−2

0 /m. (2.11)

With these relations at hand, we can express all quantities in
terms of the magnetic length l0 and of the interaction 1/V (0).

We will work close to the Pomeranchuk quantum phase
transition to the nematic state, where the distance to the
nematic quantum critical point (the Pomeranchuk instability)
is parametrized by

δ = V (0)

4πl4
0

+ 1

2F2
. (2.12)

We will keep terms in the effective action up to (and including)
quartic order in the nematic fields. NF is the density of states at
the Fermi surface. Here, as in the HLR work on the composite
Fermi liquid, we will keep only terms in the effective action
which are quadratic in the fluctuations of the gauge fields δaμ.
This amounts to working in the random phase approximation
(RPA). Higher-order terms are (presumably) unimportant and
we will neglect them. The effective action derived below is
effectively a loop expansion in the fluctuations of the gauge
fields. Although in most cases we will need to consider
diagrams with up to two internal gauge field propagators, in
the case of the Wen-Zee term the leading nonvanishing three
has three internal gauge field propagators.

Before presenting the details of our theory, we first
summarize the main results. Here we show that the
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effective action for the nematic fields M is

Seff[M,δAμ] =
∫

p,�

Mi( p,�)Lij ( p,ω)Mj (− p,−�) −
∫

d2rdtλM4 +
∫

p,�

χ i� εijMi( p,�)Mj (− p,−�)

+
∫

p,�

βεμνρωμ( p,�)(∂νδAρ)(− p,−�) −
∫

p,�

1

2
δAμ( p,�)(Vμν( p,�)[M] + Kμν( p,�))δAν(− p,−�),

(2.13)

where [56] λ = (1/l2
0)3(2α)/5, with α being the coefficient of the quartic term in the single-particle dispersion (see Appendix A),

and the coefficient β is given by β = 2
3π

√
3
. In Eq. (2.13), Lij ( p,ω) is the inverse propagator of the nematic fields

Lij ( p,�) =
⎛
⎝− κ

2F2
p2 − δ − cos2(2θp) 1

2πl3
0

(
i�
p

)
sin(2θp) cos(2θp) 1

2πl3
0

(
i�
p

)
sin(2θp) cos(2θp) 1

2πl3
0

(
i�
p

) − κ
2F2

p2 − δ − sin2(2θp) 1
2πl3

0

(
i�
p

)
⎞
⎠. (2.14)

where, as in Eq. (2.12), δ denotes the distance to the quantum critical point (i.e., the Pomeranchuk instability), and θp is teh angle
of the momentum p with the x axis. The result of Eq. (2.14) was first derived by Oganesyan et al. [56].

The second term in Eq. (2.13) is a Berry phase term and its (nonuniversal) coefficient χ = 2
3πl2

0
is the Hall viscosity of the CFL

(see Sec. IV). Finally, the tensor Vμν[M] represents the parity-even coupling between the Maxwell terms of the electromagnetic
gauge fields and the nematic fields (and couple as a metric fluctuation) is given by

Vμν( p,ω)[M] = 1

2π
K0( p,ω)

⎛
⎜⎝

M1
2

(
p2

x − p2
y

)
(M1px + M2py)ω (−M2py + M2px)ω

(M1px + M2py)ω M1ω
2 M2ω

2

(−M2py + M2px)ω M2ω
2 −M1ω

2

⎞
⎟⎠. (2.15)

The function K0( p,ω) is given in Appendix B, and Kμν( p,ω)
is the polarization tensor of the electromagnetic field in the
HLR theory of the CFL.

We first remark that, due to the Landau damping terms in
the inverse propagator Lij ( p,�), the nematic phase transition
of the compressible half-filled Landau level has a dynamical
critical exponent z = 3. However, the effective action of
Eq. (2.13) has also a Berry-phase-type term for the nematic
order parameters induced by Chern-Simons gauge fluctuation.
Although this term is formally subleading to the Landau
damping term, it is kept since it is the leading parity-odd
contribution to the nematic fields.

By symmetry, the nematic order parameter acts as a locally
fluctuating dynamical metric to electrons and to composite
fermions and modifies the local frames. In the nematic phase,
where the order parameters have a nonvanishing expectation
value, this coupling leads to an anisotropic electromagnetic
response. These effects are encoded through the term Vμν of
the polarization tensor for the external probe electromagnetic
gauge field δAμ. The isotropic part Kμν of the polarization
tensor was calculated in Ref. [53] [see Eq. (B11)]. Here ωμ

plays the role the “spin connection” of the “dynamical metric”
defined by the nematic order parameter fields, and can be
explicitly written out in terms of the nematic order parameter
fields as

ω0 = εijMi∂0Mj,

ωx = εijMi∂xMj − (∂xM2 − ∂yM1), (2.16)

ωy = εijMi∂yMj + (∂xM1 + ∂yM2).

Due to the Wen-Zee-like term, i.e., the term ∼εμνλωμ∂νδAλ

in the action, the disclination of the nematic order parameters
inside the nematic phase minimally couples with the electro-

magnetic gauge field and carries the (nonquantized) electric
charge, which, in this compressible state, will be eventually
screened by the gapless electrons.

The effective theory is both gauge invariant and rotationally
invariant. First of all, the inverse propagator Lij in Eqs. (2.13)
and (2.15) of the nematic order parameter is constructed in the
way that it is apparently rotationally symmetric. We will come
back to this later. Secondly, the action is also gauge invariant.
The Wen-Zee-like term is apparently gauge invariant because
it involves the field strength Fνρ = ∂νδAρ − ∂ρδAν explicitly.
For the full polarization tensor Vμν + Kμν for the external
electromagnetic gauge field δAμ, it is clear that the gauge
invariance is respected, since ∂νVνλ = 0 and ∂νKνλ = 0, which
implies gauge invariance. We present the detailed calculation
for the main results in the following sections.

III. PARITY-EVEN COMPONENTS OF THE NEMATIC
FLUCTUATIONS

The propagator of the nematic order parameters in the Fermi
liquid state is (here T denotes time ordering and i,j = 1,2)

i〈T MiMj 〉0( p,ω) ≡ L−1
ij ( p,ω). (3.1)

The diagonal component L11 (represented diagrammatically
in Fig. 1) has the explicit form

L11( p,�) = − i

∫
k,ω

g(k + p,� + ω)g(k,ω)

(
k2
x − k2

y

2m

)2

= k4
F

4πm
− cos2(2θp)

k3
F

2π

(
i�

p

)
+ o(�/p),

= V (0)

4πl4
0

− cos2(2θp)
1

2πl3
0

(
i�

p

)
+ o(�/p),

(3.2)
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FIG. 1. Nematic correlator: the full lines represent the composite
fermion propagator and the broken lines represent the nematic order
parameters.

where

g(k,ω) = 1

ω − k2−k2
F

2m
+ iη sign(ω)

(3.3)

is the time-ordered free composite fermion propagator. In the
same way, we can calculate the other components of Lij ( p,ω)
and replace kF ,m in terms of l0,V (0),

L12( p,�) = cos(2θp) sin(2θp)
1

2πl3
0

(
i�

p

)
,

(3.4)

L22( p,�) =V (0)

4πl4
0

− sin2(2θp)
1

2πl3
0

(
i�

p

)
,

which agree with the results of OKF [56].
Now we can include the gauge fluctuations. This is

included through the loop expansion in the gauge fields, and
we calculate only the one-loop corrections. In Appendixes F
and G, we show that these corrections are subleading to the
leading term, and thus do not change the dynamic scaling
behavior of the critical theory of the nematic-isotropic phase
transition.

IV. PARITY-ODD COMPONENTS OF THE NEMATIC
FLUCTUATIONS: THE HALL VISCOSITY

In our earlier work [40,41], we investigated the isotropic-
nematic phase transition in FQH states and Chern insulators.
We concluded that the theory describing the phase transition to
the anisotropic state in such chiral topological phases always
contains a Berry phase term for the nematic order parameters,
which is odd under time reversal and parity. In the nematic
FQH states, the coefficient of the Berry phase term is related
(but not equal to) with a dissipationless Hall viscosity [41,51].
In Ref. [41], we concluded that the nematic fluctuation,
regarded as a dynamical metric, only couples with the stress
tensor of the composite fermion while the background metric
also appears in the covariant derivative as the spin connection
of the composite particle. Accordingly, the Berry phase of the

nematic order parameter is the odd Hall viscosity of the mean-
field state of the composite fermion theory, not of the elec-
tron fluid. Hence, in the incompressible FQH states, the Berry
phase term is equivalent to the Hall viscosity of the composite
fermion filling up integer number of the effective Landau
levels [41,51].

For the compressible half-filled Landau levels, the mean-
field state of the composite fermion without the gauge
fluctuation is a CFL with well-defined Fermi surface. Fur-
thermore, the state is time reversal even so we do not expect
any Berry phase term for the nematic order parameters to
emerge. However, once we include the dynamics of the
gauge fluctuation δaμ and go beyond the mean-field theory,
the time-reversal symmetry is explicitly broken due to the
Chern-Simons term for δaμ and thus the Hall viscosity
is expected to arise from the fluctuations. This is to be
expected since, for the same reasons, the Hall conductivity
of the CFL in the HLR theory also comes from gauge
fluctuations.

To study the contribution from the gauge fluctuation to
the Berry phase term, we formally integrate out the fermions
at one-loop order, and rewrite the theory in terms of the
fluctuating gauge field δaμ and the nematic order parameter.
Throughout this section we use the polarization functions
of the compressible fermions �μν , �0, and �2, defined in
Eqs. (C3)–(C5), respectively, given explicitly in Appendix C.
We first consider the linear coupling between the nematic field
and the gauge field at the mean-field level,

Sa,M = −
∫

q,ω

1

2
Mi(q,ω)Tiν(q,ω)δaν(−q,−ω), (4.1)

where Tiν(q,ω) is the 2 × 3 matrix (with i = 1,2 and ν =
t,x,y)

Tiν(q,ω) = m

2π
�2(q,ω)

(
q2

x − q2
y qxω −qyω

−2qxqy −ωqy −qxω

)
.

(4.2)

is the effective vertex. This coupling can be regarded as the
symmetric part of the Wen-Zee-like term, which we will
discuss later.

Beyond this, there is another term involving the fluctuating
nematic order parameter and Chern-Simons gauge fields:

Sa,M,a = −1

2

∫
q,ω

δaμ(q,ω)Vμν(q,ω)δaν(−q,−ω), (4.3)

where

Vμν(q,ω) = �0(q,ω)

2π

⎛
⎜⎜⎝

M1
2

(
q2

x − q2
y

)
(M1qx + M2qy)ω (−M2qy + M2qx)ω

(M1qx + M2qy)ω M1ω
2 M2ω

2

(−M2qy + M2qx)ω M2ω
2 −M1ω

2

⎞
⎟⎟⎠. (4.4)

This term is the coupling to the dynamical metric or nematic
order parameter of the Maxwell term for the fluctuating gauge
field δaμ. As the nematic order parameter can be considered

as a dynamical metric that modifies the local metric of the
composite fermion, the gauge boson coupled to the fermion is
also modified accordingly by the nematic order parameter.
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FIG. 2. Berry phase term. Here the bubble is the fermion loop
corrected by the fluctuating gauge field.

Together with the original isotropic HLR result for the
action of the fluctuating Chern-Simons field δaμ,

Sa = −1

2

∫
q,ω

δaμ(q,ω)�μν(q,ω)δaν(−q,−ω), (4.5)

we can obtain the Berry phase term of the nematic order
parameter by integrating out the fluctuating gauge fields and
performing the loop expansions. In the following, we fix the
gauge a0 = 0 to facilitate the calculation.

The effective action S = Sa + Sa,M,a of the gauge field
δaμ, defined by Eqs. (2.7) and (2.8), coupled with the nematic
order parameter M, is

S = − 1

2

∫
q,ω,k,�

δai(q,ω)
[
�ij + (t1

ijω
2�0)M1

+ (
t2
ijω

2�0
)
M2

]
δaj (−q,−ω), (4.6)

where the 2 × 2 matrices t1
ij and t2

ij denote the Pauli matrices
σ3 and σ1, respectively, and M are the nematic fields. By
integrating out the fluctuations of the gauge fields and per-
forming the loop expansion, we obtain leading corrections to
the (time-ordered) correlators of the nematic order parameter
M (shown in the Feynman diagram of Fig. 2):

〈δMiδMj 〉(�, p)

= i

∫
q,ω

tr
[
�−1

ij (ω,q)ω2�0t
i�−1

ij (ω + �,q + p)ω2�0t
j
]

= i
�

2
εij

∫
q,ω

�2q2

�2q2 + q2/4

√
ρ̄

�2q2 + q2/4
+ · · · , (4.7)

where we have approximated the form of the polarization
tensor �ij (ω,q) valid for low frequency and momentum with
ω � |q|vF (see Appendix B).

Hence the antisymmetric (and hence off-diagonal) part of
the nematic correlator L−1

ij gives a Berry-phase-type term in
the effective action for the nematic fields:

SM
ij =

∫
p,�

χεij (i�)Mi( p,�)Mj (− p,−�), (4.8)

where

χ = 2

3π
�̄m = 2

3πl2
0

(4.9)

with �̄ the high-frequency cutoff of the CFL and m is the
effective mass of the composite fermions. Using the HLR
results [53] (see Appendix B), since the UV cutoff �̄ = ECFL

F

(the Fermi energy of the CFL), and the value of the effective
mass m (which in the HLR theory is argued to depend only

on the scale of the Coulomb interaction), one finds that m�̄ =
�−2

0 , and hence the Hall viscosity seemingly depends only on
the particle density. This value of the Berry phase χ is one
of our main results in this paper. It plays a key role in the
effective dynamics of the nematic order parameters. However,
we should caution that, contrary to the case of the FQH states,
this value of the Hall viscosity is not protected in the CFL, and
should be regarded as an estimate.

Our result indicates that the gauge field fluctuations
generate a Berry phase term, which will in turn contribute to
the Hall viscosity of the compressible half-filled Landau levels.
The way in which the Berry phase term is generated in this
case is different from that of the incompressible FQH states.
In the incompressible FQH states, the Berry phase of nematic
order parameters is already present at the mean-field level of
the composite fermion which forms an integer quantum Hall
state, due to the explicitly broke the time-reversal symmetry of
the composite fermions in the effective Landau level [41,51].
Furthermore, the Chern-Simons gauge fields in the FQH state
are gapped and do not affect the value of the Berry phase
term in the low-energy regime. In contrast, for compressible
half-filled Landau levels, the mean-field state is a Fermi
liquid alone which seemingly respects time-reversal symmetry,
which is broken by the Chern-Simons term for the gauge
fields. Their fluctuations can affect the low-energy dynamics
of the nematic order parameters and induce the nonzero Berry
phase term for the nematic order parameters. In particular,
while in the incompressible FQH states, the coefficient of the
Berry phase term has a universal relation with the composite
fermion density, in the case of the compressible state this “Hall
viscosity” is nonuniversal as it depends explicitly on the UV
energy cutoff �̄ of the compressible composite Fermi fluid.

V. WARD IDENTITIES

We now present another way to compute and check the
Berry phase term, Eq. (4.8). Here we will use the Ward identity
between the current operators J and the stress tensor Tij (and
the linear momentum density T0j ). We start with the explicit
expressions for these operators in the CFL,

Ji = 1

2m
[�†(r,t)(∂i + iδai)� − ((∂i + iδai)�

†)�(r,t)],

Tij = 1

2m
�†(r,t)(∂i + iδai)(∂j + iδaj )�(r,t),

T0j = mJj , (5.1)

which are manifestly gauge invariant.
The conservation law of the energy-momentum tensor (i.e.,

local conservation of energy and momentum), in the presence
of the Chern-Simons gauge field fluctuations, implies that

∂μTμi = δbεij Jj , (5.2)

where δb = εij ∂iδaj is the fluctuating flux of the gauge field
δaμ. Upon expanding out in components the expression of
Eq. (5.2), we have

∂0mJx + ∂xTxx + ∂yTyx = δbJy,

∂0mJy + ∂xTxy + ∂yTyy = −δbJx. (5.3)
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In what follows, we will use the notation T1 = Txx − Tyy ,
and T2 = Txy + Tyx . Focusing only on the anti-symmetric re-
sponse, we find the following relation between the correlation
functions of current, stress tensor and density operators,

∂2
t1
m2〈Jx(r1,t1)Jy(r2,t2)〉 + ∂2

r1
〈T1(r1,t1)T2(r2,t2)〉

= 4〈ρ(r1,t1)Jx(r1,t1)ρ(r2,t2)Jy(r2,t2)〉. (5.4)

Hence the Berry phase term, i.e., the Hall viscosity determined
by the parity-odd correlation function of the stress ten-
sor [41,51,52,87–90], is related with the correlation function
of the composite operators of densities and currents [shown
on on the right side of Eq. (5.4)]. In momentum and frequency
space (and in the low-frequency limit, � → 0) this results
takes the form

p2〈T1T2〉( p,�) =
∫

q,ω

[4〈ρρ〉( p − q,ω + �)〈JxJy〉(q,ω)

+ 4〈ρJy〉( p − q,ω + �)〈Jxρ〉(q,ω)].

(5.5)

The density and current correlators, 〈ρρ〉 and 〈JxJy〉, are
given by the polarization tensor of the external electromagnetic
gauge field beyond the mean-field level, which include the
fluctuations of the Chern-Simons gauge field:

〈ρρ〉(ω,q) = 1

4(2π )

�0q
2

D(ω,q)
,

〈JxJy〉(ω,q) = iω

2(2π )
,

〈ρJy〉(ω,q) = − 1

4(2π )

�0qyω

D(ω,q)
− iqx

2(2π )
,

〈Jxρ〉(ω,q) = − 1

4(2π )

�0qxω

D(ω,q)
− iqy

2(2π )
,

D(ω,q) = 1

2π

[
�2

0ω
2 − 1

4
− �0q

2

(
�2 + V (q)

16π2

)]
.

(5.6)

Using these relations, we obtain a result consistent with the
previous approach:

〈T1T2〉(�, p) = ∂p2 4〈ρJxρJy〉(�, p)

= i�
2

3π
m�̄ = i�

2

3πl2
0

. (5.7)

VI. EFFECTIVE DYNAMICS AND SUSCEPTIBILITY
OF THE NEMATIC ORDER

With the results of the calculation of the Berry phase term
and Landau damping terms for the nematic order parameters at
hand, we can proceed to derive the expression for the nematic
correlators including both contributions. The effective theory
for the nematic order parameter field M close to the nematic
transition is

S[M] =
∫

p,�

Mi( p,�)LijMj (− p,−�) −
∫

d3xλM4

(6.1)

in which the correlator Lij ( p,ω) is given by the sum of the
two contributions, which yields the result

Lij =
⎛
⎝ − κ

2F2
p2 − δ − cos2(2θp) 1

2πl3
0

(
i�
p

)
i�

(
2

3πl2
0

) + sin(2θp) cos(2θp) 1
2πl3

0

(
i�
p

)
−i�

(
2

3πl2
0

) + sin(2θp) cos(2θp) 1
2πl3

0

(
i�
p

) − κ
2F2

p2 − δ − sin2(2θp) 1
2πl3

0

(
i�
p

)
⎞
⎠, (6.2)

where δ is the distance to the Pomeranchuk instability of Eq. (2.12). As in the case of the nematic Fermi fluid, Lij ( p,ω) is nothing
but the inverse susceptibility of the nematic order parameters, and zeros of the determinant of Lij ( p,ω) yield the dispersion
relation of the nematic collective modes of the CFL. Clearly, the nematic susceptibility is finite for δ > 0 and diverges as δ → 0,
as expected at a continuous quantum phase transition.

Except for the Hall viscosity term, which originates from the gauge fluctuations, which explicitly break the time-reversal
symmetry, Eq. (6.2) is almost the same as the result for the nematic correlator of OKF [56]. The Berry phase term, which makes
the effective theory time-reversal odd, mixes the transverse and longitudinal modes of the nematic order parameters. However,
if we focus only on the parameter regime where q � kF and ω � vF q, then the off-diagonal terms are subdominant and can
be ignored. Hence the overdamped critical mode is not affected by the gauge fluctuations. This leads to the conclusion that the
criticality of the isotropic-anisotropic phase transition of half-filled LL still exhibits z = 3 critical dynamical exponent.

A. Nematic susceptibility

From the effective theory Eq. (6.2), we can read-off the dynamic nematic susceptibility χM , i.e., the nematic propagator.
Inside the isotropic phase, δ > 0, the susceptibility is given by

χM
ij = L−1

ij = 1

C(�, p)

⎛
⎝ − κ

2F2
p2 − δ − sin2(2θp) 1

2πl3
0

(
i�
p

)
i�

(
2

3πl2
0

) − sin(2θp) cos(2θp) 1
2πl3

0

(
i�
p

)
−i�

(
2

3πl2
0

) − sin(2θp) cos(2θp) 1
2πl3

0

(
i�
p

) − κ
2F2

p2 − δ − cos2(2θp) 1
2πl3

0

(
i�
p

)
⎞
⎠, (6.3)

where

C(�, p) =
(

κ

2F2
p2 + δ

)2

+
(

κ

2F2
p2 + δ

)
1

2πl3
0

(
i�

p

)
− �2

(
2

3πl2
0

)2

≈ δ2 + δ
1

2πl3
0

i�

p
. (6.4)
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The nematic susceptibility is finite in the isotropic phase where 1
2πl3

0

i�
p

� 1. As we approach the quantum critical point, δ → 0,

the nematic susceptibility diverges, as expected. In the nematic phase, we assume the nematic order is in the M1 direction

(M1 =
√

|δ|
2λ

). The nematic susceptibility in the symmetry broken phase can be obtained,

χM
ij (�, p) = 1

C ′(�, p)

⎛
⎝ − κ

2F2
p2 − |δ| − sin2(2θp) 1

2πl3
0

(
i�
p

)
i�

(
2

3πl2
0

) − i sin(2θp) cos(2θp) 1
2πl3

0

(
i�
p

)
−i�

(
2

3πl2
0

) − i sin(2θp) cos(2θp) 1
2πl3

0

(
i�
p

) − κ
2F2

p2 − cos2(2θp) 1
2πl3

0

(
i�
p

)
⎞
⎠, (6.5)

where

C ′(�, p) ≈
(

κ

2F2
p2 + 1

2πl3
0

i�

p
sin2(2θp)

)
|δ|. (6.6)

B. Mode mixing in the Nematic phase and
at quantum criticality

In the theory of the nematic transition in a Fermi liquid of
OFK, when approaching the criticality, δ → 0, the difference
in the dynamics of the two polarizations becomes more
noticeable. At criticality there is an underdamped longitudinal
mode ωT ∼ q2 and an overdamped transverse mode ωL ∼ iq3.
In the nematic phase, this mode becomes the (overdamped)
Goldstone mode. In our nematic criticality in the half-filled LL,
due to the existence of the Berry phase term, the transverse
and longitudinal modes are mixed, leading to the following
modified dispersions for these collective modes:

ω1 ∼
√

κV (0)l0√
2F2π

q2 + i
l0V (0)

2
q3,

ω2 ∼ i
κ

2F2
(
π/l2

0

)3/2 q3. (6.7)

Thus the transverse mode, ω2, remains overdamped (as in the
OKF theory). In contrast, the longitudinal mode, ω1, is now
underdamped (with z = 2) only in the deep asymptotic long-
wavelength regime q → 0, crossing over to an overdamped
regime at larger values of q. This crossover can happen at
long wavelengths if the range of the quadrupolar interaction is
small.

C. Electromagnetic response and spectral peak

In the nematic phase, the electromagnetic response (and
the conductivity tensor) can be obtained after integrating
out the gauge fluctuations. The calculation details of the
electromagnetic response is presented in Appendix B. Here
we propose a possible experimental test of the nematicity by
measuring the spectrum of the conductivity σxx . To this end, let
us assume that we are in the deep nematic phase with a nonzero
nematic order, say in the M1 component. The conductivity σxx

as a function of momentum is

σxx = i

ω
〈JxJx〉 = −ω�0(q,ω)

(1 + M1)

4D′(q,ω)
,

D′(q,ω) = �0(q,ω)

(
�2(q,ω)−V (q)

16π2

)(
q2+M1

(
q2

x − q2
y

))
− 1

4
+ �2

0(q,ω)ω2. (6.8)

In the limit of ω/q � 1, the conductivity is approximately
given by

σxx ∼ ω(1 + M1)/V (0)

(1 + M1 cos(2θq))i ω
qV (0)l0

+ ω2

V (0)2q2 − q2/4
. (6.9)

Deep nematic phase where M1 ∼ O(1), the damping term
on the denominator will nearly vanish at θq = π/2. Thus, by
measuring σxx as a function of the angle θq of the direction of
propagation measured form the nematic axis, one will find a
resonance, i.e., a peak in the spectrum, at θq = π/2.

VII. THE WEN-ZEE TERM IN THE CFL

From the Hall viscosity term, we expect that there may be
the Wen–Zee-type terms for the dynamical metric associated
with the nematic order parameters [41,45]. The Wen–Zee-like
term consists of two parts: a parity-even term linear in nematic
order parameter and in the gauge field, and a second term that
is parity-odd, and is quadratic in nematic order parameter and
linear in gauge field. At the mean-field level of the CFL, which
is parity-even except for the Chern-Simons term, the composite
fermions on the Fermi surface generate only the parity-even
part of the Wen-Zee term. However, upon the inclusion of the
gauge field fluctuations, which are parity-odd, we will find the
parity-odd part of the Wen-Zee term, as well as a modification
of the parity-even part.

We start by calculating the first part of the Wen-Zee
term given by a Feynman diagram that has one gauge leg
and one nematic leg shown below in Fig. 3. The coupling
between gauge-invariant current, generated by the probe
electromagnetic gauge fields Aμ, and nematic order parameter

FIG. 3. Leading parity-even contribution to the Wen-Zee term.
The wavy lines are gauge field propagators and the broken line is a
nematic propagator. The blobs are composite fermion loops.
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M is given by

(−i)
δS

δMlδAk

( p,�)

≡ 〈MlJk〉( p,�)

= i

∫
q,ω

tr
[
�−1

ij (ω,q)ω2�0tlT
−1
mi (ω+�,q + p)ω2�0Qk

]
,

= 1

6π
√

3

(
�̄m

ρ̄

)1/3( px� py�

−�py px�

)
lk

, (7.1)

where as before, t1 = σ3 and t2 = σ1, and where we used the
notation Qx = I and Qy = −iσ2, and T −1

mi is given by

T −1
mi = 〈amMi〉 = 1

�2mq2ω2

(
qxω qyω

−ωqy qxω

)
, (7.2)

where we used the temporal gauge, a0 = 0. This is the parity-
even linear coupling between the nematic order parameter and
the probe electromagnetic gauge field.

To calculate the parity-odd contributions to the Wen-Zee
term, we calculate a Feynman diagram with one external probe
gauge field leg and two nematic order parameter legs. Once
again we choose the gauge a0 = 0 and find the result

(−i)
δS

δMhδMlδAk

(�1,�2; p1, p2)

≡ 〈MhMlJk〉(�1,�2; p1, p2)

=
∫

q,ω

tr
[
�−1

ij (ω,q)ω2�0σh�
−1
ij (ω + �1,q + p1)ω2

× �0σlT
−1
mi (ω + �1 + �2,q + p1 + p2)ω2�0Qk

]
= 1

6π
√

3

[(
�̄m

ρ̄

)1/3

+ �̄m

ρ̄

]
εhlενμkpν

1

(
p

μ

1 + p
μ

2

)
,

(7.3)

which is manifestly odd under parity and time-reversal
symmetries.

By combining the two contributions, we finally find a Wen-
Zee term of the form

LWZ = 1

6π
√

3

[(
�̄m

ρ̄

)1/3

+ �̄m

ρ̄

]
εμνρωμ∂νAρ, (7.4)

where �̄ is the frequency UV cutoff of the CFL. Further reduce
the expression by taking �̄m = l−2

0 , we have

LWZ = 2

3π
√

3
εμνρωμ∂νAρ. (7.5)

Here we have denoted by ωμ the spin connection associated
with the nematic fields [41]:

ω0 = εijMi∂0Mj,

ωx = εijMi∂xMj − (∂xM2 − ∂yM1),

ωy = εijMi∂yMj + (∂xM1 + ∂yM2). (7.6)

Similar to what we did for the calculation of the Berry phase
term using a Ward identity, the Wen-Zee term can also be
derived from the Ward identity, and the result is consistent with
the diagrammatic calculation present here. The details of the

calculation of Wen-Zee term from Ward identity is presented
in the Appendix E.

We should stress that the connection between the Hall
viscosity (given by the Berry phase term) and the Wen-
Zee term in the CFL is not as straightforward as in the
incompressible FQH states. In the incompressible states, the
universal coefficients s of the Wen-Zee term is directly related
to the Hall viscosity ηH , i.e., ηH = sρ̄

2 [51,52,87,91]. However,
in the compressible CFL state, the coefficients of the Wen-Zee
term and the Hall viscosity do not have such relation because of
the nonlocal nature of such responses in a compressible state.
The coefficients appearing in the expressions are seemingly
numeric constants, but it is important to remember that the
coefficients are in fact the functions of the ratio s = |�|

vF |q| (not
to be confused with the coefficient of the Wen-Zee term!),
and are in general nonlocal in space and time. Instead, in the
incompressible states where we can perform the well-defined
gradient expansions due to the energy gap to all the excitations.
Hence we find that in the CFL, the coefficients of the
(seemingly local) Wen-Zee term and Hall viscosities are not
universally related to each other.

A. Nematic-electric field correlator

The Wen-Zee-type term (7.5), which couples the nematic
field and the electromagnetic field, implies that the change in
the nematic field will induce the electron quadrupole moment.
Thus one can measure the nematic susceptibility with respect
to the external electric field χM,E = ∂Ti

∂Ej
as a function of

momentum:

χM,E = δ2S
δMiδEj

(q) = ∂Ti

∂Ej

,

= 2

3π
√

3

(−qx qy

−qy −qx

)
. (7.7)

This susceptibility indicates that the energy-momentum cur-
rent will be induced in the presence of the spatially modulating
electric field.

VIII. GENERAL RELATION BETWEEN THE HALL
VISCOSITY AND THE HYDRODYNAMIC GAUGE

THEORY IN HALF-FILLED LANDAU LEVELS

We have shown that, unlike the case of the incompressible
FQH states, in the CFL the gauge field fluctuations contribute
to the Hall viscosity of the half-filled Landau level. In order to
prove that the corrections to the Hall viscosity come from the
fluctuation of the Chern Simons gauge fields, we start from
CFL and dualize the CFL into a hydrodynamic gauge theory.

If we couple our CFL to a smooth deformation of
the background geometry (instead of to the nematic order
parameter), we find that the composite fermions at the mean-
field level receive an orbital spin from the flux attachment
procedure [51]. Beyond this, if we include the gauge field
fluctuation, the viscoelastic response of the CFL is related with
the parity-odd electromagnetic response of the hydrodynamic
gauge theory [87,92]. Since the original CFL is coupled to the
fluctuating Chern-Simons gauge boson, the time-reversal odd
electromagnetic response of the hydrodynamic gauge theory is
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always nonzero. Consequently, the CFL contains an additional
contribution to the Hall viscosity arising from the fluctuating
gauge field.

To see this, we start from the Chern-Simons theory of CFL
where we attach two flux quanta of the Chern-Simons gauge
field to the electrons to turn them into the composite fermions:

S =
∫

dr2dt�†(r,t)
(

iDt + 1

2m
D2 + gij

2m
DiDj

)
�(r,t)

− 1

2

∫
dr ′2dr2dtV (r − r ′)ρ(r)ρ(r ′)

+
∫

dr2dt
1

8π
εμνρaμ∂νaρ, (8.1)

where Dμ = ∂μ + i(Aμ + aμ + ωμ) is the covariant deriva-
tive. Here, ωμ is the spin connection of the background
metric gij , which is related to the local frame fields by
gij = (ea

j + δa
j )(ea

i + δa
i ). We only keep the leading orders in

ea
i so that the distorted spatial metric is defined as

δgij =
(

e1
1 e2

1

e1
2 e2

2

)
. (8.2)

The composite fermion has orbital spin s = 1 [51] so the
covariant derivative of the composite fermion contains the
spin connection with coefficient 1 dictated by the orbital spin
s = 1. At the mean-field level, the Chern-Simons flux cancels
the external magnetic fields so we only need to consider the
gauge fluctuation δa.

We can now perform the functional bosonization procedure,
following Refs. [50,93–95], of our theory and introduce the
hydrodynamic gauge field bμ [96]:

S =
∫

dr2dt�†(r,t)
(

iDt + 1

2m
DiDi + gij

2m
DiDj

)
�(r,t)

− 1

32π2

∫
dr ′2dr2dtV (r − r ′)δb(r)δb(r ′)

−
∫

dr2dt
2

4π
εμνρbμ∂νbρ +

∫
dr2dt

1

2π
εμνρδaμ∂νbρ,

(8.3)

where Dμ = ∂μ + i(δaμ + ωμ) is the covariant derivative, and
δb(r) = ∂xδay(r) − ∂yδax(r) is the fluctuating magnetic flux
of the gauge field δaμ.

Solving the saddle-point equation of δaμ, we find

∂xb0 − ∂0bx = Eb
x = J CF

y ,

∂yb0 − ∂0by = Eb
y = −J CF

x ,

∂xE
b
x = T CF

12 = �†DxDy

2m
�,

∂yE
b
y = − T CF

21 = −�†DyDx

2m
�. (8.4)

Now we turn on a momentum current of the composite
fermion T CF

12 in the system. Different from the parity-even
Fermi surface where the metric only couples with the mo-
mentum current, the composite fermions carry intrinsic orbital
spin so the spin connection appears in the covariant derivative.

Hence

δS
δe2

1

= T CF
12 + (

∂μe1
1

)
J CF

μ . (8.5)

The composite fermion current T CF
12 is bound with the spatial

derivative of electric field of bμ as ∂xE
b
x . Once we have

a nonzero ∂xE
b
x , a polarized charge density appears. If the

hydrodynamic gauge theory of the gauge field bμ contains a
term like β(∇ · Eb)Bb, the polarized charge density associated
with the field bμ acts as a magnetic moment that couples with
magnetic flux of bμ. Thus we have

δS
δ(∂xby)

= β∂x(∂xb0 − ∂0bx). (8.6)

By solving the equation of motion for the hydrodynamic gauge
field,

δS
δ(∂xby)

= ∂0
δS

δ∂0(∂xby)
,

δS
δ∂0(∂xby)

= δS
δ∂x(∂0by)

= δS
δT11

= e1
1. (8.7)

We finally have

δS
δ(∂xby)

= ∂0e
1
1 = β∂x(∂xb0 − ∂0bx). (8.8)

Thus the Hall viscosity can be read off from

δS
δe2

1

= 1

β
∂0e

1
1 + (

∂μe1
1

)
J CF

μ =
(

ρ + 1

β

)
∂0e

1
1, (8.9)

i.e., the Hall viscosity is (ρ + 1
β

) in which ρ is due to the flux
attachment [51], and 1/β is due to the parity-odd fluctuations
of the hydrodynamic gauge field. The parity-odd viscosity
has two contributions: one is the intrinsic orbital spin that the
composite fermion carries, and the other is through the term
(∇ · Eb)Bb of the hydrodynamic gauge field. Hence, if the dual
hydrodynamic gauge theory has the parity-odd β(∇ · Eb)Bb

term, we expect that there should be additional Hall viscosity
from the gauge fluctuation. The theory of the bμ field can be
obtained by integrating out the composite fermion surface and
gauge fluctuation of the gapless aμ. However, if the effective
theory of aμ is gapless and nonlocal, the coefficient β for the
term (∇ · Eb)Bb will be nonuniversal (and depend on the UV
cutoff in a singular way). This is in accordance with our result
for the CFL.

IX. CONNECTION TO EXPERIMENTS

In this section, we discuss the connections between our re-
sults with the experiments [12,13,21,97] on half-filled Landau
levels with N > 1. These experiments show that in half-filled
Landau levels with N � 2, there is a spectacular anisotropy
in the longitudinal transport with ratios of the resistances as
large as Rxx/Ryy ∼ 3500 at the lowest temperatures. The
anisotropy in the longitudinal resistivities, expressed in the
difference ρxx − ρyy , raises very rapidly below a critical
temperature Tc ∼ 65 mK (for N = 2). These results were
originally interpreted as the signature of a striped phase
[24–26], an unidirectional charge-density-wave state which
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breaks translation symmetry (and, necessarily, rotational sym-
metry). However, further transport experiments showed that
the I -V (current-voltage) curves were metallic and showed
a linear behavior at low bias voltages [12]. In contrast, a
charge-density-wave (CDW) would have exhibited nonlinear
I -V curves with a sharp onset at a critical voltage. Extremely
sharp onset behavior has been seen indeed in the reentrant
integer quantum Hall regime away from the center of the
Landau level and has been interpreted as evidence for a “bubble
phase” (i.e., a bidirectional CDW). Moreover, in the reentrant
IQH regime the experiments show broadband noise in the
current, which are observed in many CDW phases, but which
is absent the anisotropic half-filled Landau levels.

For these reasons, the experiments in the center of the
Landau levels (with N � 2) have been interpreted instead
as evidence for a nematic phase phase, i.e., a uniform and
compressible phase of the 2DEG with a strong anisotropy (for
a review, see Ref. [1]). This interpretation is further supported
by comparing the anisotropy in transport data with a simple
model of a nematic, a two-dimensional classical XY model
for a director order parameter. By means of Monte Carlo
calculations it was found that indeed this model fits really
well the transport anisotropy data [17,18]. Furthermore, these
fits show that there is a very low energy scale for the native
anisotropy is of the order of 3–5 mK, which is presumably
related to the coupling of the 2DEG to the underlying lattice.
Although the experiments cannot exclude the possibility that
the ground state at T = 0 is actually a possible striped state,
which will be melted thermally into a nematic state at finite
temperature, the absence of any evidence of stripiness at the
lowest temperatures seems to imply that the ground state is a
nematic (which, most likely, should be regarded as a quantum
melted striped phase). A detailed review on these experiments
(prior to 2010) and their interpretation can be found in Ref. [1].

In this section, we focus on a relatively recent set of
experiments on radio-frequency conductivity measurements in
the N = 2 Landau level near filling fraction ν ≈ 9/2 by Sam-
bandamurthy et al. [97], which, from our perspective, can be
naturally interpreted as the following. In this experiment [97],
they observe an anisotropy in the longitudinal conductivities
as well as a resonant peak of the radio-frequency longitudinal
conductivity along the hard direction of transport, say σxx ,
with a frequency of 100 MHz. This 100-MHz resonance
was originally interpreted as evidence for the existence of
a pinning mode of a stripe state [31]. Given that the I -V
curves are linear, and hence that there is no evidence of
translation symmetry breaking, it is natural to seek a nematic
explanation for this energy gap. In a nematic state in the
continuum there would not be a gap. On the other hand,
the transport anisotropy experiments show that the anisotropy
saturates below T ∼ 20 mK. Tilted-field experiments [16,18]
and the fits to the XY model with a weak symmetry-breaking
field [17] show that the energy scale is of the order of 3–5
mK, which is quite comparable with a resonant frequency of
100 nHz as seen by Sambandamurthy et al. [97]. Thus we are
led to the interpretation that the radio-frequency conductivity
measurements are detecting a nematic Goldstone mode gapped
out by the coupling to the lattice, which induces a term that
breaks the continuous rotational symmetry to the C4 symmetry
of the lattice (i.e., of the surface on which the 2DEG is

confined). It is also important to note that the resonant peak
seen in by Sambandamurthy et al. behaves remarkably close to
what is seen in the transport anisotropy in the dc experiments.

Finally, we should note that transport experiments in the
N = 1 Landau level have shown a close connection between
the nematic state and the paired FQH state at ν = 5/2.
Indeed, earlier experiments [22] showed that by tilting the
magnetic field the FQH state at ν = 5/2 is destroyed and
that the resulting compressible state behaves much like an
anisotropic HLR state. A relatively recent experiment [23]
has also given evidence of a nematic state in the ν = 7/3
FQH plateau (presumably a Laughlin-type state) and was
interpreted as such in several theory papers [39,41,45,98].
Very recent transport experiments by Samkharadze et al. [21],
found that, by applying a sufficiently large external hydrostatic
pressure, the incompressible isotropic FQH state at ν = 5

2
spontaneously gives a way to the compressible anisotropic
phase. This is possible since the pressure tunes the width
of the quantum well and thus tunes the effective interaction
between the electrons, as the form and spread of the electron
wave function will be varied as the width is changed. At the
critical pressure, it is found that the rotational symmetry is
spontaneously broken and the anisotropy in conductivities
develops. Though this transition is between incompressible
QH state and compressible nematic CFL instead of the
transition from the compressible isotropic state, namely CFL,
to the compressible anisotropic state, this result gives a strong
hint that tuning an external parameter, such as pressure, the
effective electron interaction such as F2 in this paper can be
tuned to find the transition that we have studied in this paper.

X. CONCLUSIONS AND OUTLOOK

In this work, we considered the problem of a 2DEG in a
half-filled Landau level with strong quadrupolar interactions.
We mapped the fermion theory into a composite Fermi liquid
coupled to a gauge field with a Chern Simons term, extended
by a quadrupolar interaction. Both the nematic fluctuations and
gauge fluctuations are found to soften the Fermi surface and
drive the system into a non-Fermi liquid state. We started from
the nematic Fermi liquid theory corrected by the fluctuations
of the Chern-Simons gauge boson fluctuations and looked at
the nematic instability of the non-Fermi liquid. The nematic
fluctuations are Landau-damped by the non-Fermi liquid state
and thus the dynamical critical exponent is z = 3.

The nematic theory was also shown to contain a Berry phase
term arising from the gauge field fluctuations, which correct the
nematic correlator. This nonzero Berry phase term suggests the
gauge fluctuation would also contribute to the Hall viscosity of
the half-filled Landau level. The resulting odd viscosity in this
gapless system is nonuniversal. In addition, inside the nematic
phase, the nematic vortex current couples with the gauge field.
This also demonstrates that the half-filled Landau level orbital
spin is not exactly equal to s = 1 as both gauge fluctuation and
orbital spin of the CFL in the mean-field level have separate
contribution to Wen-Zee term. The computation of the Hall
viscosity was confirmed by an argument based on a set of
Ward identities.

The theory of the nematic composite Fermi liquid presented
here is based on the concept of flux attachment, i.e., on the
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equivalency between different theories of interacting fermions
in two space dimensions to a theory of composite fermions
coupled to a gauge field. This approach has been known for
a long time to give the correct universal properties of the
FQH states [49], including subtle responses to changes in the
external geometry [51,52]. These theories are also known to
give a qualitative description of the compressible phases, i.e.,
the HLR theory [53]. However, it is also well known that the
mean-field approximations based on this mapping involve a
large amount of the Landau level mixing (even in the limit
of a very large magnetic field), which becomes extreme in
the compressible states. A symptom of these problems is the
lack of particle-hole symmetry even in the limit in which all
excited Landau levels are projected out. These difficulties have
been the focus of intense recent work [70–74], already noted
in the Introduction. This approach proposes to describe the
half-filled Landau level, instead, as proximate to a theory
of Dirac fermions “dually” coupled to a dynamical gauge
field. The problem of the possible connection between the
“more conventional” Chern-Simons approach and these recent
proposals is at present unclear, including how they may relate
to the nematic and paired states. We will consider these
connections in a separate publication.

Finally, we note that there have not been systematic
numerical studies of the nematic transition in 2DEGs in large
magnetic fields. Most of the existing studies of rotational (and
translational) symmetry breaking have been done either by
means of finite-size diagonalizations [99] (done on small sys-
tems with toroidal boundary conditions which break rotational
invariance explicitly) or with projected wave functions [64] or
with variational wave functions [48], mostly done on relatively
small systems on the sphere (which also poses problems for
an order that breaks rotational invariance). A more careful
numerical study of this problem is clearly needed.
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APPENDIX A: THE ISOTROPIC-NEMATIC QUANTUM
PHASE TRANSITION IN A FERMI LIQUID

The problem of the isotropic-nematic quantum phase
transition by a Pomeranchuk instability in a Fermi liquid
(without a background lattice) was studied by Oganesyan,
Kivelson and Fradkin [56] whose work we follow in detail.
The lattice version of this problem was studied by several
authors [100–102]. For a review of electronic nematic phases
see Ref. [1]. Here we will use a perturbative approach,
following the standard work of Hertz [103] and Millis [104]
(for a review, see Ref. [105]). The full nonperturbative behavior
of Fermi fluid is not fully understood and has been the focus
of considerable work, both analytic [106] and, more recently,
numerical [107]. The problem of the quantum phase transition

to an electron nematic state from a charge stripe state has not
been studied as much (see, however, Ref. [108]).

We start from the isotropic FL described by the free-fermion
action S0 in two space dimensions for spinless fermions (spin
will play no role here),

S0 =
∫

d2rdt�†(r,t)
[
i∂t + ∇2

2m
+ μ

]
�(r,t), (A1)

in which μ is the chemical potential and � is the spinless
fermionic field. This theory S0 is invariant under arbitrary
spatial rotations. It is known that this Fermi liquid is stable to
all infinitesimal interaction except the superconducting (BCS)
channel [109,110]. Hence, by excluding the pairing channel,
the only way to introduce any qualitative and quantitative
change is to turn on the interaction beyond some finite strength.
Hereafter, we will ignore the pairing instability and concentrate
on phase transitions only in the particle-hole channel (although
the nematic quantum criticality can lead to a superconducting
state [111,112]). In addition, Oganesyan and coworkers [56]
found that in order to stabilize the nematic ground state it is
necessary to include in the free fermion Hamiltonian terms in
the dispersion relation that are at least cubic in the momentum
relative to the Fermi momentum. Such terms are explicitly
irrelevant in the Landau FL phase. Although in this section
we will not include these terms explicitly, we will make them
explicit in the theory of the nematic CFL of Sec. II.

We are interested in the process of the spontaneous breaking
of the rotational symmetry in a FL. The most obvious way to
break the rotational symmetry is the spontaneous distortion of
the Fermi surface. In this paper, we are mainly interested in the
distortion in the d-wave channel, i.e., the quadrupolar channel.
The spontaneous symmetry breaking transition is thus induced
naturally by turning on the strength of the Landau parameter
with an attractive coupling F2 for the quadrupolar interaction,
represented by a term SQ in the full action of the form [56]

SQ = 1

2

∫
dtd2rd2r ′ F2(|r − r ′|)tr(Q̂(r,t) · Q̂(r ′,t)), (A2)

where F2(|r − r ′|) is a short-ranged quadrupolar interaction

F2(|r − r ′|) =
∫

d2q

(2π )2

F2

1 + κq2
, (A3)

where κ−1 is the range of the quadrupolar interaction and F2

is the quadrupolar coupling. In Eq. (A2), denoted by Q̂(r) the
electronic quadrupolar density defined in the OFK paper,

Q̂(r) = 1

k2
F

�†(r)

(
∂2
x − ∂2

y 2∂x∂y

2∂x∂y ∂2
y − ∂2

x

)
�(r). (A4)

Note that the electronic quadrupolar density in the OFK paper
is different from our definition in Sec. II up to k2

F .
It is clear by dimensional counting that the interaction

Eq. (A2) is irrelevant at the Fermi liquid fixed point of Eq. (A1),
and thus we will need the finite strength of F2 in Eq. (A2) to
be large enough (and attractive) to drive a phase transition out
of the isotropic Fermi liquid (A1). To understand the quantum
phase transition better, we decouple the interaction term of
Eq. (A4) by means of a Hubbard-Stratonovich transformation,
and replace the quartic form of the action SQ by another one
in which the nematic order parameters are coupled linearly to
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two real Hubbard-Stratonovich fields, M1 and M2. After this
is done, Eq. (A4) becomes

LQ = M1(r,t)

k2
F

�†(r,t)
(
∂2
x − ∂2

y

)
�(r,t) + M2(r,t)

k2
F

�†(r,t)

× (2∂x∂y)�(r,t) − 1

2F2
[|M(r,t)|2 + κ(∇M(r,t))2],

(A5)

where we introduced the director field M = (M1,M2).
Hence we obtain a theory of the fermion nematic order

parameter coupled to the Hubbard-Stratonovich fields M1 and
M2. In momentum and frequency space, the action becomes

S =
∫

k,ω

[
�†(k,ω)

(
ω − k2 − k2

F

2m

)
�(k,ω)

− 1

2F2
(1 + κk2)|M(k,ω)|2)

]

+
∫

k,ω

∫
q,�

�†(k + q,ω + �)

[
M1(q,�)

k2
F

(
k2
x − k2

y

)

+ M2(q,�)

k2
F

(2kxky)

]
�(k,ω). (A6)

Here we used the short-hand notation
∫

q,ω
= ∫

dωd2q

(2π)3 and have

set the Fermi momentum to be kF = √
2mμ, and the chemical

potential μ is the Fermi energy.
After the Hubbard-Stratonovich transformation, we pro-

ceed to integrate out the fermions to obtain the effective action
for the order parameters M1 and M2. Close to the quantum
phase transition to the nematic state we can approximate
the effective action by a Landau expansion in powers of the
nematic order parameter fields. To quadratic and quartic order,
one finds

Sn = 1

2NF

∫
dωd2qMi(q,ω)Lij (q,ω)Mj (q,ω)

−
∫

d2rdt

[
κ

2F2
(∇M)2 + λM4

]
, (A7)

where [56] λ = (3αNF |F2|3)/(8E2
F ), and α is the coefficient of

the quartic term in the single-particle dispersion. The inverse
of the propagator of the order parameters, Lij (q,ω), contains
the information about quantum critical dynamics of the order
parameters. The analytic form of Lij (q,ω) can be obtained up
to one-loop correction in the fermions. The result is [56]

Lij (q,ω) = δij

(
κ

2F2
q2 + δ

)
+ Mij (s,φ), (A8)

where δ = − 1
2 − 1

NF F2
parametrizes the distance from the ne-

matic quantum critical point at F ∗
2 = −NF

2 (the Pomeranchuk
transition), s = ω

vF q
, vF = kF

m
is the Fermi velocity, and φ is the

polar angle of the momentum q. The matrix kernel Mij (s,φ)
is given by

Mij (s,φ) = s

2

(
B(s)+A(s) cos(4φ) A(s) sin(4φ)

A(s) sin(4φ) B(s)−A(s) cos(4φ)

)
,

(A9)

where

B(s) = 1√
s2 − 1

, A(s) = B(s)(
√

s2 − 1 − s)4. (A10)

Since we are interested in the dynamics of the asymptotic
regime s = ω

vF q
� 1, we further expand the functions A(s)

and B(s) for small s around s = 0 and take φ = 0 to find

Lij =
(−i ω

vF q
+ κ

2F2
q2 + δ 0

0 −(
ω

vF q

)2 + κ
2F2

q2 + δ

)
,

(A11)

where q = |q|. This result of Oganesyan et al. [56] shows that
the quantum dynamical exponent is z = 3. The finite density
of states at the Fermi surface is the origin of this strong Landau
damping of this longitudinal critical mode.

Provided the rotational symmetry of the system is not
explicitly broken, inside the nematic phase there is a Goldstone
mode associated with the spontaneously broken rotational
invariance. In this metallic system, the Goldstone mode is Lan-
dau damped. Oganesyan et al. showed that this overdamped
Goldstone mode leads, to lowest order in perturbation theory,
to a quasiparticle self-energy whose imaginary part scales
as �′′(ω) ∝ |ω|2/3 and, consequently, to the breakdown of
the quasiparticle picture and to non-Fermi liquid behavior.
However, in the case of the 2DEG, the continuous rotations
symmetry is broken down to the C4 point group symmetry
of the surface. Although this explicit symmetry-breaking is
very weak, it results in a finite (but small) energy gap for the
nematic Goldstone mode. The results summarized above hole
above this energy scale.

It is important to emphasize that in this picture the
quadrupolar interaction of Eq. (A2) drives the quantum phase
transition to the nematic state, if the coupling constant F2

exceeds the critical value. We will see in Sec. II that the same
interaction will induce the nematic quantum phase transition
in the CFL.

APPENDIX B: THE HLR COMPOSITE FERMI LIQUID

Now we review briefly the physics of the composite
Fermi liquid (CFL) of Halperin, Lee, and Read [53,54,85,86],
which is another key ingredient of our analysis. Before flux
attachment, the action for the HLR compressible CFL is

S =
∫

dtd2r�†(r,t)
[
iDt + D2

2m
+ μ

]
�(r,t),

− 1

2

∫
dtd2rd2r ′V (|r − r ′|)δρ(r,t)δρ(r ′,t) (B1)

in which we have introduced the covariant derivative Dμ =
∂μ + iAμ, with μ = t,x,y, where Aμ is the external elec-
tromagnetic gauge field. Here, V (|r − r ′|) represents the
density-density interaction between the electrons, i.e., δρ(r) =
�†(r)�(r) − ρ̄ is the local deviation of the electronic density
from the average ρ̄. In Sec. II, we will also include a
quadrupolar interaction discussed in Appendix A.

For a half-filled Landau level, the average density ρ̄ of the
electrons and the uniform magnetic field B, are related by
the filling factor ν = 2π

ρ̄

B
= 1

2 . The HLR theory also applies
to the other compressible states at filling factors ν = 1/2n.
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In this paper, we will focus on the case ν = 1/2. We will
also include a probe (and unquantized) component of the
electromagnetic gauge field, which we denote by δAμ. The
total electromagnetic field is Aμ = Āμ + δAμ.

Now we perform the flux attachment transformation suit-
able for ν = 1

2 , i.e., we will attach two flux quanta to each
fermion. The flux attachment is implemented by coupling
the fermions to a statistical gauge field aμ whose action is
a Chern-Simons term. The total action of the transformed,
composite, fermion is [49,53]

S =
∫

dtd2r�†(r,t)
[
iDt + D2

2m
+ μ

]
�(r,t)

− 1

2

∫
dtd2rd2r ′V (|r − r ′|)δρ(r,t)δρ(r ′,t),

+
∫

dtd2r
1

8π
εμνλaμ∂νaλ. (B2)

Here, Dμ = ∂μ + iAμ + iaμ (where μ = t,x,y), is the co-
variant derivative required by a gauge-invariant (minimal)
coupling of the fermions to the electromagnetic gauge field
Aμ and to the Chern-Simons gauge field aμ.

We now perform the average field approximation in which
the average part Āμ of the electromagnetic gauge field is
canceled by the average part āμ of the Chern-Simons gauge
field, Āμ + āμ = 0. After this approximation, we end up with
the effective theory

S =
∫

dtd2r�†(r,t)
[
iDt + D2

2m
+ μ

]
�(r,t)

+
∫

dtd2r
1

8π
εμνλδaμ∂νδaλ,

− 1

2

∫
dtd2rd2r ′V (|r − r ′|)δρ(r,t)δρ(r ′,t), (B3)

with Dμ = ∂μ + iδAμ + iδaμ, where we set aμ = āμ + δaμ.
The Chern-Simons gauge theory is a topological field

theory [113]. At the local level, its content is a set of
commutation relations between the spatial components of the
gauge field, and a constraint on the space of states (a Gauss
law), which in this case reduces to a constraint between the
charge density, δρ(r,t) and the local flux of the Chern-Simons
gauge fields,

δρ(r,t) = 1

4π
εtij ∂iδaj (r,t) = 1

4π
δb(r,t), (B4)

as an operator identity in the Hilbert space of gauge-invariant
states.

Finally, upon a shift of the Chern-Simons gauge
field, δaμ → δaμ − δAμ, we can write the action in the

form

S =
∫

dtd2r�†(r,t)
[
iDt + D2

2m
+ μ

]
�(r,t),

− 1

2

∫
dtd2rd2r ′ 1

16π2
V (|r − r ′|)δb(r,t)δb(r ′,t),

+
∫

dtd2r
1

8π
εμνλ(δaμ − δAμ)∂ν(δaλ − δAλ), (B5)

where now the covariant derivative is Dμ = ∂μ + iδaμ. Here
we have used the Gauss law constraint of Eq. (B4), to write
the density-density interaction in terms of the fluctuations
of the gauge flux δb(r,t), resulting in a flux-flux coupling
for the gauge fields [49,82]. We will see in Sec. II that for the
quadrupolar interaction this identity does not apply and the
form of the interaction is more complex.

Therefore the flux attachment transformation maps a half-
filled Landau level to a system of composite fermions at finite
density coupled to a dynamical gauge field (with vanishing
average) with a Chern-Simons term (and a Maxwell-like term
as well). The Fermi momentum of the composite fermions
is kF = (4πρ̄)1/2 = B1/2 = �−1

0 , where �0 is the magnetic
length. Since the composite fermions do not experience the
magnetic field (on average), the composite fermions form a
FL, provided that the coupling to the gauge field δaμ can be
neglected. This is a gapless state, the HLR composite Fermi
liquid [53]. The crucial question is what is the fate of the FL if
the coupling is included. In fact, it turns out that the coupling of
the composite fermions to the fluctuating gauge field destroys
completely the well defined composite fermion quasiparticles
on the Fermi surface and leads to a non-Fermi liquid state.

Since the CFL action of Eq. (B5) is quadratic in the
composite fermion fields, we can proceed to integrate out the
composite fermions, and obtain an effective action for the
fluctuating gauge fields δaμ. HLR showed that, at the one loop
(RPA) level, the fluctuation δaμ of the gauge field experiences
a strong Landau damping due to the finite density of states
of electronlike excitations at the Fermi surface. The damping
manifests in the polarization bubble of the gauge field when the
fermion is integrated out at the one-loop level (with the free
fermion propagator). To quadratic order in the gauge fields,
their effective action in the CFL state is

SCFL[δaμ,δAμ]

= −1

2

∫
q,ω

δaμ(q,ω)�μν(q,ω)δaν(−q,−ω)

+ 1

8π

∫
dtd2rεμνλ(δaμ − δAμ)∂ν(δaλ − δAλ), (B6)

where �μν(q,ω) is the polarization tensor of the CFL,

�μν(q,ω) = 1

2π

⎛
⎝ q2�0(q,ω) qxω�0(q,ω) qyω�0(q,ω)

qxω�0(q,ω) ω2�0(q,ω) − q2
y (�2(q,ω) + V (q)) qyqx(�2(q,ω) + V (q))

qyω�0(q,ω) qyqx(�2(q,ω) + V (q)) ω2�0(q,ω) − q2
x (�2(q,ω) + V (q))

⎞
⎠, (B7)

where V (q) is the Fourier transform of the interaction. The functions �0(q,ω) and �2(q,ω) are

�0(q,ω) = m

q2
− i|ω|√

ρ̄|q|3 , �2(q,ω) = 1

m
+ γ

i|ω|√ρ̄

|q|3 , (B8)
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where ρ̄ is the electron density, m is the electron bare (band)
mass, and γ = 2

√
3 is a numerical constant. Here, we have

temporarily switched off the external probe electromagnetic
gauge field δAμ for clarity of the presentation. Here, the
momentum q = |q| carried by the gauge field is much smaller
than the Fermi momentum kF of the composite fermions, i.e.,
q � kF , and ω � vF q, where the quantum critical dynamics
is manifest.

In contrast to the incompressible FQH states, where the
Chern-Simons term is the most relevant term and dominates
the low-energy physics, in the CFL the damping term ∝ i ω

q3 is
the most relevant term in the low-energy regime. Furthermore,
by gauge invariance, the gauge fields must remains gapless,
which hence also play a key role in the low-energy physics of
the nematic phase transition inside the composite Fermi liquid
state of Sec. II.

By restoring the probe field δAμ and integrating out the
low-energy fluctuation δaμ in Eq. (B6), we can also derive
effective action for the probe external field δAμ, which encodes
de correlation functions of the densities and currents of the
CFL,

Seff[δAμ] = −
∫

q,ω

1

2
δAμ(q,ω)Kμν(q,ω)δAν(−q,−ω),

(B9)

where Kμν(q,ω) is the Fourier transform of the polarization
tensor of the CFL. Its components are given by [53,82]

K00(q,ω) = 1

2π
q2K0(q,ω),

K0i(q,ω) = 1

2π
(ωqiK0(q,ω) + iεikqkK1(q,ω)),

Ki0(q,ω) = 1

2π
(ωqiK0(q,ω) − iεikqkK1(q,ω)),

Kij (q,ω) = 1

2π

(
ω2δijK0(q,ω) − iεijωK1(q,ω)

+ (q2δij − qiqj )K2(q,ω)
)
, (B10)

where the functions K0(q,ω), K1(q,ω), and K2(q,ω) are given
by

K0(q,ω) = − �0(q,ω)

4D(q,ω)
,

K1(q,ω) = 1

2
+ 1

8D(q,ω)
+ V (q)�0(q,ω)q2

16π2D(q,ω)
,

K2(q,ω) = �2(q,ω)

4D(q,ω)
+ V (q)ω2�0(q,ω)2

16π2D(q,ω)

+ V (q)�0(q,ω)�2(q,ω)q2

16π2D(q,ω)
,

D(q,ω) = �0(q,ω)2ω2 −
(

1

2

)2

+ �0(q,ω)(�2(q,ω) − V (q)

16π2
)q2. (B11)

FIG. 4. The gauge boson correction to the fermion propagator.

From these expressions, we can calculate the spectrum of
collective modes. In the incompressible FQH state, the lowest
energy collective mode is the Girvin-MacDonald-Platzman
(GMP), which in Ref. [41] we showed condenses at the nematic
quantum phase transition. From the polarization tensor of the
external electromagnetic field, Eq. (B10), we can extract the
analog of the GMP mode for the HLR state. The pole in
the polarization tensor component K00(q,ω) determines the
collective mode. In the limit of q � kF and ω � vF q, the
gapless collective excitation of the half-filled Landau level is

ω± ∼ i
√

3

|q|
{

1 ±
[

1 − |q|3
12π2k3

F

(1 + mV (q))

]1/2}
. (B12)

From the residue of the polarization tensor for this mode, we
find a structure factor S(q) ∝ |q|4, in analogy of the Girvin-
MacDonald-Platzman mode in FQHE states.

Now we turn our attention to the composite fermions, and
calculate the self-energy correction �f (k,ω) for the composite
fermion propagator by calculating the one-loop diagram shown
in Fig. 4. The inverse fermion propagator g−1(k,ω) is

g−1(k,ω) = g−1
0 (k,ω) − �f (k,ω), (B13)

where g0(k,ω) is the free fermion propagator. The imaginary
part of the self-energy �′′(k,ω) is

�′′(q,ω) � −2
√

3 sign(ω)

(
β|ω|
4π

)2/3

, (B14)

where β = kF

4
√

m
+ V (0)kF

√
m, and where we have dropped

the bare term ω which is much smaller than the correction
|ω|2/3. Here, we have assumed the density-density interaction
is short-ranged, and hence only V (q ≈ 0) appears in the
expression. Here and after, we only consider the short-ranged
density-density interaction. This result shows that the singular
forward scattering interaction with the fluctuating gauge boson
softens the Fermi surface and that the composite fermion
quasiparticle is no longer well defined. The gauge boson drives
the composite fermion into a non-Fermi liquid [53].
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APPENDIX C: COUPLING BETWEEN THE GAUGE FIELD AND NEMATIC FIELD

We start from the theory of the Fermi surface coupled to the Chern-Simons gauge field:

S =
∫

d2rdt�†(r,t)[Dt + 1

2m
D2 + M1

2m

(
D2

x − D2
y

) + M2

2m
(2DxDy)]�(r,t)

+ 1

8π

∫
d2rdtεμνρδaμ∂νδaρ +

∫
d2rd2r ′dtV (r − r ′)δρ(r,t)δρ(r ′,t), (C1)

where Dμ = ∂μ + δaμ. The external magnetic field is screened by the Chern-Simons flux while δai represent the gauge fluctuation.
In this mean-field level, the average flux felt by the composite fermion is zero so the CF is in the Fermi liquid state. If we consider
gauge fluctuation to the quadratic order, we obtain the effective polarization for the gauge field

Sa = −1

2

∫
q,ω

δaμ(q,ω)�μν(q,ω)δaν(−q,−ω), (C2)

where

�μν = 1

2π

⎛
⎜⎝

q2�0 qxω�0 + iqy/2 qyω�0 − iqx/2

qxω�0 − iqy/2 ω2�0 − q2
y (�2 + V (q)) qyqx(�2 + V (q)) − iω/2

qyω�0 + iqx/2 qyqx(�2 + V (q)) + iω/2 ω2�0 − q2
x (�2 + V (q))

⎞
⎟⎠ (C3)

with

�0(q,ω) = m

q2
− i|ω|√

ρ̄|q|3 , (C4)

�2(q,ω) = 1

m
+ γ

i|ω|√ρ̄

|q|3 , (C5)

where ρ̄ is the electron density.
The linear, parity-even, coupling between the nematic field and the gauge field, i.e., the quadrupolar coupling between nematic

fluctuations and gauge fields, at mean-field level has the form

Sa,M [M,δaμ] = −1

2

∫
q,ω

Mi(q,ω)Tiν(q,ω)δaν(q,ω), (C6)

where

T (q,ω) = �2(q,ω)m

2π

(
q2

x − q2
y qxω −qyω

2qxqy ωqy qxω

)
, �2(q,ω) = γ

i|ω|√ρ̄

|q|3 , (C7)

where we used the overdamped form of �2(q,ω), for 1 � ω
qvF

� q2.
We also have the coupling between the nematic order parameter and the Chern-Simons gauge fields,

Sa,M,a[δaμ,M] = −1

2

∫
q,ω

δaμ(q,ω)Vμν[M]δaν(−q,−ω), (C8)

Vμν[M] = �0(q,ω)

2π

⎛
⎜⎝

M1
2

(
q2

x − q2
y

)
(M1qx + M2qy)ω (−M2qy + M2qx)ω

(M1qx + M2qy)ω M1ω
2 M2ω

2

(−M2qy + M2qx)ω M2ω
2 −M1ω

2

⎞
⎟⎠. (C9)

This parity-even term represents the coupling of the gauge fields to the nematic fluctuations as a local fluctuation of the spatial
metric.

APPENDIX D: DETAILS OF CALCULATION OF THE BERRY PHASE TERM

In this section, we show the detailed calculation of the Berry phase term whose Feynman diagram is shown in Fig. 2. We
obtained a similar term in the case of the FQH in Ref. [41]. The Berry phase term is obtained once we integrate out the gauge
fluctuation and expand the theory in quadratic level. Here, we start from the gauge-nematic order parameter theory. Here we
choose the temporal gauge a0 = 0, and set m = 1 (which we will restore back later):

S = −
∫

q,ω

1

2
δai(q,ω)[�ij + t1

ij (ω2�0)M1 + t2
ij (ω2�0)M2)]δaj (−q,−ω),

�−1 =

(
ω2�0 − q2

x�2 −qxqy�2 − iω/2

−qxqy�2 + iω/2 ω2�0 − q2
y�2

)

ω4�2
0 − q2ω2�0�2 − ω2/4

. (D1)
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Since we are looking at the limit | ω
vF q

| < 1, we only keep the order of O( ω
vF q

) for the damping part in the gauge boson

propagator and drop terms like ( ω
vF q

)2. Afterwards, the inverse of the polarization tensor is

�−1 = −

(
−q2

x�2 −qxqy�2 − iω/2

−qxqy�2 + iω/2 −q2
y�2

)

q2ω2�0�2 + ω2/4
, �0(q,ω) = m

q2
, �2(q,ω) = γ

i|ω|√ρ̄

|q|3 . (D2)

Here, we temporarily use units in which m = 1 for convenience. Then the effective theory for the nematic order parameters
can be obtained as

(−i)
δS

δMiδMj

(�, Q) = iTr
∫

q,ω

�−1(ω,q)ω2�0ti�
−1(ω + �,q + Q)ω2�0tj = i�/2εij

∫
q,ω

�2q
2

�2q2 + q2/4

1

�2q2 + q2/4
,

(D3)

where t1 = σ3 and t2 = σ1.
Thus the antisymmetric part of the effective theory of the nematic order parameters is

LM
ij = χεijMi(�, Q)(i�)Mj (−�,− Q), (D4)

where χ = 2
3π

�̄, and �̄ is the frequency cut off. After putting back in the electron mass, we have χ = 2
3π

�̄m.

APPENDIX E: DETAILS OF CALCULATIONS
OF THE WEN-ZEE TERM

First, we calculate the parity-even part of the Wen-Zee term
where the diagram has one gauge leg and one nematic leg (see
Fig. 3). We use the temporal gauge a0 = 0 and take units in
which m = 1 and find

(−i)
δS

δMlδak

= 〈amω2�0t
mn
l anamω2�0Q

mi
k Mi〉, (E1)

where

T −1
mi = 〈amMi〉(q,ω) =

(
qxω −qyω

ωqy qxω

)
mi

�2q2ω2
, (E2)

with the notation Qx = I,Qy = iσ2, and

− i
δS

δMlδak

( p,�)

= i

∫
q,ω

Tr[(ω2�0)2�−1(ω − �/2,q − Q/2)tl

× T −1(ω + �/2,q + Q/2)Qk]

=
(

px� −py�

�py px�

)
lk

∫
p,ω

1

2q(�2q3 + q3/4)

= 1

6π
√

3

(
�̄

ρ̄

)1/3(px� −py�

�py px�

)
lk

. (E3)

Restoring the mass back, we have

− i
δS

δMlδak

( p,�) = 1

6π
√

3
(
�̄m

ρ̄
)1/3

(
px� −py�

�py px�

)
lk

.

(E4)

To calculate the cubic level of the Wen-Zee term where the
diagram has one gauge field external leg and two nematic
fields external legs (shown in Fig. 5). We will choose the axial
gauge where a0 = 0 (and use units which the effective mass is

m = 1), to find

− i
δS

δMhδMlδak

= −〈
amω2�0σ

mn
h anamω2�0σ

mn
l

× anamω2�0Q
mi
k Mi

〉
. (E5)

Similarly,

(−i)
δS

δMhδMlδak

(�1,�2; p1, p2)

= −
∫

q,ω

Tr[�−1(ω,q)(ω2�0σh)�−1(ω + �1,q + p1)

× (ω2�0σl)T
−1(ω+�1+�2,q+ p1+ p2)(ω2�0Qk)]

= εhlενμkpν
1

(
p

μ

1 + p
μ

2

)
×

∫
q,ω

[ |ω|q2

8q(�2q3 + q3/4)2
+ �2q

3

8q(�2q3 + q3/4)2

]

= 1

6π
√

3

[(
�̄

ρ̄

)1/3

+ �̄

ρ̄

]
εhlενμkpν

1

(
p

μ

1 + p
μ

2

)
. (E6)

FIG. 5. Parity-odd contribution to the Wen-Zee term at cubic
level. The wavy lines are gauge field propagators and the broken
line is a nematic propagator.
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Restoring the mass back, we find the effective theory as

(−i)
δS

δMhδMlδak

(�1,�2; p1, p2)

= 1

6π
√

3

[(
�̄m

ρ̄

)1/3

+ �̄m

ρ̄

]
εhlενμkpν

1

(
p

μ

1 + p
μ

2

)
.

(E7)

Similar to the calculation of the Berry phase term by
Ward identity, the Wen-Zee term can also be derived from
the Ward identity. The nematic order parameter modifies the
local geometry metric of the Maxwell term and couples to the
bilinear of the Chern-Simons gauge fields. At this level, we can
integrate out the gauge fields and perform the loop expansion
of the nematic fields at the cubic level:

〈T1T2Txy〉( p1, p2,�1,�2)

= −
∫

k,ω

Tr[�−1(k,ω)(�0ω
2)σz�

−1(k + p1,ω + �1)

×(�0ω
2)σz�

−1(k + p1 + p2,ω + �1)(�0ω
2)σ+].

(E8)

By taking advantage of the Ward identity, we find

m∂0Jx + ∂xTxx + ∂yTyx = δb · Jy,

m∂0Jy + ∂xTxy + ∂yTyy = − δb · Jx. (E9)

We can set up several relations between the Wen-Zee term and
the terms cubic in nematic order parameters:

m〈T1(r1)T2(r2)∂0Jx(r3)〉 + 〈T1(r1)T2(r2)∂xTxx(r3)〉
+ 〈T1(r1)T2(r2)∂yTyx(r3)〉

= 2〈T1(r1)T2(r2)δρ(r3)Jy(r3)〉,

m〈T1(r1)T2(r2)∂0Jy(r3)〉 + 〈T1(r1)T2(r2)∂xTxy(r3)〉
+ 〈T1(r1)T2(r2)∂yTyy(r3)〉

= −2〈T1(r1)T2(r2)δρ(r3)Jx(r3)〉. (E10)

It is straightforward to see that the correlators on the right-hand
sides are actually zero. Also, the further calculation shows that
〈T1(r1)T2(r2)∂xTxx(r3)〉 and 〈T1(r1)T2(r2)∂yTyy(r3)〉 does not
generate any antisymmetric term at the leading order (O(q3)).
Now the identities become

m〈T1(r1)T2(r2)∂0Jx(r3)〉 = −〈T1(r1)T2(r2)∂yTyx(r3)〉,
m〈T1(r1)T2(r2)∂0Jy(r3)〉 = −〈T1(r1)T2(r2)∂xTxy(r3)〉.

(E11)

We have

〈TiTj ∂yTyx〉( p1, p2,ω1,ω2)

= sεijω1(ω1 + ω2)
(−p

y

1 − p
y

2

) − sεijω1(ω1 + ω2)py

1 ,

〈TiTj ∂xTxy〉( p1, p2,ω1,ω2)

= −sεijω1(ω1 + ω2)
(−px

1 − px
2

) + sεijω1(ω1 + ω2)px
1 .

(E12)

Thus the Wen-Zee term has the form

〈TiTjJx〉( p1, p2,ω1,ω2)

= s

m
εijω1

(−p
y

1 − p
y

2

) − sεij (−ω1 − ω2)py

1 ,

〈TiTjJy〉( p1, p2,ω1,ω2)

= − s

m
εijω1

(−px
1 − px

2

) + sεij (−ω1 − ω2)px
1 . (E13)

FIG. 6. Leading corrections from gauge field fluctuations to the nematic correlators: (a) and (b) composite fermion self-energy corrections
and (c) vertex correction.

205401-21



YIZHI YOU, GIL YOUNG CHO, AND EDUARDO FRADKIN PHYSICAL REVIEW B 93, 205401 (2016)

By taking advantage of the current conservation relation

∂μJμ = 0. (E14)

We obtain

〈TiTjJ0〉( p1, p2,ω1,ω2) = s

m
εijp

y

1

(−px
1 − px

2

)
− sεij

(−p
y

1 − p
y

2

)
px

1 , (E15)

where the coefficient s
m

is obtained to be

s

m
= 1

6π
√

3

[(
�̄m

ρ̄

)1/3

+ �̄m

ρ̄

]
. (E16)

Thus we finally obtain that the Wen-Zee term LWZ of the
effective Lagrangian is

LWZ = 1

6π
√

3

[(
�̄m

ρ̄

)1/3

+ �̄m

ρ̄

]
εμνρωQ

μ ∂νAρ. (E17)

APPENDIX F: NEMATIC CORRELATORS

The self-energy of the composite fermion close to the Fermi surface is

�s(ω) = −i2
√

3 sign(ω)

(
βω

4π

)2/3

. (F1)

The Fermi surface is softened by the gauge boson and thus no longer well defined. Here we check the correction from the
self-energy to of the nematic correlator.

The nematic correlator of the Fermi surface without self-energy correction is shown in the Feynman diagram of Fig. 1, and it
is given by

−i
δS

δM1δM1
= 〈T1T1〉0( p,�) = −i

∫
k,ω

g(k + p,ω + �)

(
k2
x − k2

y

)
2m

g(k,ω)

(
k2
x − k2

y

)
2m

= −i

∫
k,ω

1

4m2

(
k2
x − k2

y

)
ω + � − (

(k + p)2 + k2
F

)
/2m + iη sign(ω + �)

(
k2
x − k2

y

)
ω − (

k2 + k2
F

)
/2m + iη sign(ω)

= k4
F /(4πm) − cos2(2θp)

k3
F

2π
(i�/p) − sin2(2θp)

k2
F m

2π
(�/p)2. (F2)

If we only look into the leading self-energy correction, it is the sum of the diagrams in Fig. 6,

〈T1T1〉1( p,�) = −i

∫
k,ω

(
k2
x − k2

y

)2/
(4m2)[g(k + p,ω + �)�s(ω)g2(k,ω) + g2(k + p,ω + �)�s(ω + �)g(k,ω)]. (F3)

Here, the self-energy �s(ω) only affects the fermions near the Fermi surface where k ∼ kF , Take advantage of the identity

g(k + p,ω + �)�s(ω)g2(k,ω) = − �s(ω)

� − k · p/2m
[g2(k,ω) − g(k + p,ω + �)g(k,ω)],

g2(k + p,ω + �)�s(ω + �)g(k,ω) = �s(ω + �)

� − k · p/2m
[g2(k + p,ω + �) − g(k + p,ω + �)g(k,ω)]. (F4)

We can rewrite the integral as

〈T1T1〉1( p,�) = −i

∫
k,ω

(
k2
x − k2

y

)2
/(4m2)

�s(ω) − �s(ω + �)

� − k · p/2m
g(k + p,ω + �)g(k,ω). (F5)

In the same way, the other nematic correlators can be written as

〈T2T2〉1( p,�) = −i

∫
k,ω

(2kxky)2/(4m2)
�s(ω) − �s(ω + �)

� − k · p/2m
g(k + p,ω + �)g(k,ω),

〈T2T1〉1( p,�) = −i

∫
k,ω

(
k2
x − k2

y

)
(2kxky)/(4m2)

�s(ω) − �s(ω + �)

� − k · p/2m
g(k + p,ω + �)g(k,ω). (F6)

Here we first calculate 〈T1T1〉1:

〈T1T1〉1( p,�) = − i

∫
k,ω

k4 cos2(2θ )

4m2

�s(ω) − �s(ω + �)

� − kp cos(θ − θp)/2m

1

ω + � − (E(k) + kp cos(θ − θp)/2m) + iη sign(ω + �)

× 1

ω − E(k) + iη sign(ω)
, (F7)

where E(k) = (k2 − k2
F )/2m.
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Since the self-energy correction �(ω) only appears near the Fermi surface, we can replace k/2m = vF = kF /2m in the
calculation to simplified the problem. We can replace the integral dk = dE(k)dθ2m:

〈T1T1〉1( p,�) − i

∫
dωdE(k)dθ

k4
F cos2(2θ )

4m

�s(ω) − �s(ω + �)

� − vF p cos(θ − θp)

1

ω + � − (E(k) + vF p cos(θ − θp)) + iη sign(ω + �)

× 1

ω − E(k) + iη sign(ω)

=
∫

dωdθ
k4
F cos2(2θ )

4m

�s(ω) − �s(ω + �)

(� − vF p cos(θ − θp))2
(sign(ω) − sign(ω + �)). (F8)

First, we look at the static limit � = 0. Then we have �s(ω) − �s(ω + �) = 0 and therefore the integral is zero. This indicates
the leading order self-energy correction does not generate any constant term, and thus the mass term of the nematics remains
unchanged by the imaginary part of self-energy.

Now we turn to the case when � is nonzero and take the limit p � kF and � � p. The integral of θ can be done by contour
integral, we take the leading order in regard of �/p. Since we are only interested in the leading order behavior of the damping
term, we calculate 〈(T1T1 + T2T2)〉1 to simplify the calculation:

〈TiTi〉1( p,�) =
∫

dωdθ
k4
F

4m

�s(ω) − �s(ω + �)

(� − vF p cos(θ − θp))2
(sign(ω) − sign(ω + �))

=
∫

dω
k4
F

4m

�s(ω) − �s(ω + �)

(vF p)2
(sign(ω) − sign(ω + �))

�

vF p

1

(1 + (�/vF p)2)3/2

≈
∫

dω
k4
F

4m

�s(ω) − �s(ω + �)

(vF p)2
(sign(ω) − sign(ω + �))

�

vF p
= k4

F

√
3

2m

β2/3�5/3

(vF p)2

�

vF p
. (F9)

The leading order damping upon the self-energy correction is (�)8/3/q3, which is highly irrelevant so we can ignore it. However,
one might worry that 〈T1T1〉1 could contain a singular damping term which could cancel when added to 〈T2T2〉1. If this cancellation
happened, then the damping coefficient 〈T1T1〉1 would be a function of cos(4θp). We can then choose θp = 0 and calculate 〈T1T1〉1

to check the leading damping term. The leading order of damping for 〈T1T1〉1(θp = 0) is of order �5/3/q2, which is still irrelevant
compared to the damping term.

In conclusion, the leading order self-energy correction does not change the leading order behavior of the nematic transition.
In sum, the nematic polarization tensor is

〈TiTj 〉( p,�)

⎛
⎝k4

F /(4πm)− cos2(2θp) k3
F

2π
(i�/p)− sin2(2θp) k2

F m

2π
(�/p)2 sin(2θp) cos(2θp) k3

F

2π
(i�/p)

sin(2θp) cos(2θp) k3
F

2π
(i�/p)) k4

F /(4πm)− sin2(2θp) k3
F

2π
(i�/p)− cos2(2θp) k2

F m

2π
(�/p)2

⎞
⎠.

(F10)

APPENDIX G: VERTEX CORRECTION FOR NEMATIC POLARIZATION TENSOR

In this section, we show the vertex correction for the nematic polarization tensor is irrelevant in our theory [shown in Fig. 6(c)]

〈T1T1〉v( p,�) + 〈T2T2〉v( p,�) = −i

∫
k,q,ω,ν

k6

4m4
g(k + p,ω + �)g(k,ω)g(k + p + q,ω + � + ν)g(k + q,ω + �)D11(q,ν).

(G1)

To proceed, we first calculate the vertex:

�(k, p,ω,�) = − i

∫
q,ν

g(k + p + q,ω + � + ν)g(k + q,ω + �)D11(q,ν)

− i

∫
q,ν

|qv|
(ω + � + ν − (E(k) + vF ql + vF p cos(θ − θp) + qvp sin(θ − θp)) + iηsign(ω + � + ν))

× 1

(a|ν| + b|qv|3)

1

ω + ν − (E(k) + vF ql) + iηsign(ω + ν)
, (G2)
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where qv = q sin(θ − θq),ql = q cos(θ − θq). a = 2m
√

3, and b = 1/4 are constants which we will take as unity for simplicity
since we are only interested in scaling behaviors. Taking the integral ql first, we find

�(k, p,ω,�) = − i

∫
qv,ν

|qv|(sign(ω + � + ν) − sign(ω + ν))

(� − vF p cos(θ − θp) + qvp sin(θ − θp))(a|ν| + b|qv|3)

∼ − i

∫
qv

|qv|
� − vF p cos(θ − θp) + qvp sin(θ − θp)

[
ln

(
1 + |ω + �|

|qv|3
)

sign(ω + �) − ln

(
1 + |ω|

|qv|3
)

sign(ω)

]
.

(G3)

It is obvious that when � = 0, this expression is vanishes. Thus the vertex correction does not contribute to the mass term of the
polarization tensor.

Now we turn to the damping term in the vertex corrections to the polarization tensor:

〈TiTi〉v( p,�) =−i

∫
qv,k,ω

|qv|
�−vF p cos(θ − θp) + qvp sin(θ−θp)

[
ln

(
1 + |ω + �|

|qv|3
)

sign(ω + �) − ln

(
1 + |ω|

|qv|3
)

sign(ω)

]

× k6

4m4
[ω + � − E(k) − vF p cos(θ − θp) + iηsign(ω + �))−1(ω − E(k) + iηsign(ω)]−1. (G4)

As the gauge field correction only affects the fermion propagator near the Fermi surface, we can take k6

4m4 = k6
F

4m4 and take this
constant aside. We can then replace the integral over dk = dE(k)dθ2m and integrate over dE(k) first:

〈TiTi〉v( p,�) ∼
∫

qv,θ,ω

|qv|
� − vF p cos(θ − θp) + qvp sin(θ − θp)

[
ln

(
1 + |ω + �|

|qv|3
)

sign(ω + �) − ln

(
1 + |ω|

|qv|3
)

sign(ω)

]

× sign(ω + �) − sign(ω)

� − vF p cos(θ − θp)

∼
∫

qv,θ

∫ �

0
dω

|qv|
� − vF p cos(θ − θp) + qvp sin(θ − θp)

ln

(
1 + |ω|

|qv|3
)

1

� − vF p cos(θ − θp)
. (G5)

By the change of variables l = ω/�, we get

〈TiTi〉v( p,�) ∼
∫

qv,θ

∫ 1

0
dl

�|qv|
� − vF p cos(θ − θp) + qvp sin(θ − θp)

ln

(
1 + �

|l|
|qv|3

)
1

� − vF p cos(θ − θp)
. (G6)

Performing the θ integral (and take vF = 1 to simplify the expression), we find

〈TiTi〉v( p,�) ∼
∫

qv

∫ 1

0
dl

�|qv|
p2

�

p
ln

(
1 + �

|l|
|qv|3

)
1

(1 − (�/p)2)
√

1 + (qv/vf )2 − (�/p)2
. (G7)

Since we are looking at the fermion near the Fermi surface, qv shall have a cut off which is smaller than vf . Once we assume
qv/vF < 1,

〈TiTi〉v( p,�) ∼
∫ �

0
dqv

∫ 1

0
dl

�|qv|
p2

�

p
ln

(
1 + �

|l|
|qv|3

)
1

(1 − (�/p)2)
√

1 − (�/p)2
, (G8)

where � is the UV momentum cutoff for qv , integrate over qv and ignore the numerical constant:

〈TiTi〉v( p,�) ∼
∫ 1

0
dl

�

p2

�

p
(�l)2/3 1(

1 − (�/p)2
)√

1 − (�/p)2
∼

∫ 1

0
dl

�8/3

p3
(l)2/3. (G9)

From the above calculation, it is obvious that the damping term from the vertex correction is of higher order compared to �
p

.
One might worry that 〈T1T1〉v contains some singular damping term which cancels when sum with 〈T2T2〉v . If this cancellation
happens, then the damping coefficient 〈T1T1〉v must be a function of cos(4θp). We can then choose θp = 0 and calculate 〈T1T1〉v
to check the leading damping term. The leading order of damping for 〈T1T1〉v(θp = 0) is of order �5/3/q2, which is still irrelevant
compared to the damping term.

Thus the vertex correction to the overdamped mode is irrelevant.
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[81] A. López and E. Fradkin, Phys. Rev. Lett. 69, 2126 (1992).
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