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Entanglement properties of quantum polaritons
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B. A. Rodrı́guez
Instituto de Fı́sica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellı́n, Colombia

D. Ballarini
NNL, Istituto Nanoscienze-CNR, Via Arnesano, 73100 Lecce, Italy

(Received 4 February 2016; revised manuscript received 16 April 2016; published 9 May 2016)

Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical
mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case
it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement
of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement
is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low
pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when
the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation
rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only
at larger detuning for a higher number of quantum dots considered.
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I. INTRODUCTION

The interaction of radiation and matter, pushed to the
extreme level of strong coupling between single qubits, is
nowadays a solid reality implemented in many structures
and provides a key requirement for coherent control and
manipulation of quantum states [1–3]. After its realization
in atomic and superconductor systems [4,5], the technology
of semiconductor nanostructures has reached the capability
to sustain strongly confined optical and electronic modes
[6], bridging the era of quantum information processing to
solid-state devices [7–9].

In optical nanocavities, light-matter interaction is often
described by the physics of polaritons, or dressed states, as the
strong coupling of a single fermionic two-level system with a
single bosonic photon mode [10,11]. The paradigm of strong
coupling between exciton and photon, the Jaynes-Cummings
ladder, is a fully quantum model with outstanding predicting
power when combined with the nonconservative processes
characteristic of specific implementations [12–16]. Even when
the entanglement has a local nature, the need of including
dissipation is of a fundamental character, as much as the pure
Hamiltonian dynamics itself, and its effect on the entangled
nature of polaritons arises as a natural question [17–21].

The aim of this work is to study the entanglement properties
of the steady state of a microcavity–quantum dot system in
a master equation formalism [22]. Entanglement and purity
are measured through Peres’ negativity [23,24] and linear
entropy [25], respectively. Two incoherent effects dominate
the dissipative dynamics of the system: at low temperature,
photon leakage through the microcavity mirrors is the largest
energy-loss channel [26], and in order to reach a nontrivial
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steady state, an incoherent exciton pumping is needed [27,28].
Their effect is to increase the entropy of the system and
completely cancel out the quantum correlations when exciton
and photon are at resonance, while negativity is maximum
at a fixed finite detuning. It results also that, in the case of
multiple quantum dots mutually coupled to the cavity, quantum
coherence between the matter dipoles is preserved only if the
incoherent pumping is reduced at least 1 order of magnitude
with respect to the photon leakage.

The rest of the paper is organized as follows: In Sec. II we
present the model and the theoretical formalism employed to
approach the problem. Then, in Sec. III we show the results
of the computed quantum properties of a single quantum
dot–microcavity system, measured through linear entropy as a
quantifier of the degree of purity and negativity as a measure-
ment of the degree of entanglement between matter and light.
In Sec. IV we study the particular problem of the entanglement
between two quantum dots coupled through the mode of
the electromagnetic field, a particular instance of the many-
quantum-dots extension introduced at the end of the previous
section. Finally, in Sec. V we make an overview and conclude.

II. THEORETICAL FRAMEWORK

In order to keep the model as simple as possible, we directly
address the quantum properties of the crucial density matrix
and neglect, for example, the interaction with phonons, exciton
dephasing, and exciton-exciton interactions in the case of
multiple quantum dots. We model a quantum dot (QD)
embedded in a nanocavity as a two-level system (ground
|G〉 and excited |X〉 states). Its interaction with a single
electromagnetic mode of frequency ωC , in the dipole and
rotating wave approximations, is described by the Hamiltonian
(� = 1)

Ĥ = ωCâ†â + (ωC − �)σ̂ †σ̂ + g(âσ̂ † + â†σ̂ ). (1)
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The detuning � is the difference between cavity-mode and
exciton energies, g is the matter-light coupling constant,
σ̂ = |G〉 〈X| is the QD ladder operator, and â† (â) is the
usual creation (annihilation) operator of the cavity mode. The
Hamiltonian (1) commutes with the excitation number N =
Nph + Nex = â†â + σ̂ †σ̂ ; hence, it only causes transitions
between matter-light states of the same excitation manifold.
In the absence of interaction with the environment, polaritons
are defined as the energy eigenstates of H and are explicitly
given by

|n+〉 = sin �n |G,n〉 + cos �n |X,n − 1〉 ,

|n−〉 = cos �n |G,n〉 − sin �n |X,n − 1〉 , (2)

where {|n〉} denotes the Fock number states of the field and
tan 2�n = 2g

√
n/�. We include the loss of photons (κ) and

the continuous pumping of excitons (P ) in the master equation
for the density operator ρ̂ of the system:

dρ̂

dt
= i[ρ̂,Ĥ ] + P

2
(2σ̂ †ρ̂σ̂ − σ̂ σ̂ †ρ̂ − ρ̂σ̂ σ̂ †)

+ κ

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â), (3)

where we have made the Born-Markov approximation. The
basic assumption behind our approach, which focuses on the
steady state ρ̂ss of the equation of motion (3), is that polariton
lifetime is much longer than the time required to reach the
asymptotic solution [29,30]. Although polariton lifetimes in
microcavities are usually short, they have been increased in
recent years with the improvement of experimental techniques,
reaching quality factors above 300 000 [31]. (The parameters
employed in this work are thought for a cavity with Q factor
of 200 000.) On the other hand, it has been reported in
the literature that thermalization times in microcavities are
typically of around 40 ps [32]; this means that the model is
valid for polaritons with lifetimes of ∼ 50 ps (a Q factor
of around 76 000), an achievable situation nowadays. The
steady state ρ̂ss = ρ̂(κ,P,g,�) of the system is a function
of the dissipative rates κ and P , the matter-light coupling
constant g, and the detuning �. Unless stated otherwise,
the steady-state solution ρ̂ss of (3) is obtained by setting
ωC = 1 eV, g = 0.1 meV, and κ = 5×10−3 meV, while � and
P are varied in ranges similar to those of current experiments.

III. LIGHT-MATTER ENTANGLEMENT AND PURITY

Linear entropy and negativity are employed to quantify
purity and light-matter entanglement, respectively. The former,
defined as SL(ρ̂) = 1 − Tr(ρ̂2), vanishes for pure states and is
maximum for maximally mixed states. The latter is defined as
N (ρ̂) = 2

∑
λ<0 |λ|, where λ denotes the eigenvalues of the

partial transpose of ρ̂.
Negativity and linear entropy are depicted in Fig. 1 for dif-

ferent detuning conditions (� = 0,� = g,� = 2g,� = 3g,

� = 7g, and � = 10g) and as a function of pumping power
P . As expected from a physical point of view, the maximum of
the negativity occurs at P = κ , when gain and losses exactly
compensate. The dependence on the detuning shows instead a
nonmonotonic behavior, with a maximum value of N ≈ 0.32
for � ≈ 3g, corresponding to the minimum of the linear

FIG. 1. N (ρ̂ss) (continuous red line) and SL(ρ̂ss) (dashed black
line) as a function of the incoherent exciton pumping P for κ =
5×10−3 meV and (a) � = 0, (b) � = g, (c) � = 2g, (d) � = 3g,
(e) � = 7g, and (f) � = 10g. Note that for � �= 0 the maximum
of N (ρ̂ss) always corresponds to a local minimum of SL(ρ̂ss) when
κ = P .

entropy, SL ≈ 0.29. Fixing the condition of P = κ , we plot
in Fig. 2 the behavior of the linear entropy and the negativity
as a function of the detuning.

The excitation number (N̂) symmetry associated with the
Hamiltonian (1) is broken in the time evolution provided by
the master equation (3), in the sense that the asymptotic state
of the system cannot be labeled with a single eigenvalue of N̂ .

From Fig. 2 it is possible to identify three different regimes:
if the subsystems are in resonance (or near this condition),
the interaction, combined with dissipation, produces a very
mixed state SL ≈ 0.75, and therefore no entanglement is
achievable under these conditions [33]. N then vanishes in the
interval −g � � � g. A diagonalization of the density matrix
shows that the steady state of the system is a noncoherent
superposition of entangled and separable states, as reported in
the Supplementary Information [34]. On the other hand, for

FIG. 2. Linear entropy (dashed black line) and negativity (con-
tinuous red line) of the steady state of the system ρ̂ss and negativity
of polaritons of the excitation manifold 	1 (dashed-dotted blue line)
as a function of � for P = κ = 5×10−3 meV.
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FIG. 3. Sequence of nonzero fidelities Fn± between the steady
state ρ̂ss and the 	n–lower (black)/upper (green) polaritons |n,±〉
for κ = 5×10−3 meV, � = 3g and (a) P = 0.04κ , (b) P = κ ,
(c) P = 20κ , and (d) P = 100κ . |	n| denotes the excitation number
of the polariton manifold 	n.

large detunings, the interaction strength diminishes and the
matter-light coupling is not enough to generate entanglement.
The quantum dot is saturated due to the absence of interaction
and exciton pumping, driving the system into the not entangled,
pure state |X0〉. The entropy takes low values in this regime but
the negativity decreases as well. The best condition is then the
one in which the entropy is low enough to avoid the demolition
of the quantum properties of the system, and the interaction is
high enough to generate nonseparable states. We find that this
condition is maximized for � ≈ 3g, as shown in Fig. 2. At this
detuning condition, there is a maximum in the negativity that
coincides with a local minimum in linear entropy. Although
the density matrix is not pure, the system has a probability of
84% of being in the nonseparable state 0.29 |G1〉 − 0.96 |X0〉.

Figure 3 compares the steady state of the system with pure
polaritonic states |n,±〉 [defined by Eq. (2)] using the sequence
of nonzero fidelities Fn± = √〈n ± |ρ̂SS |n±〉. For small values
of P [Fig. 3(a)] ρG0G0, the population of the state without
polaritons is much larger than the other populations. In this
case only F1 does not vanish; it is relatively small, though.
For P = κ [Fig. 3(b)], F1 increases up to more than 0.91,
while the remaining fidelities are still small. This indicates
a concentration of the population in the first manifold and a
state similar to a pure polariton. As P increases, Fn± is nonzero
for larger excitation numbers, but their values decrease from
0.91 at P = κ to 0.2 at P = 100κ . Changing the detuning, the
fidelity of the steady state is always higher for the eigenstate
with a higher excitonic component: for negative (positive)
detuning, higher fidelities are found for the upper (lower)
polariton state.

So far we have only considered interaction between a
single quantum dot and a cavity mode, but the model is
valid for a system with many quantum dots, provided the
QD density is low enough to avoid direct interaction between
excitons. This is the case in which the dots are coupled through
the photonic mode only. Figure 4 shows linear entropy and

FIG. 4. Upper panel: Negativity (continuous red line) and linear
entropy (dashed black line) as a function of � for systems with
different number of quantum dots (Exc). For all the cases, each QD
interacts with the cavity mode with the same strength. Lower panel:
detuning for maximum light-matter entanglement as a function of the
number of quantum dots.

negativity for the multiple-quantum-dots case as a function
of the detuning between the exciton energy and the cavity
mode. At this point we focused exclusively on the set of
parameters for which N is maximum for each number of QDs.
As it can be seen, the detuning for maximum entanglement
varies for each number of QDs, but the dependence of the
negativity with the detuning does not change qualitatively.
Low detunings are still not suitable to generate nonseparable
states because they maximize the degree of mixedness, and
for large detunings, due to the absence of interaction, quantum
dots saturate and hence the system is driven to a separable state.
The competition between these two effects remains for systems
with many noninteracting QDs. While a direct comparison
is not possible given that negativity has different maximum
values for systems with Hilbert spaces of different size, the
detuning for maximum entanglement in each specific number
of QDs has been rigorously found.

IV. QD-QD ENTANGLEMENT

A problem that naturally arises is whether or not the
electromagnetic field is able to generate entanglement between
two quantum dots. This is the simplest system able to present
nonlocal entanglement, a necessary condition for sustaining
any quantum information protocol. To do so, a partial trace
over the degree of freedom of the light is performed, and the
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FIG. 5. Negativity of the reduced system of QDs in the steady
state as a function of the incoherent pumping rate for different
values of the matter-light detuning. Contrary to the case of QD-light
entanglement, resonance is the most suitable condition to find a
nonvanishing entanglement. In any case, the incoherent pumping has
to be lower than the photon leakage rate.

negativity of the reduced operator of the QDs is calculated.
This is

ρ̂QD−QD =
∑

n

〈n| ρ̂ss |n〉 , (4)

where |n〉 are the Fock states for the electromagnetic field and
ρ̂ss is the full density operator of the steady state. We perform
this operation for the case in which there are two quantum
dots interacting with the cavity mode. Figure 5 shows the QD-
QD entanglement quantified through negativity as a function
of the pumping rate for different values of the light-matter
detuning. In this case the condition κ = P is not the most
suitable anymore; in fact, there is a critical value of P for
which the entanglement fully vanishes. This value is lower
than the photon leakage rate. On the other hand, the figure
also shows that the resonance condition enhances the QD-QD
entanglement.

V. OVERVIEW AND CONCLUSIONS

We studied the properties of purity and entanglement of
a microcavity–quantum dots system in the strong-coupling
regime by taking into account dissipative mechanisms. In the
case of a single quantum dot we found the conditions for which

the matter-light entanglement is maximized in the system.
Matter and light should be out of resonance and the incoherent
pumping rate should exactly compensate the photon loss. This
maximization is due to a competition of two effects: near
resonance, the exchange of energy between the quantum dot
and the cavity mode is enhanced, but the dissipation generates
a mixture in the steady state. In a large detuning condition,
the degree of purity of the steady state is enhanced, but the
exchange of energy rate is not enough to generate nonseparable
states. The value of � where these two effects compensate each
other is around � ∼ 3g.

In the case of many quantum dots, the best matter-light
entanglement is reached when every quantum dot is pumped
with a rate equal to the cavity losses. The most suitable
condition is still � �= 0, although the exact value of the
detuning slightly varies with the number of excitons. In
this case the light is entangled with all the quantum dots,
understood as one matter system.

Finally, we focused into the case of two quantum dots
coupled through the cavity mode. We found that incoherent
pumping strongly works against the coherence of the reduced
matter system (QD-QD). The maximum QD-QD entanglement
is obtained for an incoherent pumping at least 1 order of
magnitude smaller than the photon leakage rate, in which
case the system reaches an entanglement of 20%. The exciton
energy should also be in resonance with the cavity mode,
giving a criteria to identify two different regimes. If κ = P

and � �= 0 the system is in a state with light-matter quantum
correlations; on the other hand, if the incoherent pumping
is at least 1 order of magnitude below the dissipation rate
and the cavity mode has the same energy of the excitons, the
system loses light-matter correlations and the quantum dots
are entangled between them via their interaction with the field.
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