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Weak (anti)localization in tubular semiconductor nanowires with spin-orbit coupling
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We compute analytically the weak (anti)localization correction to the Drude conductivity for electrons in
tubular semiconductor systems of zinc-blende type. We include linear Rashba and Dresselhaus spin-orbit coupling
(SOC) and compare wires of standard growth directions 〈100〉, 〈111〉, and 〈110〉. The motion on the quasi-two-
dimensional surface is considered diffusive in both directions: transversal as well as along the cylinder axis.
It is shown that Dresselhaus and Rashba SOC similarly affect the spin relaxation rates. For the 〈110〉 growth
direction, the long-lived spin states are of helical nature. We detect a crossover from weak localization to weak
antilocalization depending on spin-orbit coupling strength as well as dephasing and scattering rate. The theory
is fitted to experimental data of an undoped 〈111〉 InAs nanowire device which exhibits a top-gate-controlled
crossover from positive to negative magnetoconductivity. Thereby, we extract transport parameters where we
quantify the distinct types of SOC individually.
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I. INTRODUCTION

In recent years, semiconductor nanowires have gathered
growing attention as they offer a large variety of applications
such as lasers [1], light-emitting diodes [2], photodetectors [3],
solar cells [4], and field-effect transistors [5] among others.
They, moreover, constitute an important platform in the search
for Majorana bound states [6,7]. Catalytical growth using
a “bottom-up” self-assembly technique from nanoparticles
provides numerous possibilities to manipulate crystal struc-
ture, morphology, and potential landscape [8]. Thereby, the
nanowires, also often termed as nanorods or nanowiskers, are
likewise highly interesting objects in the field of spintronics
which exploits the spin degree of freedom of the electron in
addition to its charge [9].

Nanowires made from diamond and zinc-blende type
semiconductors tend to grow in the 〈111〉 crystal direction as
it minimizes the free energy [8]. However, the direction can be
effectively controlled by substrate orientation, surface chem-
ical treatment, temperature, or pressure [8]. This also affects
the nanowire’s morphology/cross-sectional geometry [10] and,
remarkably, even the crystal structure. It has been reported
that nanowires, that are grown from materials which usually
have zinc-blende structure, are often polytypic with wurtzite
segments [11] or even exhibit pure wurtzite structure [12].

Another important feature is that axial or radial doping as
well as the combination of different materials can change the
potential landscape significantly. With that, one is even able to
design the transport topology of the current-carrying system.
Axial doping can generate pn heterojunctions [13] or quantum
dots [14,15]. In narrow-gap semiconductors such as InAs,
InSb, or InN due to Fermi level pinning, the conduction band
bends downwards at the surface of the nanowire and an electron
accumulation layer is formed [16–20]. However, using suitable
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dopants the potential profile can be flattened and the electrons
uniformly distributed inside of the nanowire [16,19,20].
Moreover, the combination of different materials in core/shell
nanowires confines the electrons either to a channel in the
center or to a thin tubular layer a few nanometers below the
surface of the nanowire [21,22]. In a different approach [23]
using etching techniques the core is removed and only the shell
remains.

The huge degree of freedom in engineering those nanowires
opens a vast amount of opportunities to study and manipulate
spin-orbit interaction. Spin-orbit coupling (SOC) is the essen-
tial effect to control the spin and facilitate spintronic devices.
Depending on its origin, one generally distinguishes between
Rashba [24] and Dresselhaus [25] SOC. The latter results from
different basis atoms in compound semiconductor materials
and is sensitive to the crystal orientation and structure. Rashba
SOC occurs when an electric potential is present that exhibits
an asymmetry. This can, for instance, either be induced
externally by gating or internally by combinations of different
semiconductor materials, doping, or Fermi level pinning. Both
types of SOC lead to an effective magnetic field which is called
spin-orbit field.

One prominent tool to study experimentally SOC are
low-field magnetoconductance measurements. Quantum in-
terference in disordered systems leads to a correction to the
Drude conductivity. The dimensionality of the system is of
fundamental importance. For low temperatures, if the SOC
in a two-dimensional electron gas (2DEG) is weak or absent,
the conductivity is reduced which is called weak localization
(WL). However, as a consequence of spin relaxation, the
conductivity can be enhanced for strong SOC which is denoted
weak antilocalization (WAL). By applying a magnetic field, the
interference is destroyed as the time-reversal symmetry is bro-
ken. Therefore, magnetoconductance measurements provide
indirectly information about SOC. By fitting the appropriate
WAL theory to experimental data, the spin relaxation time
can be extracted which is related to strength and structure of
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the spin-orbit field. The theory of WAL has been developed
for planar two-dimensional (2D) diffusive systems by Hikami
et al. [26] and Iordanski et al. [27]. The effect of hard-
wall boundaries in quasi-one-dimensional planar wires was
described by Kettemann [28] in the diffusive and by Kurdak
et al. [29] in the ballistic regime. Other works [30,31] analyzed
the WL/WAL crossover in the particular regime where the spin
splitting becomes comparable or even exceeds the Bloch state
uncertainty �/τ due to the mean-free scattering time τ .

It is highly topical among experimentalists to study
WL/WAL in semiconductor nanowires [17,32–38]. Lacking
a more precise theoretical description, many authors are
compelled to apply existing theory even though it does not
accurately match the system. For instance, Refs. [32–35,38]
investigate WL/WAL in 〈111〉 InAs nanowires by fitting
magnetoconductance data with the formulas of Kurdak et al.
However, in such systems the transport should be either
governed by electron states at the surface due to Fermi
level pinning or by states that are extended over the entire
volume [16–20]. Both scenarios are not comprised in the
theory of Kurdak et al. Also, it does not take into account
the precise form of the spin-orbit field which has been proven
to be significant in 2D systems [39–43]. The spin relaxation
rates due to Rashba and Dresselhaus SOC are not additive and
the interplay of the fields can lead to a suppressed spin relax-
ation [44,45]. Additionally, the effects of Dresselhaus SOC are
disregarded by all above-mentioned publications by referring
to the vanishing spin splitting along 〈111〉 in bulk zinc-blende
semiconductors. Note that this argument would hold also for
the 〈100〉 directions, but it is widely known that in planar
2D systems the splitting is generally not absent along 〈100〉
owing to the structural confinement [46,47]. In nanowires,
the situation can be similar. Therefore, this statement applies
only to quasi-3D wires. Hence, the precision of the gained
information about the system’s transport parameters is limited.

In this paper, we develop an analytical model to describe
the SOC effects in zinc-blende nanowires with standard growth
directions 〈100〉, 〈111〉, and 〈110〉. The electrons are regarded
to be radially confined to a thin surface layer where the cross-
sectional geometry is approximated to be circular. The motion
on the quasi-2D surface of the cylinder is considered diffusive
in both directions: transversal as well as along the cylinder axis.
Including linear Rashba and Dresselhaus SOC we compute
analytically the quantum mechanical correction to the Drude
conductivity following the theory of Refs. [28,48–50]. It is
shown that the Dresselhaus SOC will cause a shift of the triplet
energy eigenmodes of the Cooperon Hamiltonian. In contrast
to 〈100〉 and 〈111〉, the low symmetry of the growth direction
〈110〉 generates an additional shift of the minimum of one
triplet eigenmode to a finite value of the Cooperon momentum
along the wire axis. The gaps in the Cooperon spectrum
are related to the spin relaxation rates [45]. The relevant
mechanism which is described by this theory is of D’yakonov
Perel’ [51] type. We detect a crossover from WL to WAL
and from positive to negative magnetoconductivity depending
on SOC strength as well as dephasing and scattering rate.
A significant dependence on the wire width is not observed
which is attributed to periodic boundary conditions along the
circumference of the cylinder’s surface. The derived formulas
serve as a model for zinc-blende nanowires where a conductive

tubular channel is formed either by Fermi level pinning or by
structural confinement in core/shell nanowires.

This paper is structured as follows. In the next section,
we define the general bulk model for zinc-blende semicon-
ductors with SOC. We apply a coordinate transformation to
a cylindrical system. In the next step, the quasi-2D surface
model is developed including Rashba and Dresselhaus SOC
where we restrict to terms linear in momentum. Afterwards,
we shortly discuss the conditions for spin conservation in such
systems. In Sec. III, we compute the Cooperon Hamiltonian
for the 2D diffusive system including a magnetic field that
is perpendicular to the wire axis. We analyze the spectrum
and derive approximations for its minima which are related
to spin relaxation rates. Finally, a formula for the correction
to the Drude conductivity is derived. In Sec. III D, we fit the
derived formulas to magnetoconductance measurements of a
top-gated 〈111〉 InAs nanowire. We recover the gate-controlled
crossover from positive to negative magnetoconductivity and
gather information about spin relaxation and dephasing rates
as well as SOC strengths and radial confinement.

II. MODEL HAMILTONIAN

A. Bulk model

Throughout this work we set � = 1. We start with the bulk
Hamiltonian H for electrons in the �6c conduction band with
SOC as

H = k2

2m
+ HR + H[001]

D . (1)

The terms

HR = r6c6c
41 [(kyEz − kzEy)σx + c.p.], (2)

H[001]
D = b6c6c

41

[{
kx,k

2
y − k2

z

}
σx + c.p.

]
, (3)

denote the Rashba HR and Dresselhaus HD SOC contributions
with the material-specific parameters r6c6c

41 and b6c6c
41 , Ei

the electric field components, σi the Pauli matrices, m the
effective electron mass, and {A,B} = (AB + BA)/2 is the
symmetrized anticommutator [46].

In this definition, the basis vectors correspond to the 〈100〉
crystal axes. As we also consider 〈111〉 and 〈110〉 nanowires,
we rotate the Hamiltonian such that the new basis vectors are
aligned with the new crystal axes. In general, we define the
z axis to be parallel the wire’s growth direction. The rotation
can be performed by means of the rotation operator D which
transforms an arbitrary vector v as

v �→ D v. (4)

The rotation operator D is given by

D(θ,φ) =
⎛
⎝cos(φ) cos(θ ) − sin(φ) cos(φ) sin(θ )

sin(φ) cos(θ ) cos(φ) sin(φ) sin(θ )
− sin(θ ) 0 cos(θ )

⎞
⎠,

(5)

where θ denotes the polar and φ the azimuth angle of the former
coordinate system, that is, θ = arccos (1/

√
3) and φ = π/4

for 〈111〉 nanowires and θ = π/2 and φ = π/4 for 〈110〉
nanowires. An additional rotation about the transformed z

axis can be applied to choose the alignment of the x and
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y basis vectors with the crystallographic axes of the new
system as desired. Here, we select for 〈111〉 nanowires the
Cartesian basis system as x̂ ‖ [112], ŷ ‖ [110], ẑ ‖ [111] and
for 〈110〉 nanowires as x̂ ‖ [110], ŷ ‖ [001], ẑ ‖ [110]. The
Rashba Hamiltonian is invariant with respect to rotation of
the crystal provided that the electric field rotates analogously.
However, in confined systems as shown for a 2DEG [47], the
Dresselhaus Hamiltonian depends on the crystal orientation.
In the transformed coordinate systems, it takes the form

H[111]
D = b6c6c

41

2
√

3

{[ − ky

(
k2
x + k2

y + 2
√

2kxkz − 4k2
z

)]
σx

+ [
k2
y(kx +

√
2kz) + kx

(
k2
x −

√
2kxkz − 4k2

z

)]
σy

+ [√
2ky

(
3k2

x − k2
y

)]
σz

}
(6)

and

H[110]
D = b6c6c

41

{
1
2kz

(
k2
x + 2k2

y − k2
z

)
σx

− 2kxkykzσy + 1
2kx

(−k2
x + 2k2

y + k2
z

)
σz

}
. (7)

Semiconductor nanowires often exhibit a cross-sectional
geometry of a hexagon [8]. Nevertheless, for simplicity we
will assume the nanowire to have cylindrical symmetry in the
following. Thus, we introduce cylindrical coordinates.

B. Coordinate transformation

The Cartesian and the cylindrical coordinates are related
through the equations

r =
√

x2 + y2, (8)

φ = arctan

(
y

x

)
, (9)

where the inverse tangent is suitably defined to take the
correct quadrant of (x,y) into account. Hence, in a cylindrical
system the wave vector k = (kx,ky,kz)� and the vector of Pauli
matrices σ = (σx,σy,σz)� transform into

k = r̂ kr + φ̂ kφ + ẑ kz, (10)

σ = r̂ σr + φ̂ σφ + ẑ σz, (11)

where kr = −i∂r , kφ = − i
r
∂φ , kz = −i∂z. The orthonormal

unit vectors in the Cartesian basis are

r̂ =
⎛
⎝cos(φ)

sin(φ)
0

⎞
⎠, φ̂ =

⎛
⎝− sin(φ)

cos(φ)
0

⎞
⎠, ẑ =

⎛
⎝0

0
1

⎞
⎠. (12)

Therefore, the time-independent Schrödinger equation for H
becomes[

− 1

2m

(
∂2
r + 1

r
∂r + 1

r2
∂2
φ + ∂2

z

)
+V (r) + HR + HD

]
|ψ〉

= E |ψ〉 , (13)

where we included a position-dependent potential V (r) that
causes a structural confinement to be discussed in the
following subsection. We identify in the component kφ the

angular momentum operator along the z axis: Lz = −i∂φ .
The transformation into the cylindrical coordinate system has
an important consequence. In the new Hamiltonian position
operators r,φ occur and one has to take account of the
noncommutativity with the momentum operators kr ,kφ . These
position operators are also implicitly contained in kφ , kr , σr ,
and σφ . Yet, since [kr ,σi] = [kφ,σi] = 0 where i ∈ {x,y,z},
it is often convenient to keep the Pauli matrices Cartesian.
The Pauli matrices in cylindrical coordinates and the relevant
commutation relations are given in the Appendixes A and B.
Owing to these commutators, the Hermiticity of the derived
model Hamiltonian is often not obvious [52].

C. Tubular system

Hereafter, we follow the procedure used to derive a quasi-
one-dimensional Hermitian Hamilton operator for mesoscopic
rings in presence of SOC as done in Refs. [53–55].

In order to obtain the tubular geometry of the nanowire,
we consider a radial harmonic confinement potential V (r) =
V (r) = 1

2mω2(r − R)2 which forces the electron wave func-
tion to be localized at a narrow region around the cylinder
radius R.1 R is assumed to be large in comparison with the
mean radial extent of the wave function. If the potential is
steep enough, the particles fill the lowest radial eigenmode
only. Hence, we can treat the Hamiltonian perturbatively by
separating

H = H0 + H1, (14)

where

H0 = − 1

2m

(
∂2
r + 1

r
∂r

)
+ 1

2
mω2(r − R)2, (15)

H1 = − 1

2m

(
1

r2
∂2
φ + ∂2

z

)
+ HR + HD. (16)

In the limit of a 2D tubular system we can neglect the term 1
r
∂r

in comparison with ∂2
r . Thus, the Schrödinger equation for H0

reduces to a one-dimensional harmonic oscillator equation.
The normalized eigenfunction for the lowest radial mode is
given by

〈r|R0〉 =
(

γ√
πR

)1/2

exp

[
−γ 2

2
(r − R)2

]
, (17)

where γ 2 = mω and the ground-state eigenenergy ER0 = ω/2.
The 2D approximation is justified since〈

1
r
∂r

〉
〈
∂2
r

〉 ≈ − e−γ 2R2

√
πγR

γR→∞−→ 0 (18)

for γR � 1. Note that in order to obtain analytical expres-
sions, the integrals have to be extended to r ε [−∞,∞]. This,
however, is applicable since we assume 〈r|R0〉 ≈ 0 for r � 0.2

In this approximation, Eq. (18) vanishes exactly.

1Utilization of a harmonic potential is particularly convenient since
most of the matrix elements take a simple form.

2For Rγ > 2, the deviation 
 = | 〈R0|R0〉 − 1| ∝ 10−4 and 〈 1
r
∂r〉/

〈∂2
r 〉 ∝ 10−3.
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The quasi-2D tubular Hamiltonian is now defined as

Htube ≡ 〈R0|H1|R0〉 . (19)

Making use of the fact that γR � 1 and the SOC terms
are assumed to be small compared to the kinetic part of the
Hamiltonian, we keep only terms of the order of O(1/r) in
the Dresselhaus Hamiltonian. The remaining relevant matrix
elements are given in Appendix C. We stress that in contrast
to a 2DEG, the matrix elements for the momentum operator
along the confinement direction 〈k3

r 〉 and 〈kr〉 do not vanish.
The latter was disregarded in Ref. [56] by parity arguments
which do not hold for a cylindrical system. In fact, it is possible
to show that independent of the exact form of V (r) one obtains
〈kr〉 = i/(2R) which we prove in Appendix D. Since the model
results from k · p theory, using an expansion of k around the
� point, we can also neglect the subordinate terms ∝ k2

z and
obtain a fully linearized version of the Dresselhaus SOC:

H[001],2D
D = β

{
σr

[
1

2
sin(2φ)kφ − 2 cos(2φ) 〈kr〉

]

− σφ

[
cos(2φ)kφ + 5

2
sin(2φ) 〈kr〉

]

+ σz cos(2φ)kz

}
, (20)

H[111],2D
D = β

2
√

3
{σr [−

√
2 sin(3φ)kz − kφ]

+ σφ[〈kr〉 −
√

2 cos(3φ)kz]

+ σz 3
√

2[cos(3φ)kφ + 3 sin(3φ) 〈kr〉]}, (21)

H[110],2D
D = β

8
(σr [cos(φ) + 3 cos(3φ)]kz

− σφ [11 sin(φ) + 3 sin(3φ)]kz

+ σz{[sin(φ) + 9 sin(3φ)]kφ

− [cos(φ) + 27 cos(3φ)] 〈kr〉}), (22)

with β = b6c6c
41 〈k2

r 〉. Quite recently, the tubular Dresselhaus
Hamiltonian for the [111] growth direction has also been
derived by Kokurin in Ref. [57] in a similar way, using a
different alignment of the x and y axes.

Concerning the Rashba SOC, we can distinguish two
different sources for an electric field. First, similarly to
the case of a planar 2DEG, we assume a constant and
homogeneous internal electric field pointing in the direction
of the confinement, i.e., E int = Eint r̂ with Eint being constant.
This field is a consequence of Fermi level pinning which
can be altered by doping. Second, since the Rashba effect
can be modified externally by a gate voltage, we simulate a
realistic situation for the experiment as the one performed
by Heedt et al. [16]. There, the gate electrode is laterally
fixed (in this model chosen to be in the ŷ direction) to the
wire leading to an inhomogeneous field. We approximate it by
Eext = Eext sin(φ)�(φ)�(π − φ) r̂ where � is the Heaviside
function. Both fields and the resulting radial confinement

x

y

z

Eint

Eext

(a)

(b)

FIG. 1. (a) Internal (blue) and external (red) electric fields that
lead to Rashba SOC in a nanowire (here, Eint,Eext < 0). The internal
field can be a consequence of Fermi level pinning, the external due
to a gate voltage. Figure (b) sketches the situation of a nanowire
with radius R0 = 40 nm. Here, the electron probabitity density |ψ |2
(green) is focused at R = 35 nm below the surface and extends over
an area of about 10 nm for a confinement parameter γ = 0.55 nm−1.
The blue line illustrates the bending of the conduction band (CB)
edge due to Fermi (F) level pinning. The resulting radial confinement
is modeled by a harmonic potential in this work.

for the wave function are schematically depicted in Fig. 1.
Since the field Eext depends on the polar angle φ that does
not commute with kφ , we need to symmetrize the Rashba
Hamiltonian in Eq. (2) in order to obtain a Hermitian operator.
Consequently, we find for the Rashba SOC contribution

H2D
R = αint[σφkz − σzkφ] + αext�(φ)�(π − φ){σφ sin(φ)kz

+ σz[cos(φ) 〈kr〉 − sin(φ)kφ]}, (23)

with αint/ext = r6c6c
41 Eint/ext. In Eqs. (20)–(23) the order of the

operators φ, kφ , σr , and σφ is crucial. The internal Rashba
Hamiltonian has been set up previously [18,58] to study spin
dynamics in cylindrical 2DEGs and similarly in curved 1D
wires [59].

At this point, we emphasize that this derivation is fun-
damentally different from a previous model considered by
Magarill et al. [60], and Manolescu et al. [61]. These authors
used the Rashba and linearized Dresselhaus Hamiltonian of a
[001] confined 2DEG and transformed the in-plane Cartesian
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coordinates into the in-plane coordinates of the cylinder
surface. In other words, they described a 2DEG wrapped
around a core to form the shell of a hollow cylinder. In case
of the Rashba contribution (referring to the internal part of
H2D

R ) both situations do not differ. The reason is that the
intrinsic electric field is equivalent as in both cases it is
assumed to penetrate the surface perpendicularly, i.e., the field
is collinear with the confinement direction. However, as in both
scenarios the structure of the crystal in the layer is different, the
Dresselhaus contribution will be distinct as well. The model of
Refs. [60,61] requires a deformation of the crystal structure.
Thus, if the radius R of this cylinder is small the effects due
to strain are presumably very important. On the other hand,
if the radius R of the cylinder is large, the situation becomes
nearly equivalent to a flat 2D system with a periodic boundary
condition for one of the in-plane vectors. The approach used
in this publication does not assume a deformed crystal and
strain effects are less relevant. Moreover, it was shown in
Ref. [23] that the crystal structure in the shell of a core/shell
nanowire can adopt the structure of the core. Therefore, a
rolled-up 2DEG seems not to be the proper model for a realistic
core/shell nanowire.

Returning to our model, we can express the quasi-2D
Hamilton operator Htube as a matrix with the normalized basis
functions

〈φ| l〉 = 1√
2π

exp(ilφ), (24)

〈z| kz〉 = 1√
L

exp(ikzz), (25)

where l is the angular momentum quantum number. Moreover,
we assume periodic boundary conditions in axial direction
with periodicity L leading to plane-wave solutions with
the quasicontinuous quantum number kz. It is worth to
mention that in a system with only internal Rashba SOC
the Hamiltonian commutes with the z component of the total
angular momentum operator, i.e., Jz = Lz + 1

2σz [18]. Yet, as
soon as external Rashba or Dresselhaus SOC are incorporated,
the total angular momentum j = l ± 1

2 is no more a good
quantum number.

D. Spin conservation on the tubular surface

Commonly, in systems with SOC the spin rotation symme-
try is broken. As the spin precession depends on the momentum
of the carrier, scattering in a diffusive semiconductor with
inversion asymmetry randomizes the spin which results in
D’yakonov Perel’ [51] spin relaxation. In planar 2D electron
or hole systems, however, the combination of Rashba and
Dresselhaus SOC and perhaps strain effects can lead to
an SU(2) spin rotation symmetry which is robust against
spin-independent disorder as demonstrated in Refs. [40–43].
Similarly, Trushin et al. [58] showed that in a rolled-up 2DEG
a certain ratio of Rashba SOC strength and curvature radius
leads to a conservation of the tangential spin component
σφ/2.

In the tubular nanowires studied in this paper, we assume
diffusive motion and treat the transverse momentum kφ in
the same way as kz, as a quasicontinuous quantity. We will

average over all in-plane momenta and azimuthal angles which
will become clear in the subsequent section. As a result, the
interplay between Rashba and Dresselhaus SOC does not lead
to a suppressed D’yakonov Perel’ spin relaxation in a tubular
nanowire grown along the high-symmetry directions 〈001〉
or 〈111〉. We can refer this characteristic to the fact that
in general Rashba and Dresselhaus SOC exhibit a different
φ dependence. The mismatch is particulary pronounced for
the internal Rashba contribution as it is independent of φ.
Thus, the interplay between Rashba and Dresselhaus cannot
generate a collinear field independent of its azimuthal location.
On the other hand, for 〈110〉 nanowires due to their lower
symmetry we will observe that the internal Rashba as well
as the Dresselhaus SOC compete with the external Rashba
SOC. Therefore, the ratios of interaction strengths modify the
spin relaxation rate. Moreover, we will find that both Rashba
and Dresselhaus SOC yield an additional shift of the Cooperon
triplet spectra that cause an insuppressible spin relaxation. It is
also to mention that the particular scenario found by Trushin
et al. [58] is not reflected in our results for the Cooperon
spectrum. We attribute this property to the azimuthal averaging
which diminishes the curvature effects.

III. QUANTUM CORRECTION TO THE CONDUCTIVITY

By means of diagrammatic perturbation theory, we can
construct the first-order correction to the Drude conductivity

σ , which results from quantum interference between self-
crossing paths in a disordered conductor. We assume the
following preconditions on the impurity potential Vimp(r):
First, we consider a standard white-noise model for the
impurity potential, that is, it vanishes on average 〈Vimp(r)〉 and
is uncorrelated, i.e., 〈Vimp(r)Vimp(r′)〉 ∝ δ(r − r′). Second, we
assume weak disorder, i.e., εF τ � 1, where εF is the Fermi
energy and τ is the mean elastic scattering time. We also
consider the electrons’ motion to be diffusive in longitudinal
as well as transversal direction of the 2D cylindrical shell. By
averaging over all impurities and summing up all maximally
crossed ladder diagrams, we find the quantum correction
to the longitudinal static conductivity [26] to first order
in (εF τ )−1 given by the real part of the Kubo-Greenwood
formula


σ = −e2

π

De

V

× Re

⎛
⎝∑

Q

∑
s1,s2=±

〈Q| 〈s1,s2|Ĉ(Q̂)|s2,s1〉 |Q〉
⎞
⎠. (26)

Here, V is the surface of the nanowire, De the diffusion
constant in two dimensions, i.e., De = v2

F τ/2, with the Fermi
velocity vF , si the spin-z quantum number, Ĉ the Cooperon
propagator, and Q = p + p′ the sum of the electron momentum
and the electron’s momentum along its time-reversed path.
Below, we follow the approach in Refs. [28,48–50] to compute
the quantum correction to the conductivity.
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A. Cooperon Hamiltonian

The Cooperon propagator Ĉ for low temperature can be
approximated by

Ĉ(Q̂) = τ (1 − Î (Q̂))−1 (27)

with the correlation function

Î (Q̂) = 1

2πντV
∑

q

〈q|GR(q̂,σ )GA(Q̂ − q̂,σ ′) |q〉 , (28)

where ν = m/(2π ) is the 2D density of states per spin. The
retarded/advanced Green’s operator GR/A for positive energy
yields in first-order Born approximation

GR/A(q,σ ) = 1

εF − H(q,σ ) ± i
2τ

(29)

with H being the Hamiltonian in absence of impurity
potentials.

In the correlation function (28), the impurity averaging
products 〈GRGR〉 and 〈GAGA〉 are neglected as they, in
comparison with 〈GRGA〉, do not exhibit poles in the complex
plane and are smaller by a factor (εF τ )−1 [62,63]. The sum
in Eq. (28) averages over all intermediate electron momenta
q of the scattering events. As stated before, we assume
diffusive motion not only along the cylinder axis, but also
along the circumference. This assumption holds true as long
as the electrons’ mean-free path is much smaller than the
circumference of the nanowire. Such situation is similar to
a disordered planar 2D system and therefore we will treat it
analogously [45]. As a consequence, the electron momentum
q is considered as a continuous variable and replaced by
the Fermi velocity q = mvF . With this, we average over
all directions of the in-plane momentum and the azimuthal
angles. It is worth to mention that in flat quantum wires,
the specular scattering at the lateral confinement requires
conservation of the spin current which yields an additional
boundary condition for the Cooperon equation [49,64]. This,
however, does not apply to periodic boundary conditions and
is therefore irrelevant for the tubular system [45].

Defining the in-plane velocity v‖ = (vφ,vz)� =
v‖(cos(ϑ), sin(ϑ))� of the cylinder’s tangent space, Eq. (27)
simplifies to

Ĉ(Q̂) = τ

(
1 −

∫ 2π

0

dφ

2π

∫ 2π

0

dϑ

2π

1

1 − iτ �̂

)−1

, (30)

where

�̂ = H(Q̂ − mvF ,σ ) − H(mvF ,σ ′). (31)

The integral represents the averaging over the azimuth angle φ

of the cylinder and the angle ϑ between the in-plane velocity
components vφ and vz in the tangent space corresponding
to a certain angle φ. A more detailed derivation is given
in Appendix E. In the following, we assume the ratio

κ ≡ 〈vr〉 /(iv‖) to be small. This holds true for 8πn2DR2 � 1
which can be seen when rewritten in terms of the 2D electron
density n2D as κ2 = (4m2R2v2

F + 1)−1 = (8πn2DR2 + 1)−1

by means of the relation vF = √
2πn2D/m. Therefore, we can

approximate v2
F = 〈vr〉2 + v2

‖ ≈ v2
‖ and De ≈ τv2

‖/2.
A very important experimental tool to extract SOC strength

are magnetoconductivity measurements [65–68]. These mea-
surements detect the conductivity as a function of small
perpendicular magnetic fields which break the time-reversal
symmetry as the electron’s wave function gains an Aharonov-
Bohm phase and thereby destroy the phase coherence. Former
approaches in 2D [26,27,39,44] dealt with magnetic fields
nonperturbatively in the basis of Landau bands. However, since
we are only interested in the behavior at small magnetic fields,
the Landau basis is not an appropriate choice. We include
small magnetic fields B = ∇ × A purely by the principle of
minimal coupling and substitute the momenta Q → Q + 2eA.
We choose the magnetic field B = B ŷ which is related to the
vector potential A, here represented in Landau gauge as

A = − Bxẑ = −BR cos(φ)ẑ. (32)

On the cylinder surface, the magnetic field as well as the vector
potential are inhomogeneous and the vector potential has no
out-of-plane component.

If we drop all terms in �̂ that do not contain the
Fermi velocity, which gives the dominant contribution, we
obtain

�̂ ≈ −(Q̂ + 2eA + 2mâS)vF . (33)

The matrix â contains the Rashba and Dresselhaus SOC and
is listed in Appendix F for the different growth directions.
Furthermore, we define the total electron spin vector S which
is

S = 1
2 (σ ⊗ 1 + 1 ⊗ σ ′) (34)

in the basis |s1,s2〉. A more suitable choice for the spin matrix
representation is the singlet-triplet basis |s,ms〉, though. Here,
the total spin quantum number is labeled by s ∈ {0,1}, where
s = 0 defines the singlet (S) and s = 1 the triplet (T ) state,
and the corresponding magnetic quantum numbers by ms ,
where ms = 0 accounts for the singlet and ms ∈ {±1,0} for
the triplet state. The explicit form is given in Appendix G.
Advantageously, in this representation the singlet and the
triplet sectors decouple from each other and can be treated
separately.

At last, we define the Cooperon Hamiltonian as

HC(Q̂) ≡ 1

De Ĉ(Q̂)
(35)

and perform the integral in Eq. (30) by Taylor expanding the
integrand to second order in (Q̂ + 2eA + 2mâS) and find the
Cooperon Hamiltonian in units of Q2

so = (2mβ)2 as

H
ξ

C (Q̂)

Q2
so

= (
Q2

φ + Q2
z + B2R2

so

)
14×4 − 2

(
λ1 + λ2

π

)
QφSz − 1

2
λ2QzSx + λ1

[
2

3π
λ2

(
2S2

x + S2
y + 3S2

z

) −
√

2BRsoSy

]

+ λ2
1

[
1

2

(
S2

x + S2
y

) + S2
z

]
+ λ2

2

16

[
3S2

x + S2
y + 4(1 − 2κ2)S2

z

] − 2
√

2

3π
λ2BRsoSy + F ξ . (36)
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The terms F ξ result from Dresselhaus SOC and thus depend
on the growth direction ξ of the nanowire as

F [001] = 1

16

[
(5 − 82κ2)

(
S2

x + S2
y

) + 8S2
z

]
+ λ2

8
(3 − 2κ2){Sx,Sz}, (37)

F [111] = 1

8

(
S2

x + S2
y + 6S2

z

) − 1

12

(
S2

x + S2
y + 163S2

z

)
κ2

+ λ2

4
√

3
[(1 − 2κ2){Sy,Sz} −

√
2{Sx,Sy}], (38)

F [110] = 3

2
QzSx + 1

64

[
38S2

x + 32S2
y + (41 − 730κ2)S2

z

]
+ λ2

16

[
(2κ2 − 1)S2

z − 7S2
x − 4S2

y

]
. (39)

Here, we define the dimensionless parameters

Qi = Qi

Qso

, λ1 = αint

β
, λ2 = αext

β
, κ = 〈vr〉

iv‖
,

B =
√

2eB

Q2
so

, Rso = R Qso. (40)

Note that in Eq. (36) we neglect the terms

1

DeQ2
so

(i 〈Qr〉 〈vr〉 + 〈Qr〉2 〈vr〉2 τ )14×4. (41)

This is justified as the first term is proportional to τ−1 since
De ∝ τ , which is in accordance with the case without SOC as
shown in Ref. [63]. The second term can be dropped because
〈Qr〉2 〈vr〉2 ∝ R−4 and thus it is very small for a large radius.
The Cooperon Hamiltonian is therefore Hermitian and we will
discuss its spectrum hereafter.

B. Spectrum analysis

1. Analytical expressions for the eigenvalues

In general, there is no simple analytical expression for the
eigenvalues of the full Cooperon Hamiltonian in Eq. (36).
Partly, this is attributed to the reduction of symmetry by the
external Rasbha, the Dresselhaus SOC for wires along [110],
and the magnetic field. Yet, we can provide solutions of simple
structure for certain particular situations. This will be useful
for estimating the spin relaxation rates and determining the
conductivity correction in Sec. III C.

Since the magnetic field is considered to be small, it is
reasonable to neglect the off-diagonal terms ∝B in Eq. (36).
The magnetic field will, hence, merely cause a shift B2R2

so of
the entire spectrum. Note that this is equivalent to treating the
magnetic field by means of a magnetic phase shift rate τB that
breaks the time-reversal invariance, which gives for diffusive
wire cross sections 1/τB = 2Dee

2R2B2 [69,70].
If the surface conductive channel is a consequence of Fermi

level pinning, the internal Rashba and Dresselhaus SOC can be
comparably large and compete with each other. Yet, here we
consider the Dresselhaus SOC to be the dominant mechanism
as it strongly depends on the confinement due to the matrix
element 〈k2

r 〉 which is only a few tens of nanometers in a
realistic nanowire [17–19]. Also, in a situation where the gate

is wrapped around the nanowire, the resulting field is collinear
to the internal field and therefore renormalizes the internal
Rashba coefficient [35,71,72]. Moreover, in core/shell systems
the band bending can be much lower [22]. Thus, the Rashba
SOC will constitute a small perturbation whereas the internal
outweighs the external as the latter is due to a gate voltage and
can be chosen arbitrarily small.

In line with this, considering the high-symmetry growth
directions [001] and [111], we can provide an approximate
solution for the band structure by neglecting all off-diagonal
elements proportional to λ2. We stress that these eigenvalues
are exact for vanishing external Rashba contribution, i.e., λ2 =
0 (and neglected off-diagonal magnetic field terms). In case of
the low-symmetry direction [110] owing to finite off-diagonal
Dresselhaus terms, we find an exact solution only by neglecting
all Rashba contributions, i.e., λ1 = λ2 = 0. Thus, the spectrum
of the Cooperon Hamiltonian is given by

ES/Q2
so = Q2

φ + Q2
z + B2R2

so, (42)

Eξ
χ/Q2

so ≈ ES/Q2
so + Mξ

χ , (43)

where for the high-symmetry directions we obtain

M[001]
T0

= f0 + 5

8
− 41

4
κ2, (44)

M[001]
T±1

= f± + 13

16
− 41

8
κ2 (45)

and

M[111]
T0

= f0 + 1

4
− 1

6
κ2, (46)

M[111]
T±1

= f± + 7

8
− 163

12
κ2, (47)

with

f0 = λ2
1 + 2

π
λ1λ2 + 1

4
λ2

2, (48)

f± = 3

2
λ2

1 + 1

2

(
3

4
− κ2

)
λ2

2 + 3

π
λ1λ2 ± 2

(
λ1 + 1

π
λ2

)
Qφ,

(49)

and for the low-symmetry direction without Rashba SOC

M[110]
T0

= 73

64
− 10

64
κ2, (50)

M[110]
T±1

= 1

128

[
149 − 730κ2±

√
36 864Q2

z + (9 − 730κ2)2
]
.

(51)

Here, the Cooperon momentum operator Q̂ is expressed in
the basis given in Eqs. (24) and (25). Thus, the Cooperon
momentum along the cylinder axis Qz is quasicontinuous and
the transverse Cooperon momentum becomes Qφ = n/Rso,
where n is the number of the transverse Cooperon mode.

The exact energy spectra of the Cooperon Hamiltonian (36)
are displayed in Figs. 2–5 for B = κ = 0. For better per-
ceptibility we illustrate Qφ as a continuous quantity, which
corresponds to the case where Rso � 1. In all figures, the
black solid line corresponds to the singlet mode, which is
independent of the SOC, and the black dashed lines to the case
where Rashba SOC is absent.
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FIG. 2. Spectrum of the Cooperon Hamiltonian for [001]
nanowires with parameter configurations λ1 = 0.4 and λ2 = −0.1
for B = κ = 0 (green). Dashed lines correspond to vanishing Rashba
SOC and black solid line to the singlet mode. The grid lines are
plotted by use of the approximate formulas 
[001]

χ (gray) and δ
[001]
φ

for Qmin,[001]
φ (red). The grid lines are plotted using the approximate

formulas derived in Sec. III B 2.

2. Spin relaxation gaps

As the spectrum of the Cooperon and the spin diffusion
equation are identical as far as the time-reversal symmetry is
not broken, i.e., B = 0, the minima of the triplet eigenvalues
of the Cooperon Hamiltonian are direct measures of the
spin relaxation rate and thus of particular interest [49,73].
In Eq. (36), all terms that are linear in momentum Q can
shift the minimum of two triplet eigenmodes to a finite
momentum. Any mode that is gapless at finite Q reveals a
persistent spin helix which has been demonstrated in 2DEGs
for a certain ratio of linear Dresselhaus and Rashba SOC
strength [50]. However, only in growth direction [110] there
is a Q-dependent Dresselhaus term. This reflects an earlier
statement that the interplay with Rashba cannot be used to
control the minimum and suppress the spin relaxation for
〈001〉 and 〈111〉 nanowires. Also, we see from Eqs. (37)–(39)
that even for Q-independent terms there is no coupling
between Dresselhaus and internal Rashba SOC in any growth
direction. We only find a coupling between Dresselhaus and
external Rashba as well as internal and external Rashba. These
Q-independent terms cause a positive shift of the triplet spec-
trum and thereby an insuppressible spin relaxation. Hence, a
gapless mode cannot be found. This contradicts the conjecture
of previous authors [32–34,37,74,75], that Dresselhaus SOC
in [111] is absent and, hence, cannot cause spin relaxation. In
the following, we analyze the position and value of the minima
for B = 0 which can be related to spin relaxation rates. The
latter we will denote as spin relaxation gaps.

First of all, we note that κ is the only parameter which
lowers the triplet eigenenergies at Q = 0. It is remarkable
as this quantity depends on the radius R of the nanowire.
Nevertheless, it is assumed to be small since we consider
n2DR2 � 1. Therefore, we will neglect κ for simplicity in
the following discussion.

FIG. 3. Spectrum of the Cooperon Hamiltonian for [111]
nanowires with parameter configurations λ1 = 0.5 and λ2 = 0.3 for
B = κ = 0 (green). Dashed lines correspond to vanishing Rashba
SOC and black solid line to the singlet mode. The grid lines are
plotted by use of the approximate formulas 
[111]

χ (gray) and δ
[111]
φ

for Qmin,[111]
φ (red). The grid lines are plotted using the approximate

formulas derived in Sec. III B 2.

Since the Rashba SOC constitutes a small perturbation, we
can estimate the spin relaxation gaps 
ξ

χ ≡ Eξ
χ (Q = 0)/Q2

so

by Taylor expanding the exact eigenvalues in terms of λi as



[001]
T0

≈ λ2
1 + 2

π
λ1λ2 + 1

16
λ2

2 + 5

8
, (52)



[001]
T±1

≈ 3

2
λ2

1 + 9 ∓ 1

3π
λ1λ2 + 15 ± 1

32
λ2

2 + 13

16
, (53)



[111]
T0

≈ λ2
1 + 2

π
λ1λ2 + 29

120
λ2

2 + 1

4
, (54)



[111]
T±1

≈ 3

2
λ2

1 + 3

π
λ1λ2 + 91

240
λ2

2 + 7

8
± |λ2|

4
√

6
, (55)



[110]
T0

≈ λ2
1 + 2

π
λ1λ2 + 1

4
λ2

2 − 11

16
λ2 + 35

32
, (56)



[110]
T±1

≈ 3

2
λ2

1 + 9 ± 1

3π
λ1λ2 + 6 ± 1

16
λ2

2

− 13 ± 3

32
λ2 + 76 ± 3

64
. (57)

The twofold degeneracy of the eigenvalues E
ξ

T±1
at Q = 0 is

lifted for [110] nanowires and also, independent of the growth
direction, in presence of an external Rashba contribution owing
to the lower symmetry. An important observation at this point is
that in absence of Rashba SOC the lowest spin relaxation gap is
given for [111] nanowires by 


[111]
T0

= 1
4 . Thus, it is reasonable

to assume that the spin relaxation due to Dresselhaus SOC is
lowest for nanowires grown along [111].

Analogously, let us call the spin relaxation gap, where a
minimum in one of the triplet modes occurs at finite values
of Qi , δ

ξ

i ≡ E
ξ

Tmin
(Qi = Qmin,ξ

i )/Q2
so. For arbitrary ξ , we can

approximately locate the position of the minima at finite
Qφ at Qmin,ξ

φ = ±(λ1 + λ2/π ) by neglecting all off-diagonal
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FIG. 4. Spectrum of the Cooperon Hamiltonian for [110]
nanowires with parameter configurations λ1 = 0.3 and λ2 = 0.1 for
B = κ = 0 (green). Dashed lines correspond to vanishing Rashba
SOC and black solid line to the singlet mode. The grid lines are
plotted by use of the approximate formulas 
[110]

χ (gray), δ
[110]
φ for

Qmin,[110]
φ (red), and δ[110]

z forQmin,[110]
z (blue). The grid lines are plotted

using the approximate formulas derived in Sec. III B 2.

elements.3 The spin relaxation gap δ
ξ
φ at this position and in

this approximation for Qz = 0 is about

δ
[001]
φ ≈ a + 13

16
, (58)

δ
[111]
φ ≈ a + 7

8
, (59)

δ
[110]
φ ≈ a − 13

32
λ2 + 19

16
, (60)

where

a = 1

2
λ2

1 + 1

π
λ1λ2 +

(
3

8
− 1

π2

)
λ2

2. (61)

Depending on Rashba SOC, we can obtain a situation where
the lowest minima are at finite values of Qφ . To linear order
in λ2 the domain Pξ where the lowest minimum is at Q = 0,
that is, λ1 ∈ Pξ , is

P [001] =
(

−
√

3

8
− λ2

π
,

√
3

8
− λ2

π

)
, (62)

P [111] =
(

−
√

5

2
− λ2

π
,

√
5

2
− λ2

π

)
, (63)

P [110] =
(

−
√

3

4
−

[
1

π
+ 3

√
3

8

]
λ2,

×
√

3

4
−

[
1

π
− 3

√
3

8

]
λ2

)
. (64)

However, in any case where the lowest minimum is at finite
Qφ , this spin relaxation gap is larger than compared to the case
without Rashba SOC. Therefore, it is reasonable to say that

3For [110] this assumption is rather crude due to off-diagonal
Dresselhaus contributions.

FIG. 5. Spectrum of the Cooperon Hamiltonian for [110]
nanowires with optimal parameter configurations for a lowest possible
gap along Qz with λ1 = −0.901 and λ2 = 0.305 for B = κ = 0
(green). Dashed lines correspond to vanishing Rashba SOC and black
solid line to the singlet mode. The grid lines are plotted by use of
the approximate formulas 
[110]

χ (gray) and δ[110]
z for Qmin,[110]

z (blue).
The grid lines are plotted using the approximate formulas derived in
Sec. III B 2.

the spin direction of the long-lived spin states is homogeneous
in coordinate space.

Contrary to the other cases, the [110] direction reveals
also a shifted minimum along Qz. As a result, the states with
the longest spin lifetime are of helical nature along the wire
axis [45]. By expanding the exact eigenvalues to first order in
λi and setting Qφ = 0, we obtain

Qmin,[110]
z = ±3

√
255

64
∓ 87

64

√
3

85
λ2, (65)

which yields the spin relaxation gap

δ[110]
z ≈ 2455

4096
− 463

2048
λ2 + 79

64
λ2

1 + 21

8π
λ1λ2 + 1093

4096
λ2

2.

(66)

It is the lowest gap in the [110] triplet spectrum until the
Rashba contribution becomes very large, that is, |λ1| > 1.45
for pure internal or λ2 < −28.4 ∨ λ2 > 1.03 for pure external
Rashba SOC. We find an optimal value of δ[110]

z ≈ 0.498 for
λ1 ≈ −0.305 and λ2 ≈ 0.901 within our approximations.

In what follows, we apply the previously derived ap-
proximate formulas to compute the correction to the Drude
conductivity.

C. Correction to the static conductivity

As shown in more detail in Appendix G, the sum over spin
indices in Eq. (26) simplifies, in singlet-triplet representation,
to


σ = − e2

πV
∑

Q

∑
i∈{±1,0}

(
1

ET
i (Q)

− 1

ES (Q)

)
, (67)

where the E
j

i are the eigenvalues of the Cooperon
Hamiltonian (36). Note the opposite sign of the singlet
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and triplet eigenvalues. The dominance of the singlet or triplet
sector determines whether the conductivity correction results
in WL or WAL.

Since the φ angular dependence is removed by the integra-
tion over Fermi velocity vF in Eq. (30), there is no coupling
between the transverse Cooperon modes. In experiment, the
infrared and ultraviolet divergence is eliminated due to a finite
dephasing and elastic scattering time τφ and τ , respectively.
Therefore, we insert a lower cutoff cφ due to dephasing and an
upper cutoff cτ due to elastic scattering.

Consequently, in terms of Qso, Eq. (67) becomes


σ = −e2

π

1

2π2Rso

∑
i∈{±1,0}

lmax∑
n=−lmax

×
∫ √

cτ

0
dQz

(
1

ET
i (Qz,n)/Q2

so + cφ

− 1

ES (Qz,n)/Q2
so + cφ

)
, (68)

where

lmax = �√cτRso�, (69)

cτ = 1
/(

DeτQ2
so

)
, (70)

cφ = 1
/(

DeτφQ2
so

)
(71)

and �. . .� denotes the next lower integer number. For the
growth directions [001] and [111], we can further simplify
Eq. (68) if we consider the approximate eigenvalues of the
Cooperon Hamiltonian. In this case, the integral can be
computed analytically and yields


σ = −e2

π

1

2π2Rso

∑
i∈{±1,0}

lmax∑
n=−lmax

×
{

− arctan
(√

cτ

[
ES (Qz = 0,n)/Q2

so + cφ

]−1/2)[
ES (Qz = 0,n)/Q2

so + cφ

]1/2

+ arctan
(√

cτ

[
ET

i (Qz = 0,n)/Q2
so + cφ

]−1/2)[
ET

i (Qz = 0,n)/Q2
so + cφ

]1/2

}
,

(72)

with the approximate eigenmodes E
j

i [Eqs. (42) and (43)]
of the Cooperon Hamiltonian evaluated at Qz = 0. In Fig. 6,
we picture the conductivity correction without magnetic and
external electric field for a 〈111〉 nanowire. A crossover from
WL to WAL appears depending on the dephasing time and
the elastic scattering time. The crossover from negative to
positive magnetoconductivity is shown in Fig. 7 which is due
to an increase of the lower cutoff cφ . Here, we defined the
relative magnetoconductivity as 
σR ≡ 
σ (B) − 
σ (B =
0). Note that this can also be achieved by reducing the
SOC strength which is incapsulated in the quantity Qso. It
is worth mentioning that both crossovers do not necessarily
coincide. Moreover, in contrast to a planar wire with hard wall
boundaries as shown in Ref. [49], we do not find a crossover
in dependency of the wire width W which corresponds to the

FIG. 6. Crossover from WL to WAL in a 〈111〉 nanowire for
B = κ = λ2 = 0, λ1 = 0.3, and Rso = 30.

circumference 2πR of the tubular nanowire. This is due to
the fact that no motional narrowing occurs due to periodic
boundary conditions [45].

By fitting theory to data from experiment, one can extract
the Rashba and Dresselhaus SOC strengths. These are related
to the spin relaxation rate 1/τs (here, in units of eV) through

1

τs

= DeE
ξ
χ

∣∣∣∣
B=0

, (73)

where Eξ
χ are the triplet eigenvalues of the Cooperon Hamil-

tonian without magnetic field. The relaxation thus depends
on the given spin state. With the aid of the global minimum
of the triplet spectrum one can estimate the minimal spin
relaxation rate, though. For the most systems it is reasonable
to assume that those gaps are given by 


[001]
T0

, 

[111]
T0

, or
δ[110]
z in Eqs. (52), (54), and (66), depending on the growth

direction of the nanowire. For pure internal Rashba SOC, i.e.,
αext = β = 0, the spin relaxation rate at Q = 0 yields

1

τs

= 4m2Deα
2
int, (74)

which is identical to the case of a planar 2DEG as derived by
D’yakonov et al. in Ref. [76] and also found in early studies

FIG. 7. Relative magnetoconductivity 
σR ≡ 
σ (B) −

σ (B = 0) in a 〈111〉 nanowire for κ = λ2 = 0, λ1 = 0.3,
Rso = 30, and cτ = 10.
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− 0.2 − 0.1 0.0 0.1 0.2

− 0.04

− 0.02

0.00

0.02

0.04

0.06

0.08

B / T

R
/

(e
2
/h

)

Vg = 0.25 V

Vg = 0.75 V

Vg = 1.25 V

Vg = 1.75 V

Vg = 2.25 V

Vg = 2.75 V

2 = −0.98

2 = −3.85

2 = −4.55

2 = −5.02

2 = −5.70

2 = −7.75

FIG. 8. Gate-controlled crossover from positive to negative
magnetoconductivity 
σR ≡ 
σ (B) − 
σ (B = 0) in a 〈111〉 InAs
nanowire. The symbol-dotted lines correspond to experimental data
for different top-gate voltages Vg which is fitted by theory (solid
lines) using Eq. (68) and varying the external Rashba SOC strength
αext ∝ λ2.

on WL/WAL [27,39]. We point out that for large Rashba
SOC, the global minimum is shifted to finite momenta Q �= 0,
though. In case of pure internal Rashba SOC the resulting
spin relaxation rate is about a factor 2 smaller due to the gap
δφ ≈ λ2

1/2 = 
T0/2, which was also noticed by Kettemann in
Ref. [28]. Owing to the discrete nature of Qφ in our model,
however, such states are not necessarily available in the given
nanowire system.

In the last part of this section, we fit the derived formulas
for the magnetoconductivity correction to experimental data
of an exemplary semiconductor nanowire.

D. Experimental data fitting: InAs nanowire

As an example, we present the fitting results for the
magnetoconductance measurements in an undoped top-gated
〈111〉 InAs nanowire.4 The nanowire is grown by selective
area metal-organic vapor phase epitaxy [77]. Subsequently,
the InAs nanowire is transferred to a Si/SiO2 substrate and
contacted electrically via electron beam lithography. The
nanowire segment in-between the source and drain contacts
is covered with LaLuO3 high-k dielectric and a metallic gate
electrode [16], giving rise to an external electric field distribu-
tion as depicted schematically in Fig. 1(a). Magnetoresistance
measurements are performed in a pumped flow cryostat at a
temperature of 1.7 K using a low-frequency (33 Hz) lock-in
setup with an ac bias current of 10 nA. As can be seen in
Fig. 8, the device exhibits a gate-induced crossover from
positive to negative magnetoconductivity. which is usually
associated with a crossover from WL to WAL. The same
characteristic behavior has been recently observed in several
experiments [32,33,35].

The utilization of InAs for nanowires is highly pop-
ular [16,17,32,33,35,38]. In nanowires grown from this

4This device corresponds to Device A in Ref. [16].

material, the common problem of carrier depletion at the
surface is avoided as consequence of Fermi level pinning [17].
The narrow band gap of InAs results in large Rashba and
Dresselhaus SOC coefficients [46] r6c6c

41 = 117.1e Å
2

and
b6c6c

41 = 27.18 eV Å
3
, respectively. The effective mass is given

by [18] m = 0.026 me where me is the bare electron mass.
In line with the experimental setup of Ref. [16], we consider
a free length of the nanowire of L = 2.6 μm and a radius of
R0 = 40 nm where the radial position R of the maximum of the
wave function is estimated to be at R = 35 nm. Using the re-
lation 
G = (2πR/L)
σ we can determine the conductivity
correction from the macroscopic conductance correction 
G

of the probed nanowire sample. Moreover, we use the field-
effect mobility μ = 1000 cm2 V−1 s−1 and 3D electron density
n3D = 5.1 × 17 cm−3 where the 2D electron density can be
approximated by n2D = n3DR2

0/(2R). By means of the relation
μ = eτ/m, we find a mean-free path of le = 17.9 nm which
yields the ratio le/(2πR0) = 0.08. The diffusivity condition
around the circumference is, hence, well fulfilled. Also, the
parameter configuration satisfies the Ioffe-Regel criterion with
(εF τ )−1 = 0.41 and κ = 0.05 is indeed small.

We determine an appropriate fitting value for the internal
Rashba contribution of αint = −74 meV Å. The respective
internal electric field, that arises from Fermi level pinning,
is Eint = −6.3 × 6 V/m, whose magnitude is in agreement
with previous simulations [16,17]. Accordingly, the Dres-
selhaus SOC strength is found to be β = 41 meV Å which
corresponds to a ratio λ1 = −1.8 and confinement parameter
γ = 0.55 nm−1. The radial extent of the wave function is
pictured in Fig. 1(b). In Fig. 8, we plot the relative magne-
toconductivity correction 
σR = 
σ (B) − 
σ (B = 0) for an
increasing external top-gate voltage Vg or Rashba contribution
αext ∝ λ2, respectively. A crossover from positive to negative
magnetoconductivity due to a growing SOC strength occurs.
The symbol-dotted lines in Fig. 8 illustrate the experimental
data, the solid lines the fitted relative magnetoconductivity
correction using Eq. (68). Each magnetoconductivity curve
represents an average of 25 individual measurements in a
500 mV gate voltage interval. In this way, we can ensure
that the superimposed universal conductance oscillations are
averaged out. It is shown in Fig. 9(a) that the scaling between
the external Rashba parameter |αext| and the gate voltage Vg

is roughly linear. The extracted spin relaxation and dephasing
lengths ls and lφ , respectively, are displayed in Fig. 9(b) in
dependency of an external gate voltage Vg . For a pure internal
Rashba contribution, i.e., λ2 = 0, we detect a spin relaxation
length of ls = √

Deτs = 191 nm by means of Eqs. (73)
and (54). It decreases simultaneously with an increasing
external gate voltage. In contrast, the dephasing length remains
relatively constant at lφ ≈ 100 nm. We stress that, here, we
assume the quantum well to remain unchanged as the gate
voltage increases. For high voltages, the quantum well width
can be expected to become smaller. However, as consequence
of the asymmetry of the external Rashba contribution, the
associated nonaxial symmetric deformation of the quantum
well is not comprised in our model for Dresselhaus SOC.

In contrast to previous works, we were able to quantify the
Rashba and Dresselhaus SOC parameters individually for a
zinc-blende type nanowire with surface charge accumulation
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FIG. 9. Extracted fitting parameters for a 〈111〉 InAs nanowire.
(a) External Rashba SOC strength |αext| as well as (b) spin relaxation
and dephasing length ls and lφ , respectively, in dependence of a
top-gate voltage Vg .

layer. The close agreement with experiment in the presented
example suggests that the developed model provides reliable
information about the transport parameters.

IV. SUMMARY

Summarizing, we have developed models to describe linear
Rashba and Dresselhaus SOC effects in zinc-blende semicon-
ductor nanowires of growth directions 〈001〉, 〈111〉, and 〈110〉.
In the considered systems, the transport is governed by electron
states near the surface which can be a result of Fermi level pin-
ning or radial confinement in core/shell nanowires. Motivated
by recent experiments [16], the Rashba SOC is composed of
two parts: an internal and an external contribution. The internal
one is due to an axial symmetric homogeneous electric field
induced by Fermi surface pinning or/and a wraparound gate.
The external one results from an external gate which causes an
also axial symmetric but inhomogeneous field that penetrates
only one side of the nanowire. Moreover, we anticipate that
the microscopic crystal structure in the nanowire does not
differ from the bulk. This leads to a Dresselhaus SOC which is
fundamentally different to previous approaches [60,61] that
modeled rolled-up [001] confined 2DEGs. Compared with
the latter, the Dresselhaus spin-orbit field depends on the
azimuthal location at the surface of the nanowire.

We have computed the Cooperon Hamiltonian following
former approaches [28,48–50]. The electron motion on the
cylindrical surface was treated diffusively in both in-plane

coordinates. It is shown that the Dresselhaus SOC causes a
gap for the triplet eigenmodes and, hence, an insuppressible
spin relaxation. This contradicts the conjecture of previous
authors [32–34,37,74,75] that Dresselhaus SOC is absent in
〈111〉 nanowires and, hence, cannot cause spin relaxation.
Nevertheless, we found the lowest gap for the 〈111〉 growth
direction which indicates a lower spin relaxation than for 〈001〉
or 〈110〉 nanowires. A zero-gap mode for certain interplay of
Rashba and Dresselhaus SOC which reflects spin-preserving
symmetries was not found. For the 〈110〉 nanowires, we
observed an additional shift of the minima of the Cooperon
modes for the momentum along the wire axis whose value and
position depends also on Rashba SOC. In most cases, it repre-
sents the global minimum of the spectrum. As a consequence,
the states with the longest spin lifetime are of helical nature.

Finally, we derived the quantum mechanical correction to
the Drude conductivity. We detected a crossover from negative
to positive magnetoconductivity depending on the dephasing
time and the SOC strengths. A significant dependency on
the wire radius was not found which was attributed to
periodic boundary conditions along the circumference of the
cylinder. By fitting the developed theory to data from low-field
magnetoconductance measurements in a 〈111〉 InAs nanowire,
we extracted spin relaxation and dephasing rates as well as
SOC strengths. We were able to quantify the Rashba and
Dresselhaus SOC parameters individually. Both contributions
were shown to be likewise significant in a nanowire with
surface accumulation layer.

As a final remark, we want to emphasize that studying the
magnetoconductance behavior in a nanowire is a particularly
delicate task. The reason is that gating or doping can change
the potential landscape or the electron density in such a way
that the electron states transform from the surface states (2D)
to volume states (3D) in the nanowire. As the conductivity
corrections in 2D and 3D are fundamentally different [63],
it is often not clear which model applies. Additionally, it is
ambiguous whether a gate-induced crossover from positive
to negative magnetoconductivity is solely attributed to an
increase of Rashba SOC or accompanied by a dimensional
crossover. This provides incentive for further studies of the
weak (anti)localization in nanowires where the electron states
cover the entire volume.
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APPENDIX A: PAULI MATRICES IN
CYLINDRICAL COORDINATES

σr =
(

0 e−iφ

eiφ 0

)
, σφ =

(
0 −ie−iφ

ieiφ 0

)
,

σz =
(

1 0
0 −1

)
. (A1)
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APPENDIX B: COMMUTATOR RELATIONS

[kφ, cos(φ)] = (i/r) sin(φ), (B1)

[kφ, sin(φ)] = −(i/r) cos(φ), (B2)

[kφ,σφ] = (i/r)σr, (B3)

[kφ,σr ] = −(i/r)σφ, (B4)

[kr ,1/r] = i/r2, (B5)

[kr ,kφ] = (i/r)kφ. (B6)

APPENDIX C: MATRIX ELEMENTS

The matrix elements with respect to the lowest radial mode
|R0〉 are

〈1/r〉 = 1/R, (C1)

〈1/r2〉 = 1/R2, (C2)

〈kr〉 = i/(2R), (C3)〈
k2
r

〉 = γ 2/2, (C4)〈
k3
r

〉 = 3iγ 2/(4R) = 3〈kr〉
〈
k2
r

〉
, (C5)

〈1/r · kr〉 = 0, (C6)〈
1/r · k2

r

〉 = γ 2/(2R). (C7)

APPENDIX D: RADIAL MOMENTUM
EXPECTATION VALUE

In this section, we prove that it is not substantial to choose an
harmonic radial confinement in order to obtain 〈kr〉 = i/(2R).
A similar proof was demonstrated in Ref. [53]. Let |R0〉 be
the lowest radial mode of the Hamiltonian with an arbitrary
potential V (r) that confines the wave function 〈r|R0〉 ≡ ρ0

to a region around R. The wave function is demanded to
vanish exactly at the limits r = 0 and r → ∞. We now define
|R0〉 ≡ |R′

0〉 /
√

r and obtain

〈R′
0|

1

r
∂r |R′

0〉 = 〈R0|∂r + 1

2r
|R0〉 = 〈∂r〉 + 1

2R
. (D1)

On the other hand, partial integration gives

〈R′
0|

1

r
∂r |R′

0〉 =
∫ ∞

0
dr(ρ ′

0)∗
dρ ′

0

dr

= |ρ ′
0|2

∣∣∣∣
∞

0

−
∫ ∞

0
dr ρ ′

0

(
dρ ′

0

dr

)∗
. (D2)

Since |ρ ′
0|2|

∞
0

= r|ρ0|2|
∞
0

= 0, the Eq. (D2) must be purely
imaginary. However, given the fact that the Hermiticity of the
operator 1

r
∂r requires a real expectation value, 〈R′

0| 1
r
∂r |R′

0〉 has
to vanish identically.

APPENDIX E: CORRELATION FUNCTION

The correlation function Î in Eq. (28) is evaluated at the
Fermi energy εF . For small values of Q and 1/τ we approxi-
mate Î in the following way. For the quasi-2D momentum of
the electron we have q = (〈qr〉 ,qφ,qz)� and |q〉 = |qφ〉 |qz〉.
Defining (qφ,qz)� = (q‖ cos(ϑ),q‖ sin(ϑ))� and the Fermi
velocity vF = qF /m, we find with the 2D density of states
per spin ν = m/(2π ) and the surface of the nanowire V

Î ( Q̂) = 1

2πντV
∑

q

〈q|GR(q̂,σ )GA(Q̂ − q̂,σ ′) |q〉

≈ 1

τmV

∫ 2π

0

dφ

2π

∑
qφ,qz

1

�̂ + i
τ

i
τ

[εF − H(q)]2 + 1
4τ 2

≈ 2πi

τmV

∫ 2π

0

dφ

2π

∑
qφ,qz

1

�̂ + i
τ

δ[εF − H(q)]

≈
∫ 2π

0

dφ

2π

∫ 2π

0

dϑ

2π

1

1 − iτ �̂

∣∣∣∣
q=mvF

, (E1)

where �̂ = H(Q̂ − mvF ,σ ) − H(mvF ,σ ′).

APPENDIX F: SPIN-ORBIT COUPLING MATRICES

The SOC matrix â = âξ

D + âR comprises the Dresselhaus
SOC for the different wire directions ξ ∈ {[001],[111],[110]}
as well as internal and external Rashba SOC, i.e., âR = âint

R +
âext

R . If we chose the basis for convenience in the order {r̂,φ̂,ẑ},
the matrices are written as

â[001]
D = β

⎛
⎝−2 cos(2φ) − 5

2 sin(2φ) 0
1
2 sin(2φ) − cos(2φ) 0

0 0 cos(2φ)

⎞
⎠, â[111]

D = β

2
√

3

⎛
⎝ 0 1 9

√
2 sin(3φ)

−1 0 3
√

2 cos(3φ)
−√

2 sin(3φ) −√
2 cos(3φ) 0

⎞
⎠,

â[110]
D = β

8

⎛
⎝ 0 0 − cos(φ) − 27 cos(3φ)

0 0 sin(φ) + 9 sin(3φ)
cos(φ) + 3 cos(3φ) −11 sin(φ) − 3 sin(3φ) 0

⎞
⎠, (F1)

and

âint
R = αint

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, âext

R = αext�(φ)�(π − φ)

⎛
⎝0 0 cos(φ)

0 0 − sin(φ)
0 sin(φ) 0

⎞
⎠. (F2)
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APPENDIX G: SINGLET-TRIPLET REPRESENTATION
AND SUM FORMULA

The |s1,s2〉 basis of the spin z components of the two
electrons with si ∈ {+,−}, labeled by (±), can be transformed
into the singlet-triplet representation |s,ms〉 with s ∈ {0,1} and
ms ∈ {0,±1} by the relations

|0,0〉 = 1√
2

(|+,−〉 − |−,+〉), (G1)

|1,0〉 = 1√
2

(|+,−〉 + |−,+〉), (G2)

|1,±1〉 = |±,±〉 . (G3)

This yields the unitary transformation matrix

U = 1√
2

⎛
⎜⎜⎝

0
√

2 0 0
−1 0 1 0

1 0 1 0
0 0 0

√
2

⎞
⎟⎟⎠. (G4)

Hence, the spin matrices in singlet-triplet representation
become Ŝi = U †Ŝ(±)

i U , or particularly

Sx = 1√
2

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

⎞
⎟⎠, Sy = i√

2

⎛
⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 −1
0 0 1 0

⎞
⎟⎠,

Sz =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎠ (G5)

in the order {|0,0〉 , |1,1〉 , |1,0〉 , |1,−1〉}. Thus, the singlet and
triplet sectors decouple.

In singlet-triplet representation the sum over spin indices
s1,s2 in Eq. (26) simplifies to

∑
s1,s2=±

〈s1,s2|Ĉ|s2,s1〉 = Tr[�Ĉ(±)] = Tr[�U ĈU †]

= Tr[U †�U Ĉ] = −〈0,0|Ĉ|0,0〉
+

∑
ms

〈1,ms |Ĉ|1,ms〉

= 1

De

(
− 1

ES +
∑

i

1

ET
i

)
, (G6)

where

� =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ (G7)

and thus

U †�U =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (G8)
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[17] S. Estévez Hernández, M. Akabori, K. Sladek, C. Volk,
S. Alagha, H. Hardtdegen, M. G. Pala, N. Demarina, D.
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[19] C. Blömers, Electronic transport in narrow-gap semiconductor

nanowires, Ph.D. thesis, RWTH Aachen, 2012.
[20] S. Wirths, K. Weis, A. Winden, K. Sladek, C. Volk, S. Alagha,

T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Lüth, N.
Demarina, D. Grützmacher, and Th. Schäpers, J. Appl. Phys.
110, 053709 (2011).

[21] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber,
Nature (London) 420, 57 (2002).

205306-14

http://dx.doi.org/10.1063/1.2089157
http://dx.doi.org/10.1063/1.2089157
http://dx.doi.org/10.1063/1.2089157
http://dx.doi.org/10.1063/1.2089157
http://dx.doi.org/10.1021/acs.nanolett.5b02900
http://dx.doi.org/10.1021/acs.nanolett.5b02900
http://dx.doi.org/10.1021/acs.nanolett.5b02900
http://dx.doi.org/10.1021/acs.nanolett.5b02900
http://dx.doi.org/10.1021/nl5006004
http://dx.doi.org/10.1021/nl5006004
http://dx.doi.org/10.1021/nl5006004
http://dx.doi.org/10.1021/nl5006004
http://dx.doi.org/10.1038/nphoton.2013.32
http://dx.doi.org/10.1038/nphoton.2013.32
http://dx.doi.org/10.1038/nphoton.2013.32
http://dx.doi.org/10.1038/nphoton.2013.32
http://dx.doi.org/10.1038/nature04796
http://dx.doi.org/10.1038/nature04796
http://dx.doi.org/10.1038/nature04796
http://dx.doi.org/10.1038/nature04796
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1088/0268-1242/25/2/024005
http://dx.doi.org/10.1088/0268-1242/25/2/024005
http://dx.doi.org/10.1088/0268-1242/25/2/024005
http://dx.doi.org/10.1088/0268-1242/25/2/024005
http://dx.doi.org/10.1021/nl301052g
http://dx.doi.org/10.1021/nl301052g
http://dx.doi.org/10.1021/nl301052g
http://dx.doi.org/10.1021/nl301052g
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.075
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.075
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.075
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.075
http://dx.doi.org/10.1063/1.359026
http://dx.doi.org/10.1063/1.359026
http://dx.doi.org/10.1063/1.359026
http://dx.doi.org/10.1063/1.359026
http://dx.doi.org/10.1007/s12274-014-0524-x
http://dx.doi.org/10.1007/s12274-014-0524-x
http://dx.doi.org/10.1007/s12274-014-0524-x
http://dx.doi.org/10.1007/s12274-014-0524-x
http://dx.doi.org/10.1063/1.106556
http://dx.doi.org/10.1063/1.106556
http://dx.doi.org/10.1063/1.106556
http://dx.doi.org/10.1063/1.106556
http://dx.doi.org/10.1021/nl049230s
http://dx.doi.org/10.1021/nl049230s
http://dx.doi.org/10.1021/nl049230s
http://dx.doi.org/10.1021/nl049230s
http://dx.doi.org/10.1021/acs.nanolett.5b01190
http://dx.doi.org/10.1021/acs.nanolett.5b01190
http://dx.doi.org/10.1021/acs.nanolett.5b01190
http://dx.doi.org/10.1021/acs.nanolett.5b01190
http://dx.doi.org/10.1039/C5NR03608A
http://dx.doi.org/10.1039/C5NR03608A
http://dx.doi.org/10.1039/C5NR03608A
http://dx.doi.org/10.1039/C5NR03608A
http://dx.doi.org/10.1103/PhysRevB.82.235303
http://dx.doi.org/10.1103/PhysRevB.82.235303
http://dx.doi.org/10.1103/PhysRevB.82.235303
http://dx.doi.org/10.1103/PhysRevB.82.235303
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1103/PhysRevB.83.115305
http://dx.doi.org/10.1063/1.3631026
http://dx.doi.org/10.1063/1.3631026
http://dx.doi.org/10.1063/1.3631026
http://dx.doi.org/10.1063/1.3631026
http://dx.doi.org/10.1038/nature01141
http://dx.doi.org/10.1038/nature01141
http://dx.doi.org/10.1038/nature01141
http://dx.doi.org/10.1038/nature01141


WEAK (ANTI)LOCALIZATION IN TUBULAR . . . PHYSICAL REVIEW B 93, 205306 (2016)
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Governale, J. Knobbe, and H. Hardtdegen, Phys. Rev. B 74,
081301 (2006).
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