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Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations
with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized
Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is nonmultiplicative,
which prevents systematic comparison of meta-GGA band structures to those of the LDA and the GGA. We
implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to
carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to
several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that
the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more
realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact
KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid
sensitivity of meta-GGAs is much more severe in OEP calculations.
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I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as E, = I — A, where [ is the ionization energy
and A is the electron affinity. / and A are ground-state energy
differences. E, is also an excited-state property since it is
the unbound limit of the exciton series. E, is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate E, and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3-5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate E,
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from its definition, and one commonly approximates E, with
the KS gap EXS = ¢[y10 — €fiomor Where €figyo and €ftyo
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, E?S
is not equal to E, even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but

still Hermitian xc potential operator. The gKS gap EEKS =
B o — €5 o can be a better approximation to E, than
is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%—-50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to
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be able to have a systematic comparison of the KS band gaps
between meta-GGA and GGA.

In the gKS formalism for an orbital functional such as
a meta-GGA or hybrid functional, we find the “optimal
variational potential,” a nonmultiplicative self-adjoint operator
that minimizes the energy functional with respect to the
orbitals. This potential is a differential operator for a meta-
GGA and an integral operator for a hybrid functional. In
the KS formalism for an orbital functional, we find the
optimized effective potential (OEP) [15,16], the multiplicative
xc potential that minimizes the energy. The OEP meta-GGA
yields the KS gap of the meta-GGA, which can be compared
directly with the GGA KS gap. With the OEP, the meta-GGA
xc potential also becomes comparable with that of the GGA.
The OEP meta-GGA has been studied only in finite systems
previously [17,18].

In this work we provide a study of the OEP meta-GGA in
periodic systems. We find that the meta-GGA KS gap is not
significantly improved over the GGA KS gaps, and the band
structure of the OEP meta-GGA is very close to that of the
GGA (and presumably to that of the exact KS potential). The xc
potential of the meta-GGA has more details than that of the
GGA, but the change is not as big as the change between the
LDA and the GGA. Though the gKS meta-GGA is known to
be sensitive to the real-space grid used in the calculation, we
find that the OEP meta-GGA has worse grid sensitivity. The
reason for the grid sensitivity is discussed in this work.

Within the gKS implementation of the meta-GGA form, it
is possible to fit to energy gaps of solids [19], and the result
can be useful for the prediction of gaps [20]. But the fact
that a property can be fitted in DFT is not evidence that it
should be, or that other and more appropriate properties will
not deteriorate as a result.

II. OEP META-GGA IN PERIODIC SYSTEMS
A. Theory

The meta-GGA xc energy functional has the form
Exclnyn] = [ drexcimy®).m,6). 16,

x Vn, (r),74(r),7, (0], ey

where exc is the xc energy density, and n,, and t,, are the spin
density and the kinetic energy density of spin o, respectively.
ne and 7, are

1
ne(r)=——>_ / Ik O W)Yo P, (2)
Qpz =~ JBz

To(r) =

3 2
29322 | abatominmr. o

where Qg7 is the volume of the first Brillouin zone (BZ), i is
the band index, ¥k, is the KS orbital normalized in one unit
cell, and 6;,(K) = O[ Er — €k ] is the Heaviside step function,
with Er being the Fermi energy and €, being the KS orbital
energy. The noninteracting kinetic energy density of the Kohn-
Sham orbitals is, like the orbitals themselves, a functional of
the electron density. The OEP of the meta-GGA is defined by
the functional derivative of the xc energy with respect to the
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density, which is

_ SExc _ dexc _ ) dexc
vxC,o (1) = ot o, (r)—-V |:8Vn(, (I’)}
3 anC (S‘L'(,(I‘/)
v [ PEOT @

Equation (4) can be partitioned into a GGA-like part and a
t-dependent part:

VxC.o () = VSR (1) + vic i (r). 5)

v)(-;’gA is a multiplicative potential, but vXCdep does not have a

—de
°P can be written as

de
T dep 3 3.7 431 XC ,
. (X)) = /dk//drdr—(r)
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closed form. vy 'y
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On one hand, the gKS meta-GGA potential operator is obtained

by multiplying both sides of Eq. (6) by én,(r)/dv¥ike (r1) +

c.c and integrating over r:

1 de
Ve Yk (1) = =V - [ X (r)lekAr)}
= )g(lésa Wl ko (I’) (7)
On the other hand, inserting
8Yriks (") _ / 3, 8Yike (r") 8vs 4 (1) @)
8na(r) Veell SUS,a(rl) 51’10(1') ’

where vs is the KS potential, into Eq. (6) yields the OEP
integral equation for vXCdep

o' dep dnq(r)

o M——— +cc.
/‘;LCII XC SUS O’(rl)

d3 // d3 /d3 // €xc
QBz Z/E;Z ( )

> Sfa(r/) 51”;'1«7(1‘”)
6wiko(r”) 81)5.6(1‘1)

Though a direct solution for the OEP is possible [18,21], it
is both computationally expensive and numerically unstable.
The common practice is to approximate the solution of Eq. (9).
Reference [17] employed the local-Hartree-Fock (LHF) [22]
approximation to derive approximated chdep of meta-GGA
for finite systems. Here we do the derivation with the effective
local potential (ELP) [23,24] approximation. The ELP is
equivalent to the LHF and the common-energy-denominator
approximation (CEDA) [25,26], and the Krieger-Li-lafrate
(KLI) [27] approximation is their simplification.

The ELP minimizes the matrix norm of the commuta-

A A T—dep ~gKS A
tor So =[Dy,p,], where D(7 = VUxc, — Oxcoo and p, =

Q+sz Zi fd3k 0i0 (K)|V¥iko ) (Viko | 1 the spin density matrix.
P becomes valid for both the KS and the gKS system when
Se = 0. S, is minimized when §S, /6vXCdep(r) 0, which

€))
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yields the ELP approximation of UQE?

T 1 A
R = o5 ) {Ze,a(k)l/f,ko(mvi‘éiw,-kg(r)
1
t—— | @K 000000 (K )i, (DY 1o (r)
BZ JBZ

ij

x <wjk/a|ba|w,-ka>} +c.c. (10)

The ELP approximates the OEP in a least-squares sense [24].
Reference [24] shows that the ELP approximation is equiv-
alent to the CEDA, which reduces to the KLI approximation by
setting i = j in Eq. (10) [25]. If only the first term of Eq. (10)
is kept, one obtains the so-called Slater approximation [28].

B. Implementation in the BAND code

The most efficient methods for calculating periodic systems
are pseudopotential methods with plane-wave basis sets, with
the widely used PAW method as an extension [29,30], but
the OEP is hard to implement in such codes. The sum over
bands in Eq. (10) also includes the core bands, which are
not directly available in pseudopotential codes. Furthermore,
the OEP is inherently incompatible with the PAW formalism.
The charge density in the PAW formalism is composed of the
pseudocharge density, the on-site all-electron density, and the
on-site pseudocharge density [29,30], and the xc energy and
potential are partitioned into three parts accordingly, with each
part only depending on the corresponding part of the density.
However, the OEP of meta-GGA is hard to partition this way.
Due to these obstacles, we implement the OEP meta-GGA in
the BAND code [31-35].

BAND is an all-electron DFT code for periodic systems. It
uses atom-centered numerical functions as the basis set. All
the real-space integrations are done numerically on a Becke
fuzzy-cell grid [36]. The BZ is discretized with the commonly
used Monkhorst-Pack grid [37], so the k integrations of
Eq. (10) become sums over k points in the irreducible
Brillouin zone (IBZ):

1BZ

Z Z W fiko 8io (R7'K),

(1)
where g;,(K) is the contribution to the integral from the orbital
Yike» fiko 18 the occupation number, wy, is the weight of the k
point times the k-space integration weight in BAND [32], N
is the total number of symmetry operations, $ = {R,t} is the
space-group symmetry operator, and R is the rotational part
of S.

The D, matrix elements in Eq. (10) vanish for k # K/,
since D, has the periodicity of the unit cell. Equation (10) is
implemented in the BAND code as

d*k gioc (K)o (K) =
Qs §

1BZ

) = s DB vesaRe] = 34,0

dexc dexc
X|: e @) RVt () p_ge + E(I‘)
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where [ and J are
lijke = / &r g Ok O,  (13)
Vce]]
1 3 86)((:
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cell

and V¢ ® Vi, (r') denotes the Hessian matrix of v, . The
integrals are done as discrete sums on the real-space grid. The
I;ji, depend on v)’(%g, which is unknown beforehand. They

can be determined by solving linear equations [17], but this
is costly for periodic systems. Instead, we determine the [
integrals and viE-F iteratively by the following steps:

(1) Setthe I fntegrals to 0.

(2) Calculate vi¢'Y with Eq. (12) using the I integrals of
the last iteration.

(3) Calculate the I integrals using the new vQéL}:.

(4) Repeat steps 2 and 3 if
[ drivges @) —vges V@) > T, where i is the
iteration count, and 7 is the error tolerance.

viety is only determined up to an additive constant ¢, since

v)f(]éLg + ¢ yields the same band structure. ¢ has to be fixed for

: : ;. TELP
determining the convergence. The [ integrals contain vye o,

so their values include c¢. We fix ¢ by requiring that the term of
Vxc.o containing the / integrals averages to 0, i.e., the constant

c is determined by

1BZ
1

Vcell /Vcen NGn (l') Z Z Z wkflko Z fjko’

thka(sr)wjka(sr)( ijko + C8,]) = (15)

In practice, the iterative procedure converges after 200 itera-
tions on average for 7 = 10710,

Reference [26] finds that the total energies and orbital
energies obtained from CEDA and KLI are very close for
atoms and molecules. We find that the same is true for periodic
systems. The ELP is equivalent to the CEDA [24], and its total
energy is always lower than that of the KLI, but the total
energy differences and the KS gap differences of the materials
in Table I between that of the ELP and that of the KLI are at
most 1 meV. Since the improvement of the ELP over the KLI is
insignificant, we only report the KLI results in the following.

III. RESULTS

We calculate the KS and gKS gaps of 20 semiconductors
and insulators with the SCAN, meta-GGA made simple 2
(MS2) [38,39], meta-GGA made very simple (MVS) [40] and
TPSS [41], meta-GGAs and the PBE [42] GGA, and the results
are collected in Table I. Ge, CdO, and InN are not listed since
their calculated gaps vanish. All the calculations are done with
the TZ2P basis set [43]. A 9 x 9 x 9 Monkhorst-Pack k grid
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TABLE L. Calculated KS/gKS gaps and the derivative discontinuities (Axc = ES<° — ES®D). All energies are in eV. The experimental
gaps are from Ref. [47]. The BAs GW gap is from Ref. [48]. The mean absolute errors (MAE) and mean absolute relative error (MARE) for
the band gaps are listed. HSE [49-51] gaps calculated with the VASP [30,52-55] code are also listed for reference. The PBE and SCAN gaps
of Ge, CdO, and InN are vanishing, so they are not listed. Their experimental gaps are 0.74, 0.84, and 1.95 eV, respectively. Their HSE gaps
are 0.65, 0.94, and 0.77 eV, respectively. The KS(KLI) TPSS results are not listed as most calculations fail to converge.

Material Expt. LDA PBE HSE SCAN MS2 MVS TPSS
gKS KS(KLI) Axc gKS KS(KLI) Axc gKS  KS(KLI) Axc gKS
Si 1.17 0.60 0.71 1.11  0.97 0.78 0.19 1.20 0.80 0.41 1.04 0.72 032 0.80
InP 1.42 0.50 0.72 1.52  1.06 0.77 029 1.14 0.81 0.34 1.99 1.09 0.89 0.86
GaAs 1.52 030 053 141 0.8 0.45 034 0.94 0.48 0.46 2.15* 1.26 N/A  0.68
BAs 1.60° 1.21 1.26 1.71  1.51 1.32 0.19 1.63 1.33 0.30 1.56 1.16 040 1.26
CdSe 1.73 044 071 1.66 1.10 0.76 033 1.06 N/A® N/A 214 0.50 .64 092
BP 2.10 136 143 1.79  1.74 1.52 022 194 1.49 0.46 1.64 1.42 022 148
GaP 2.35 1.53  1.69 2.09 194 1.72 021 197 1.73 0.24 2.23 1.74 049 1.74
CdS 2.48 096 1.23 227 1.62 1.20 042 1.60 1.27 0.33 2.39 1.50 088 143
B-GaN 3.17 1.70  1.69 297 203 1.84 020 1.69 1.70 —0.01 2.50 1.89 0.62 1.60
ZnS 3.72 1.87 212 332 263 2.16 047 252 2.08 0.45 335 N/AC N/A 230
cd 550 414 417 494 458 4.26 032 4.79 4.16 062  4.15 4.06 0.09 420
BN 620 442 453 539 5.04 4.73 0.30 5.01 4.56 0.45 5.14 4.58 0.56 454
CaO 6.93 362 375 530 429 3.78 0.50 4.13 N/A® N/A 456 3.51 1.05 3.89
MgO 790 470 474 6.46 5.62 4.80 082 5.20 5.47 —-0.27 6.05 4.58 1.47 486
NaCl 8.97 470 5.08 6.42 5.86 5.25 0.61 5.85 6.51 —0.66  6.61 4.68 193 543
LiF 13.6 884 9.04 114 9.97 9.11 0.86  9.50° 9.84 N/A  10.64 8.77 1.86 9.19
Solid Ar  14.3 844 892 1033 991 8.89 .02 9.95 9.36 0.58 10.98 9.19 1.80 9.56
MAE 2.08 190 0.88 141 1.84 1.28 1.63 1.13 1.89 1.76
MARE 046 040 0.13 027 0.38 0.26 0.35 0.19 0.36 0.36
2Converged to the wrong ground state.
"G Wgap.
“Not converged.
4Diamond.

[37] is used for most of the materials except InN, CdS, and
CdSe, for which a 9 x 9 x 5 k grid is used. We find that
the OEP meta-GGA is sensitive to the real-space grid, and
large grids are used to ensure convergence. The details of
the grid problem are discussed in Sec. IV. Though GGA and
gKS meta-GGA converge properly with smaller grids, we use
the same grid as the OEP meta-GGA, so that the results are
comparable.

The scalar relativistic effect is included in the calculations
by the ZORA [44] method. We ignore the spin-orbit coupling
since the effect is small (0.03 eV for InP). The relativistic
effect is implicitly included through the pseudopotential in
plane-wave codes, but it needs to be explicitly included in
BAND. We find that the scalar relativistic effect has a big
impact on the KS and gKS gaps, since it shifts down the
orbital energies of s-type bands, such as the lowest conduction
band of GaAs [45]. The change in the KS and gKS gaps due
to the scalar relativistic effect can be as big as 0.7 eV (GaAs).

Figures 1 and 2 compare the OEP of SCAN meta-GGA
and the LDA and the PBE xc potentials for the Ne atom and
bulk Si, respectively. The exact xc potential of the Ne atom
[46] is plotted as a reference. The exact xc potential of Ne
has a bump between the two shells of the charge density. The
vxc of LDA does not have this feature. The vxc’s of PBE
and SCAN both have this bump, and they are roughly in the
same position as that of the exact vxc, but these vxc’s are
shallower than the exact vxc. The vxc’s of SCAN also have a

few small bumps that are not in the exact vxc. In the asymptotic
region, the exact vxc decays as —1/r, and the vxc’s of all the
semilocal functionals decay exponentially. Figure 1 shows that
the vxc of SCAN has the same decay as that of LDA and PBE.
For periodic systems, there is no asymptotic region, and the
approximated vxc’s of bulk Si in Fig. 2 can be expected to
be closer to the exact vxc than those in Fig. 1. In Fig. 2 the
vxc of SCAN are similar to the vxc of PBE, and they only

0
3
&
>§
exact —
72 L
PBE - - -
KS(ELP) SCAN—
0 0.5 1

r(A)

FIG. 1. Comparison of vxc’s of the Ne atom for SCAN, LDA,
and GGA. The exact vxc is from Ref. [46].
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FIG. 2. Comparison of vxc’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35A. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vxc’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vxc is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vxc being similar to the PBE vxc. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for B-MnQO,, which is
gapless in GGA, and the value is close to the experimental

g TS

PBE —
gKS SCAN
KS(KLI) SCAN---

L A r A X UK z r

FIG. 3. The band structure of Si calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.
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PBE —
gKS SCAN
KS(KLI) SCAN-----

L A r A X UK z T

FIG. 4. The band structure of GaAs calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.

value 0.3 eV. The MO6L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+4RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of V (dexc/97, ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities Axc at integer electron numbers [7],
where Axc = E, — E?S. The exact KS potential jumps up
by the positive constant Axc as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the
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6 — T
PBE +
gKS SCAN )
~ 37 KS(KLI)SCAN & 1
% EXX+RPA © &
o L 4
5 4 5
£
‘g 3f B m |
o
O
2 g B o]
! u
< gt o ]
uf
& 2%
0 1 1 1 it 1 1 1 1 1 1 1 1 1 1 1 1 1

Si  InP GaAs BAsCdSe BP GaP CdSB-GaNZnS C BN CaO MgO NaCl LiF Ar

Material ordered by gap

FIG. 5. The absolute errors of PBE, KS(KLI) SCAN, and gKS
SCAN (comparing with the experimental gap) in the band gap. The
EXX+RPA OEP gaps for Si, LiF, and Ar, from Ref. [56], can be
considered very close to the gaps for the corresponding exact KS
potential.

convexity of the approximated energy functional [60], and they
underestimate the gap as a consequence. In periodic systems,
such discontinuities are only visible at band gaps. Though the
derivative discontinuity has been thoroughly studied for atoms
and molecules, it is difficult to obtain for periodic systems,
since I and A cannot be calculated directly.

With the OEP meta-GGA provided in this work, we are
able to estimate the Axc of solids. E, can be approximated by
the derivative gap Ege“" =0E/ON|y, —dE/ON|y_,whichis
equal to the gKS meta-GGA gap [9,60,61]. E;,(S is the OEP
meta-GGA gap. The results are shown in Table 1.

Comparison of the Axc’s of meta-GGAs with the exact
Axc is impossible for periodic systems, since no exact KS
potential is available. However, Ref. [62] provides an OEP
of the GW method of bulk Si, and its Axc can be seen as
a good approximation to the exact Axc. The Axc of bulk Si
in Ref. [62] is 0.58 eV, which is larger than that of all the
meta-GGAs in Table 1. This is not unexpected because the
meta-GGA’s tested in this work are not exact for / — A in a
solid.

IV. REAL-SPACE GRID DEPENDENCY

The gKS meta-GGA requires a larger real-space integration
grid than GGA [63], and this is caused by the sharp variation
in regions far away from nuclei of quantities containing
7, such as z = t" /7 used in TPSS, and o = (z — %) /79
used in SCAN, MS2, and MVS, where ¥ = |Vn|*/(8n)
is the von Wiezsacker kinetic energy density, and 19 =
(3/10)(3%)*3n3/3 is the kinetic energy density of the uniform
electron gas. The Becke fuzzy-cell grid is used as the real-space
integration grid in most of the DFT codes. It is constructed by
combining atom-centered spherical grids. The radial part of the
spherical grid is dense near the nuclei, and is sparse away from
the nuclei. The integration weights for the grid points in the
sparse region would be larger than those in the dense region.
Therefore a function with sharp features in regions away from
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the nuclei cannot be properly represented on the grid, and the
error of integrations involving this function would be large.
One needs larger grids in gKS meta-GGA calculations than
those used in GGA calculations.

We find that the OEP meta-GGA is more sensitive to the
real-space integration grid than the gKS meta-GGA. In the gKS
case, the sensitivity to the grid shows up in the potential energy
surface [63,64] as spurious oscillations, but the sensitivity is
not obvious in a single-point calculation. In the OEP case,
a single-point calculation is enough to demonstrate the grid
sensitivity by comparing the total energy. The total energy of
the OEP meta-GGA is variationally minimized with respect to
the charge density, but the total energy of the gKS meta-GGA
is variationally minimized with respect to the orbitals. Since
the gKS has bigger variational degrees of freedom, the gKS
total energy should always be lower than the OEP total energy,
and both should be lower than the meta-GGA total energy
evaluated with nonvariational orbitals. However, though the
built-in integration grids in the BAND code are good enough
for gKS calculations, they are not sufficient for an OEP
calculation: the OEP total energy calculated with these grids
is always higher than the total energy evaluated with PBE
orbitals. For example, the best built-in grid in BAND for the
Ne atom has 120 radial points, but at least 266 radial points
are required for the SCAN OEP total energy to be lower than
the SCAN total energy evaluated with PBE orbitals, and 504
radial points are required for the SCAN OEP total energy to
converge with respect to the grid (error <0.01 meV). The total
energy is not sensitive to the number of angular grid points.
Table II lists the total energy differences using different grids.

The OEP vxc of the Ne atom, Ar, dimer, and bulk Si (along
the Si-Si bond) are plotted in Figs. 6, 7, and 8. The OEP vxc
develops unnatural peaks close to nuclei when too few grid
points are used. These peaks have a strong effect on the KS
band gap and the total energy. For bulk Si with 134 points
(dashed line in Fig. 8), the system becomes gapless.

The grid dependence of the OEP meta-GGA is caused
by Vdexc/dt, in Eq. (12). Figures 6, 7, and 8 show that
Vdexc /07, has very sharp oscillations both close to and away
from the nucleus. The dots in these plots show the grid point
locations when the calculation is done with a built-in grid in
BAND. These grid points are sufficient for an gKS meta-GGA
calculation since they are dense enough to properly describe
the oscillations in «, but they are insufficient for an OEP
meta-GGA calculation since the peaks in V dexc /91, are much
narrower than those of «.

Figure 9 shows Vdexc/dt of the Ne atom for SCAN,
TPSS, MS2, and MVS functionals. Though Vaexc/dt of all
functionals have oscillations, the sharpness of the peaks is
different, and consequently the numbers of grid points required
for convergence are also different: SCAN has very sharp peaks,
and it requires 352 points to converge the total energy within
1% error; The peaks in MVS are broader, and it only requires
252 points to converge with the same error criterion.

The oscillations in Vdexc/dt for SCAN, MS2, and MVS
are centered at or close to o =1 in Fig. 9. All these
functionals use « to incorporate the kinetic energy density
into the functional, and their energy densities all have the
form exc = exc,1 + f(@)(exc,0 — €xc,1), Where exco and e,
are exc constructed for « =0 and o = 1, and f(x) is an
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TABLE II. The total energy differences between KS(KLI) SCAN and SCAN with PBE orbitals of different grids. N, is the number of

KS(KLI)

radial grid points. AE = Eg-an _ EPBEom.

scan - All energies are in eV.

Material Solid Ar LiF NaCl MgO CaO BN C* ZnS p-GaN CdS GaP BP CdSe BAs GaAs InP Si
N, 69 169 82 74 87 74 65 153 209 96 91 74 96 87 169 177 137
AE 006 0.09 022 059 054 027 0.17 0.0008 0.03 0.17 0.05 0.03 0.14 0.01 0.03 0.06 0.10
N, 537 705 638 571 672 571 504 638 873 739 705 571 739 672 672 739 571
AE —0.003 —0.01 —0.005 —0.002 —0.01 —0.02 —0.02 —0.006 —0.03 —0.0007 —0.002 —0.02 —0.05 —0.02 —0.01 —0.001 —0.02
“Diamond.

interpolation function that decreases monotonically with o
from 1 at « =0 to 0 at « = 1 to negative values for o > 1.
The oscillation in Vdexc/dt then implies a peak indf (o) /do.
a =1 corresponds to the uniform electron gas limit, and
the f(o) of SCAN and MS2 are constructed to have
d’ f(a)/da® =0 there to recover the gradient expansion
approximation [38]. Therefore, d f («¢)/d o has a flat or linearly
topped peak at o = 1, which explains the oscillation. For
MVS, d? f(a)/da? vanishes at o = 0.77, and its oscillation in
Vdexc/dt occurs there. By choosing other functional forms
for f(a), it is possible to get rid of the oscillations and the
grid sensitivity. TPSS does not have this feature since it uses
z instead of «.

Even though a small grid cannot properly represent the
oscillations in Vdexc/dt, Fig. 10 shows that the vxc of the
Slater approximation (which contains Vdexc/dt explicitly)
evaluated on a small grid is already similar to the KLI vxc
evaluated on a big grid. The KLI approximation is supposed
to be an improvement over the Slater approximation, but it
introduces big errors in vxc when using a small grid. The grid
sensitivity actually enters the OEP indirectly through the [
integrals of Eq. (14). Since the Slater term contains Vdexc /97,
the I integrals cannot be done accurately with a small grid.

The gKS meta-GGA potential operator in Eq. (7) also
contains Vaexc/dt, but the grid sensitivity of gKS is much
lower than that of OEP. There is no contradiction since
Vdexc/dt does not have to be evaluated directly in gKS

2
o ]
. + 1
| e (N=65) -
L =504) ]
) (@/0r)0e, /ér) (N,=65)
i (9/0r)(@e,, ‘ér)(N =504)
-3 1 Gq =65) =®
| o (N~504)
—4 b ‘ :
0 0.5 1 15 2 25

r(4)

FIG. 6. The KS(ELP) SCAN vxc (a.u.), the radial component of
Vdexc/dt (a.u.), and o of the Ne atom evaluated with two different
grids. The solid lines are results obtained by using 504 radial grid
points, and the dots and dashed lines are results obtained by using 65
radial grid points.

meta-GGA. Using integration by parts, the matrix elements
~gKS
(Viko |0%¢. o |V jko ) becomes

1 83XC
—Efd3r1//;’;m(r)V : [ =

1 de
=5 [ ¢ O U@ V),
and dexc /07t is less sensitive to the grid than Vdexc/dt. The
grid sensitivity of the OEP is also expected to show up in the
time-dependent density-functional theory (TDDFT) [65] with
a meta-GGA xc kernel.

Aside from the grid problem, we find that the OEP
meta-GGA in general needs more self-consistent-field (SCF)
cycles to reach convergence than the gKS meta-GGA. For
small gap materials, the OEPs of some meta-GGA functionals
do not converge, while the corresponding gKS calculations
converge normally. We tested SCAN, MS2, MVS, and
TPSS functionals, and SCAN has the least convergence
problem.

MVY ko (r)}

(16)

V. CONCLUSION

In conclusion, we implemented the ELP and the KLI
approximations for the OEP meta-GGA of periodic systems,

4
3 L J
2 L .
1 L .
US el Ww—*—*‘" S RREAREEEY

b i, 2 ﬁw vie N=134) + |

3 N=806
-2t k @/9x)@e,, /arﬁ EN,—1343 -
N (@/9x)@e.; /ar) (N:=806) ]
4 o (N=134) o

L o (N=806)

0 1 2 3 4 5
x (A)

FIG. 7. The KS(KLI) SCAN vxc (a.u.), the x component of
Vdexc/dt (a.u.), and « of the Ar dimer evaluated with two different
grids, plotted along the Ar-Ar axis. The Ar atoms are located at
x = £1.88A, so that comparison with Ref. [63] is possible. Since
the system is symmetric, only the x € [0,4] part is plotted. The solid
lines are results obtained by using 806 radial grid points, and the dots
and dashed lines are results obtained by using 134 radial grid points.
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2
1 L
0
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FIG. 8. The KS(KLI) SCAN vxc (a.u.), the x component of
Vdexc/dt (a.u.), and « of bulk Si evaluated with two different grids,
plotted along the Si-Si bond. The Si atoms are located at r = 0 and
r = 2.35A. The solid lines are results obtained by using 571 radial
grid points, and the dots and dashed lines are results obtained by
using 134 radial grid points.

with which we study the meta-GGA band gaps of 20
semiconductors and insulators. Comparing with the GGA band
gaps, the new SCAN meta-GGA in a generalized Kohn-Sham
scheme is found to improve the band gaps over the GGA
band gaps. The nonempirical SCAN meta-GGA outperforms
the nonempirical PBE GGA, not only for diversely bonded
materials near equilibrium[12], but also for the band gaps of
solids. The improvement is achieved without using the expen-
sive exact exchange, as in fourth-rung hybrid functionals. For
materials wrongly predicted to be gapless in GGA, the result
[57] of B-MnO; with SCAN shows that meta-GGAs can open
the gap.

Consider the ratio of the calculated to the experimental
energy gap. For the 17 solids of Table I, this ratio varies from
0.35 to 0.79 with an average of 0.60 for the PBE GGA, from
0.53 to 0.94 with an average of 0.73 for the SCAN meta-GGA,

2
3 ‘
&
°
< . -
I 0 Dk N TS - P UUR S ———
o) -
= .
IS ¢ ) o —
S -1t SCAN
; MS2 ----
MVS -
TPSS
_2 ! L
0 0.5 1 1.5

r(A)

FIG. 9. The radial component of Vdexc/dt of the Ne atom of
different functionals. «’s of different functionals are similar, so only
that of SCAN is plotted.
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0
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E
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e
S KLI (N=134)
KLI (N;=806) —
Slater (N, =134) ---
74 ! ! !
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r(A)

FIG. 10. KS(KLI) SCAN vxc of bulk Si along the Si-Si bond.
The Si atoms are located at # = 0 and r = 2.35A.

and from 0.72 to 1.07 with an average of 0.89 for the HSE
hybrid functional. The ratio improves uniformly from PBE to
SCAN to HSE. While the hybrid functional is more accurate
for the gap than SCAN is, it is also more empirical and more
computationally expensive.

For periodic systems, the OEP or ungeneralized Kohn-
Sham vxc’s of meta-GGAs are close to the GGA wvxc’s,
and they only differ in small details. Consequently the
OEP meta-GGA gaps (like the OEP EXX+RPA gaps where
available) are not improved significantly over the GGA gaps,
and the band structures of OEP meta-GGAs are similar to
those of GGAs. We think it is likely that the band gap and
band structure in the exact Kohn-Sham potential are close
to those of GGA and OEP meta-GGA (and of the OEP
hybrid) in periodic systems. Aside from the band gap, the gKS
meta-GGA band structures are also similar to the GGA band
structures.

Due to the sharp features in Vdexc/d1,, the OEP meta-
GGA is sensitive to the real-space grid used in computation,
more so than the gKS meta-GGA. Different meta-GGAs have
different requirements for the minimal grid, and in general
SCAN needs the biggest grid to converge of the meta-GGAs
tested in this work. TDDFT with meta-GGA xc kernels is
also expected to show this grid sensitivity. It is possible to
avoid the grid sensitivity in the design of the functional,
although this may interfere with the satisfaction of some exact
conditions.
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