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Quantum kinetic equations of motion for carrier and impurity spins in paramagnetic II-VI diluted magnetic
semiconductors in a k-dependent effective magnetic field are derived, where the carrier-impurity correlations
are taken into account. In the Markov limit, rates for the electron-impurity spin transfer can be derived for
electron spins parallel and perpendicular to the impurity spins corresponding to measurable decay rates in Kerr
experiments in Faraday and Voigt geometry. Our rigorous microscopic quantum kinetic treatment automatically
accounts for the fact that, in an individual spin flip-flop scattering process, a spin flip of an electron is necessarily
accompanied by a flop of an impurity spin in the opposite direction and the corresponding change of the impurity
Zeeman energy influences the final energy of the electron after the scattering event. This shift in the electron
energies after a spin flip-flop scattering process, which usually has been overlooked in the literature, turns out to
be especially important in the case of extremely diluted magnetic semiconductors in an external magnetic field.
As a specific example for a k-dependent effective magnetic field the effects of a Rashba field on the dynamics of
the carrier-impurity correlations in a Hg1−x−yCdyMnxTe quantum well are described. It is found that, although
accounting for the Rashba interaction in the dynamics of the correlations leads to a modified k-space dynamics,
the time evolution of the total carrier spin is not significantly influenced. Furthermore, a connection between the
present theory and the description of collective carrier-impurity precession modes is presented.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMSs) have attracted a
great deal of interest [1–11] as their highly tunable magnetic
properties are ideally suited for adding spintronic function-
alities to otherwise well-established semiconductor technolo-
gies [12–14]. Particularly promising for future technological
applications is the fact that some DMSs, such as Ga1−xMnxAs,
exhibit a ferromagnetic phase [2,15]. The convenient optical
properties also allow, e.g., for the optical switching of the
magnetization [16] in Ga1−xMnxAs. While a comprehensive
unified theoretical description of the magnetism in DMS is
still missing, it is generally accepted that a carrier-mediated
impurity-impurity spin interaction plays a key role [1,17].
Thus, it is crucial to understand the spin physics not only
of the magnetic impurities, but also of the carriers as well
as the details of the spin transfer between carriers and
impurities.

Experimentally, the carrier spins in DMSs are often
investigated optically using time-resolved magneto-optical
Kerr effect (MOKE) measurements [3,10,18], a pump-probe
technique that makes it possible to extract the carrier spin
dynamics with a temporal resolution of ∼100 fs. The experi-
mentally obtained carrier spin dephasing and relaxation rates,
which also include the effects of the spin transfer between
carriers and impurities, can then be used as an input for,
e.g., the theoretical description of spin-wave excitations in
ferromagnetic DMSs [8].

However, a quantitative theoretical explanation for the
values of the carrier spin relaxation rates measured in
MOKE experiments, even in the simplest possible case of
conduction-band electrons in an intrinsic II-VI DMS, has
yet to be found. For example, even such basic quantities

as the magnetic field dependence of the spin transfer rate
between the carrier and impurity systems in paramagnetic
DMSs is still not satisfactorily explained [3]. This is, on the one
hand, due to the large number of factors that simultaneously
play a role in DMSs, like the spin-dependent s-d interaction
between magnetic impurities and carriers, spin dephasing due
to spin-orbit coupling mechanisms [19–21], carrier-carrier
interaction [22], and disorder effects [23]. On the other hand,
even the typically dominant s-d interaction is usually treated
only on the level of the mean-field approximation [24–26],
neglecting the effects of carrier-impurity correlations, which
can be important [8,27,28]. The spin transfer between carriers
and impurities is commonly described by rate equations
where the rates are calculated using Fermi’s “golden rule”
[25,26,29–31].

One problem of this approach is that it is a priori not
clear under which circumstances the perturbative scheme,
which is implicit in the derivation of Fermi’s golden rule,
is applicable. For example, at the band edge, where the band
energies, described by the Hamiltonian H0 of an undoped
semiconductor, are negligible, the s-d interaction cannot be
thought of as a small perturbation to H0. A second deficiency of
the golden-rule treatment is that it gives, by construction, only
the transition rate between energy eigenstates of the system.
However, optical orientation also allows for an injection of
carrier spins perpendicular to an external magnetic field (Voigt
geometry) or the impurity magnetization, respectively [10],
which corresponds to the excitation of superpositions of energy
eigenstates. Thus, the relaxation rate of the transverse carrier
spin component is not provided by Fermi’s golden rule.

A more elaborate treatment of the s-d exchange interaction,
which is also capable of deriving a rate for the spin transfer
of the perpendicular electron-spin component, was given
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by Semenov in a study based on a projection operator
method [32]. Another notable approach to the spin dynamics
in DMS has been provided by the group of Wu [22], which
has developed the kinetic spin Bloch equations (KSBEs)
that account not only for rates for the spin transfer due
to the s-d exchange interaction, but also for a number
of other effects, such as carrier-carrier and carrier-phonon
interaction.

In the present paper, we describe the electron-spin dynamics
in the conduction band, where we focus on paramagnetic
intrinsic II-VI DMSs. We work with a quantum kinetic theory
starting from the s-d exchange Hamiltonian Hsd , where a
correlation expansion scheme was used to formulate equations
of motion for the carrier and impurity density matrices as
well as the carrier-impurity correlation functions [33]. This
approach allows a nonperturbative description of far-from-
equilibrium situations. The golden-rule rate equations can be
deduced from the quantum kinetic theory as a Markovian
limit [34,35]. In the same limit, also the rates for the carrier
spin component perpendicular to the impurity magnetization
can be derived [36]. Furthermore, the applicability of the
Markovian limit and therewith the golden-rule rate equations
can be checked by direct comparison of the full quantum
kinetic theory with its Markovian limit [36]. It was found
that for an agreement between the quantum kinetic and
the Markovian predictions, it is essential to account for a
precessionlike motion of the carrier-impurity correlations.
Therefore, effective equations which capture the essential
features of the full quantum kinetic equations that also include
the correlation dynamics were called precession of electron
spins and correlations (PESCs) equations [37].

For vanishing external magnetic field and impurity mag-
netization, all of the above theories contain the same rate
equations that can also be found with Fermi’s golden rule
as a special case. In contrast, in the presence of an external
magnetic field which leads to a finite impurity magnetization
in the equilibrium of a paramagnetic DMS, the predictions
of the different theories deviate from each other. In order to
compare these theories, we extend the quantum kinetic theory
of Ref. [33] to take into account the Zeeman interaction of
carriers and impurities in a magnetic field.

We also allow for a k dependence of an effective magnetic
field, which makes it possible to discuss the effects of
Dresselhaus [20] or Rashba [19] spin-orbit coupling or a
k-dependent g factor on the spin dynamics in DMSs. In
contrast to previous treatments [21] where the PESC equations
were extended by adding a k-dependent precession term to
the time evolution of the carrier spins, in the present paper
the k-dependent effective magnetic field is incorporated on
a microscopic quantum kinetic level which also leads to a
modification of the equations of motion for the carrier-impurity
correlations. Another point of view is that, while the approach
of Ref. [21] accounts for the k-dependent field between
carrier-impurity spin-flip scattering events, in the present
theory the effective magnetic field also acts during the spin-flip
scattering. Formally this situation is similar to that of, e.g., the
intracollisional field effect [38], where the effects of an external
field that acts during a scattering event (phonon-emission in the
case of Ref. [38]) can indeed change the optical and transport
properties qualitatively.

Furthermore, here we account for the fact that the impurity
spin is a z-dependent (growth direction of the quantum
well) dynamical variable which can change over time. This
connects the present theory to the description of collective
carrier-impurity precession modes [11,39,40].

The paper is outlined as follows: First, we derive the Markov
limit of quantum kinetic equations accounting for the s-d
interaction, a possibly k-dependent effective magnetic field
and the z dependence of the carrier envelope function. Then,
we present results for the magnetic field dependence of the
carrier-impurity spin transfer rates and compare it with the
results predicted by several other theories. Next, we answer
the question to what extent spin-orbit couplings that lead to a
k-dependent effective magnetic field influence the spin transfer
dynamics, in particular with respect to the dynamics of the
carrier-impurity correlations. Finally, we show how the theory
of the present paper can be related to the theory employed
in the discussion of collective carrier-impurity precession
modes [39].

II. THEORY

A. DMS Hamiltonian

The Hamiltonian for electrons and impurities in DMS can
be modelled by

H = H0 + He
Z + HMn

Z + Hsd, (1)

where H0 describes the conduction band of a semiconductor
crystal and can be written as

H0 =
∑

k

∑
σ

�ωkc
†
kσ ckσ +

∑
k

∑
σ,σ ′

��k · sσσ ′c
†
kσ ckσ ′ . (2)

c
†
kσ and ckσ are the creation and annihilation operators for

electrons with wave vector k in the spin subband σ ∈ {↑,↓}.
ωk describes the diagonal, i.e., the spin independent, part of
H0 while �k is the k-dependent effective magnetic field, e.g.,
due to spin-orbit interactions. The electron-spin matrix vector
sσσ ′ = 1

2σ σσ ′ is proportional to the vector of Pauli matrices
σ σσ ′ .1

He
Z and HMn

Z are the Zeeman energies for carriers and
impurities, respectively:

He
Z =

∑
kσσ ′

ge(k)μBB · sσσ ′c
†
kσ ckσ ′ , (3)

HMn
Z =

∑
Inn′

gMnμBB · Snn′ P̂ I
nn′ , (4)

where ge and gMn are the electron and impurity g factors
and B is the externally applied magnetic field. In general,
ge may depend on the electron wave vector which, e.g.,
gives rise to the imhomogeneous-g-factor spin dephasing
mechanism [41,42] which is essential for the description of
the magnetic field dependence of the spin decay time in
nonmagnetic semiconductors [43]. Snn′ are the spin matrices

1Here, we use the convention that the factor � which appears in
the spin matrices in the SI system is instead included in μB and Jsd ,
respectively.
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for the impurities with, in the case of manganese, S = 5
2 , so

that n,n′ ∈ {− 5
2 , − 3

2 , . . . , 5
2 }. The impurity spin is described

by the operator P̂ I
nn′ = |I,n〉〈I,n′| where |I,n〉 is the nth spin

state of the I th impurity ion.
The most important part of the Hamiltonian for the spin

dynamics in DMSs is the s-d exchange interaction which, in
real space, has the form

Hsd = Jsd

∑
I,n,n′,
i,σ,σ ′

(
Snn′ P̂ I

nn′
) · sσσ ′ψ†

σ (ri)ψσ ′(ri)δ(RI − ri), (5)

where RI and ri are the position vectors of the I th impurity and
ith electron and ψ†

σ (ri) as well as ψσ (ri) are the corresponding
real-space field operators for the electrons. Since most experi-
ments on DMSs are performed on two-dimensional structures,
we choose a single-particle basis comprised of product states
of a z-dependent envelope, where z is defined to point along
the growth direction, and an in-plane part described by plane
waves. When restricting to the lowest confined state of the
envelope function ψ(z), we can formulate the effective s-d
Hamiltonian for the in-plane part as

Hsd = Jsd

V
d
∑

I

|ψ(ZI )|2Snn′ · sσσ ′c
†
kσ ck′σ ′ P̂ I

nn′e
i(k′−k)R‖

I , (6)

where V is the volume of the sample, d is the quantum well
width, ZI is the z component of the I th impurity position
vector, and R‖

I is the in-plane part of the position vector of the
I th impurity. Assuming infinitely high barriers, the envelope
is given by

ψ(z) =
√

2

d
cos

(π

d
z
)
, (7)

for z ∈ [− d
2 ; d

2 ] and zero otherwise. Thus, due to the factor
|ψ(ZI )|2, magnetic impurities at the border of the quantum
well couple much more weakly to the electrons than impurities
at the center of the well.

B. Quantum kinetic equations of motion

In Ref. [33], a set of quantum kinetic equations of motion
based on a correlation expansion scheme has been developed
for the carrier and impurity density matrix as well as the
carrier-impurity correlations in the case of zero external and
effective-spin-orbit magnetic fields. In the present paper, we
additionally consider an in general wave-vector-dependent
effective magnetic field for the carriers and the Zeeman energy
term for the magnetic impurities to the Hamiltonian. Since
all of the terms that are added are effective single-particle
contributions, they do not lead to a buildup of a new hierarchy
of correlations, but only connect the density matrices and
the correlations with themselves. Therefore, the truncation
scheme and the factorization of higher correlations laid out
in Ref. [33] can still be applied when the aforementioned

additional Hamiltonians are accounted for. If an on-average
homogeneous distribution of magnetic impurities in the
quantum-well plane is assumed, equations of motion can be
formulated for the dynamical variables [36]

C
σ2
σ1k1

= 〈c†k1σ1
ck1σ2〉, (8a)

Mn2
n1

(z) = d

NMn

∑
I

δ(z − ZI )
〈
P̂ I

n1n2

〉
, (8b)

Q
σ2n2k2
σ1n1k1

(z) = V

NMn

d
∑

I

δ(z − ZI )

× 〈
c
†
k1σ1

ck2σ2 P̂
I
n1n2

ei(k2−k1)R‖
I

〉
, (8c)

where C
σ2
σ1k1

and Mn2
n1

(z) are the electron and impurity density

matrices and Q
l2n2k2
l1n1k1

(z) (for k1 
= k2) represent the carrier-
impurity correlations, where the mean-field part has been
subtracted. NMn is the number of impurity ions in the DMSs.

Instead of the density matrices, also the average carrier sk1

and impurity spins 〈S(z)〉 as well as the electron occupations
nk1 can be used as dynamical variables [36] which helps
to understand the dynamics of the physical variables and
simplifies the equations of motion,

〈S(z)〉 =
∑
nn′

Snn′Mn′
n (z), (9a)

nk1 =
∑

σ

Cσ
σk1

, (9b)

sk1 =
∑
σ1σ2

sσ1σ2C
σ2
σ1k1

, (9c)

Q
αk2
jk1

:=
∑
σ1σ2
n1n2

Sj
n1n2

sα
σ1σ2

Q
σ2n2k2
σ1n1k1

. (9d)

From now on, we will use the convention that σ indices
describe spin-up and spin-down subbands, n indices enumerate
the impurity states, while all other Latin indices represent
three-dimensional geometric directions, e.g., j ∈ {1,2,3}, and
Greek indices range from 0 to 3, where the 0 describes
occupations. In this notation, the zeroth spin matrix is defined
to be the 2×2 identity matrix s0

σ1σ2
= δσ1σ2 . Furthermore, we

adopt the Einstein notation, so that when the same index
appears twice, a summation is implied. Sub- and superscripts
are used, e.g., to distinguish the carrier and impurity degrees
of freedom of the correlations, and do not represent a covariant
formulation. Sums over k vectors, on the other hand, will be
stated explicitly and no sum is implied, if an index ki appears
twice in an expression.

In this notation, the equations of motion of Refs. [36,37],
extended by terms due to the k-dependent effective magnetic
field and the impurity and carrier Zeeman energies, are

∂

∂t
〈Sl(z)〉 = (ωMn(z) × 〈S(z)〉)l − Jsd |ψ(z)|2d

�V 2

∑
kk′

εij lRe
(
Q

jk′
ik (z)

)
, (10a)

∂

∂t
nk1 =

∫ d/2

−d/2
dz

Jsd |ψ(z)|2NMn

�V 2

∑
k

2Im
(
Qik

ik1
(z)
)
, (10b)
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∂

∂t
sl

k1
= (�′

k1
× sk1 )l +

∫ d/2

−d/2
dz

Jsd |ψ(z)|2NMn

�V 2

∑
k

Im

[
1

2
Q0k

lk1
(z) + iεij lQ

jk
ik1

(z)

]
, (10c)

∂

∂t
Q

αk2
lk1

(z) = −i(ωk2 − ωk1 )Qαk2
lk1

(z) + (
Ak1 + A∗

k2

)
αγ

Q
γ k2

lk1
(z) + εij lω

i
Mn(z)Qαk2

jk1
(z) + b

αk2
lk1

(z) + c
αk2
lk1

(z), (10d)

b
αk2
lk1

(z) = i

�
Jsdd|ψ(z)|2[〈SiSl(z)〉〈sisα〉k1

k2
− 〈SlSi(z)〉〈sαsi〉k2

k1

]
, (10e)

where the mean-field precession frequencies for impurities and
carriers are defined as

ωMn(z) := gMnμB

�
B + Jsd |ψ(z)|2d

�V

∑
k

sk, (11a)

�′
k := �k + ωe(k), (11b)

ωe(k) := ge(k)μB

�
B +

∫ d/2

−d/2
dz

Jsd |ψ(z)|2NMn

�V
〈S(z)〉.

(11c)

The k-dependent precessionlike movement of the electron
degree of freedom of the correlations is described by the 4 × 4
matrix

Ak1 :=
(

0
(
i�′

k1

)T(
i
4�′

k1

)
1
2

[
�′

k1

]
×

)
, (11d)

where [�′
k1

]× is the 3 × 3 cross-product matrix with
[�′

k1
]×v = �′

k1
× v.

The source terms b
αk2
lk1

(z) involve electron variables nk and
sk in the form

〈sisj 〉k2
k1

:= δij

[
1

4

(
1− nk2

2

)
nk1 + 1

2
sk1·sk2

]
− 1

2
si

k1
s
j

k2

− 1

2
s
j

k1
si

k2
+ i

2
εij l

[(
1 − nk2

2

)
sl

k1
+ nk1

2
sl

k2

]
,

(12a)

and

〈sis0〉k1
k2

:=
(

1 − nk1

2

)
si

k2
− nk2

2
si

k1
− iεij ls

j

k1
sl

k2
, (12b)

〈s0si〉k2
k1

:=
(

1 − nk2

2

)
si

k1
− nk1

2
si

k2
− iεij ls

j

k1
sl

k2
. (12c)

Also, b
αk2
lk1

(z) contains second moments of the impurity
variables:

〈SiSj (z)〉 = 〈S⊥2
(z)〉δij + 〈S‖2

(z) − S⊥2
(z)〉

× 〈Si(z)〉〈Sj (z)〉
〈S(z)〉2

+ i

2
εij l〈Sl(z)〉, (13)

where S‖ := S·〈S〉
〈S〉2 is the spin operator projected onto the di-

rection of the average impurity spin and 〈S⊥2〉 = 1
2 〈S2 − S‖2〉

is the perpendicular second moment, with 〈S2〉 = S(S+1)
4 = 35

4

for a spin- 5
2 system.

By going over from the density matrices in Eqs. (8) as
dynamical variables to the variables defined in Eqs. (9), one
ends up with a set of equations that is not closed. Thus, some
approximations have to be employed to evaluate the right-hand
side of Eqs. (10): First of all, it is necessary to evaluate the
second moments of the impurity magnetization, for which the
equations of motion can in principle be calculated, but they
involve even higher moments. We reduce the complexity of
the equations by calculating a quasithermal impurity density
matrix in each time step, which is consistent with the average
spin 〈S(z)〉. Furthermore, the source terms c

αk2
lk1

(z)2 contain
degrees of freedom of the original correlation functions
Q

σ2n2k2
σ1n1k1

that are not expressible in terms of Q
αk2
lk1

. However,

the terms c
αk2
lk1

(z) were shown to be irrelevant in numerical
calculations in the situation described in Ref. [37]. Since
these terms are proportional to some correlation functions
Qσ ′n′k′

σnk , they mainly renormalize the frequencies with which
the correlations oscillate. As will be seen later, the values of
these frequencies determine the difference in kinetic energies
of the initial and final states of carriers scattered due to the
s-d interaction. On the other hand it will be shown that
neglecting the terms c

αk2
lk1

(z) leads to equations that conserve
the mean-field energies of the carriers, so that the role of these
terms is mainly to ensure energy conservation including the
carrier-impurity correlation energy. However, this correlation
energy is typically of the order of a few μeV [28], so that it
is typically a good approximation to neglect the source terms
c
αk2
lk1

(z), as we will henceforth do.
With these approximations, it seems straightforward to

solve the coupled system of ordinary differential equa-
tions (10) numerically. However, this task is very challenging,
since the correlations are indexed by two k vectors, where
each one is an element of a two-dimensional continuum
in the case of a quantum well. The problem therefore has
the complexity O(N4

k NzNt ), where Nk , Nz, and Nt are
the numbers of discretization points of the k-space (linear
dimension), the growth direction in real space, and the time,
respectively. Our strategy to make the calculation tractable
follows Ref. [37]: The computation time can be strongly
reduced, if the correlations are eliminated and only their
effects on the electron and impurity variables are kept. This
can be achieved by formally integrating the equations of
motion for the correlations at the cost of introducing a memory
integral. This memory integral can in turn be eliminated by a

2The source terms c
αk2
lk1

are given by c
αk2
lk1

:=∑
σ1σ2n1n2

Sl
n1n2

sα
σ1σ2

b
σ2n2k2
σ1n1k1

III
with b

σ2n2k2
σ1n1k1

III
being defined in

Ref. [36].
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short-memory or Markov approximation, which is established
in the next section.

C. Derivation and applicability of the Markov limit

Before we discuss the Markov limit of the correlations
including the precessionlike movement of the correlations, we
briefly recapitulate the standard way [36,44] of deriving the
Markov limit of quantum kinetic equations in the simplest
possible situation with �′

k = 0 and ωMn(z) = 0. There, the
equation of motion (10d) for the correlations becomes

∂

∂t
Q

αk2
lk1

= −i(ωk2 − ωk1 )Qαk2
lk1

+ b
αk2
lk1

. (14)

If the source term b
αk2
lk1

is regarded as a time-dependent
inhomogeneity, one can first solve the homogeneous part of
the equation and take the inhomogeneity into account by a
variation of constants, which yields

Q
αk2
lk1

(t) = e−i(ωk2 −ωk1 )t

[
Q

αk2
lk1

(t0)

+
∫ t

t0

dt ′ ei(ωk2 −ωk1 )t ′b
αk2
lk1

(t ′)
]
. (15)

We assume that the carriers stem exclusively from optical
excitation and therefore also the correlations are zero before
the laser pulse is applied. Therefore, Q

αk2
lk1

(t0) = 0 for t0 →
−∞. The correlations act back on the carrier and impurity
variables only via sums over correlations with respect to at
least one k index. Thus, we consider, e.g.,∑

k2

Q
αk2
lk1

(t) =
∫ ωBZ

0
dω D(ω)

∫ t

−∞
dt ′ ei(ω−ωk1 )(t ′−t)b

αk(ω)
lk1

(t ′),

(16)

with the quasicontinuous limit∑
k

· · · →
∫

BZ

dk D(k) · · · =
∫ ωBZ

0
dω D(ω) . . . , (17)

where �ω are the spin-independent single-particle energies
of H0 and �ωBZ is a cutoff energy corresponding to the
upper end of the conduction band. Although this expression
is valid also for nonparabolic band structures, we simplify the
discussion by first assuming an effective-mass approximation
in two dimensions, so that D2D := D(ω) = Am∗

2π�
is constant.

Now, the Markov or short-memory approximation can be
applied to Eq. (16) as follows: Assuming that, because of the k
sum, the effects of the correlations on the carrier and impurity
dynamics dephase fast for not too small values of t ′ − t in the
integral kernel, the largest contribution of the integrals stems
from source terms b

αk(ω)
lk1

(t ′) with t ′ ≈ t . Then, Eq. (16) can be
approximated by∑

k2

Q
αk2
lk1

(t) ≈ D2D

∫ ωBZ

0
dω b

αk(ω)
lk1

(t)
∫ t

−∞
dt ′ ei(ω−ωk1 )(t ′−t).

(18)

Using the Sokhotski-Plemelj formula∫ 0

−∞
dt ′eixt ′ = π

(
δ(x) − P i

πx

)
=: πδ̄(x), (19)

where P denotes the Cauchy principal value, allows us to
express the correlations solely in terms of carrier and impurity
variables evaluated at t ′ = t . For the real part of δ̄, the k
sum reduces to an integration over a single energy shell.
The imaginary part has been shown to lead to a small
renormalization of the precession frequencies [28] that can
only reach values over 1% for a small range of realistic material
parameters and excitation conditions, so that we consider only
the real part of δ̄ in the further discussion of the Markov limit.

In the above treatment, it was postulated that the memory
induced by the correlations is short. To see in which cases this
is indeed a good approximation and how the time scale of the
memory can be defined, we briefly summarize the findings
of Ref. [45]: The source terms b

αk2
lk1

that enter, e.g., in the
dynamics for the carrier spin sk1 , involve the variables nk1 , sk1 ,
nk2 , and sk2 . For the parts that only contain variables at k1,
which we will refer to as bα

lk1
, the real part of the integral on

the right-hand side of Eq. (16) yields

Re
∫ t

−∞
dt ′

∫ ωBZ

0
dω ei(ω−ωk1 )(t ′−t)bα

lk1
(t ′)

= Re
∫ 0

−∞
dt ′′

sin[(ωBZ−ωk1 )t ′′]+sin(ωk1 t
′′)

t ′′
bα

lk1
(t+t ′′).

(20)

Since sin �ωt
t

→ πδ(t) for �ω → ∞, this way of expressing
the integral now shows that the memory has two time scales,
one corresponding to (ωBZ − ωk1 )−1, which is typically of the
order of a few fs due to values of ωBZ in the eV range, and
the other one at ω−1

k1
. This can explain why, for a δ-like initial

electron occupation at k1 = 0, the spin transfer rate extracted
from the quantum kinetic calculations in Ref. [45] is exactly 1

2
of the Markovian expression for the rate. Thus, non-Markovian
effects are found to be mainly due to the spectral proximity of
the electrons to the band edge. Therefore, if the initial carrier
distribution has a width of a few meV, the Markovian results
coincide with the quantum kinetic calculations [45].

For the other parts of the source terms b
αk2
lk1

which depend
also on the electron variables at k2, a new time scale emerges
which corresponds to the inverse of the frequency difference
τk1,k2 for which the electron variables sk2 (nk2 ) start to differ
notably from sk1 (nk1 ).

In summary, it can therefore be said that the correlation
time τcor, i.e., the time scale of the memory induced by the
correlations, depends on the details of the spectral carrier
distributions. Thus, in order to obtain meaningful results by
using the Markov approximation, it is of key importance that
the dynamics of the source terms takes place on a much slower
time scale than the buildup of correlations τcor. If this is not
the case, e.g., due to a fast precession of the electron spins
with a frequency ωe, it is necessary to split this precession off
of the correlation induced spin transfer, yielding a modified
integral kernel ei(ωk2 −ωk1 ±ωe)t ′ and therefore a shift of ±ωe in
the respective δ functions [37]. Therefore, the identification
of fast and slowly changing parts of the source terms b

αk2
lk1

is
crucial for the derivation of the Markov limit of the quantum
kinetic equations of motion (10).
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D. Markov limit of the quantum kinetic equations

In the last section, the standard procedure of deriving a
Markov limit was summarized starting from a simple set of
equations where all the relevant spin precessions in DMSs
were neglected. Now, for the more general theory of the present
paper, we repeat the same steps while accounting for all terms
in Eqs. (10). As above, first of all, the homogeneous part of
the differential equation for the correlations has to be solved,

∂

∂t
Q

αk2
lk1

hom = −i(ωk2 − ωk1 )Qαk2
lk1

hom

+ (
Ak1 + A∗

k2

)
αγ

Q
γ k2

lk1

hom + εij lω
i
MnQ

αk2
jk1

hom
.

(21)

Equation (21) can be represented in a more abstract form, if

Q
αk2
lk1

hom
is rewritten as a single vector Qhom with respect to

the set of indices l, α, k1, and k2. Then, Eq. (21) becomes

∂

∂t
Qhom = MQhom, (22)

where the matrix M is defined by the terms on the right-hand
side of Eq. (21). The formal solution of Eq. (22) is the time-
ordered exponential:

Qhom(t0 + �t) = T e
∫ t0+�t

t0
dt ′M(t ′)Qhom(t0) (23)

However, since in the Markov limit the solution of the
homogeneous differential equation is only required on a time
scale comparable to τcor in the fs range, we can assume that
neither the precession frequencies nor the precession axes will
change significantly on this time scale. This assumption makes
it possible to approximate M(t ′) ≈ M(t0) in Eq. (23) so that
the time-ordering operator T can be dropped.

The expression for the solution for Qhom can be further
simplified, because the different contributions to the right-hand

side of Eq. (21) act on different degrees of freedom of Q
αk2
lk1

hom

and therefore commute. As also Ak1 and A∗
k2

commute, which
can be checked directly using the explicit expression for those
matrices in Eq. (11d), the homogeneous part of the equation
of motion for the correlation is solved by

Q
αk2
lk1

hom
(t0 + �t) = e−i(ωk2 −ωk1 )�t

(
eAk1 �te

A∗
k2

�t
)
αγ

× (e[ωMn]×�t )ll′Q
αk2
lk1

hom
(t0). (24)

The exponential e[ωMn]×t of the cross product matrix
[ωMn]× is

e[ωMn]×t = RωMn
(ωMnt), (25)

where Rn(α) is the 3×3 matrix describing a rotation around
the axis n with an angle α. Similarly, it is possible to calculate
an exponential of the matrices Ak:

Ek1 (t) := eAk1 t

= cos

(
′

k1

2
t

)
1 + sin

(
′

k1

2
t

)⎛⎜⎝ 0 2i
�′

k1
T

′
k1

i
2

�′
k1

′
k1

[
�′

k1
′

k1

]
×

⎞
⎟⎠,

(26)

with the inverse [Ek1 (t)]−1 = Ek1 (−t).

Now, the solution to the inhomogeneous equation can be
found by a variation of constants yielding

Q
αk2
lk1

(t0 + �t)

= e−i(ωk2 −ωk1 )�t
[
Ek1 (�t)E∗

k2
(�t)

]
αγ

× [
RωMn

(ωMn�t)
]
ll′

[
Q

αk2
lk1

(t0) +
∫ t0+�t

t0

dt ′ ei(ωk2 −ωk1 )t ′

× [
Ek1 (−t ′)E∗

k2
(−t ′)

]
γ κ

[
RωMn

(−ωMnt
′)
]
l′l′′b

κk2
l′′k1

(t ′)
]
(27)

Equation (27) can be further simplified by decomposing the
matrices RωMn

(ωMnt) and Ek1 as well as E∗
k2

in components
oscillating with different frequencies:

Rn(ωt) = R0
n + R+

n eiωt + R−
n e−iωt , (28a)

Ek1 (t) = E0
k1

+ E+
k1

e
i(1/2)′

k1
t + E−

k1
e
−i(1/2)′

k1
t
, (28b)

E∗
k2

(t) = (
E∗

k2

)0 + (
E∗

k2

)+
e
i(1/2)′

k2
t + (

E∗
k2

)−
e
−i(1/2)′

k2
t
,

(28c)

where the components of Ek can directly be read off from the
definition in Eq. (26) and the decomposition of Rn(α) is

(
R0

n

)
ij

= ninj

|n|2 , (29a)

(
R±

n

)
ij

= 1

2

(
δij − ninj

|n|2 ± iεijk

nk

|n|
)

. (29b)

For the components defined in Eq. (28), an important
relation is

Rχ1
n Rχ2

n = δχ1χ2R
χ1
n , (30a)

E
χ1
k1

E
χ2
k1

= δχ1χ2E
χ1
k1

, (30b)

(E∗
k2

)χ1 (E∗
k2

)χ2 = δχ1χ2 (E∗
k2

)χ1 , (30c)

where from now on we assume χi ∈ {−1,0,1} for any χ index.
As stated earlier, it is necessary to identify fast oscillating

and slowly changing contributions to the source terms b
αk2
lk1

. To

this end, we consider the dynamics of b
αk2
lk1

in the mean-field
approximation, where

〈SiSj (t0 + �t)〉 ≈ [
RωMn

(ωMn�t)
]
ii ′

× [
RωMn

(ωMn�t)
]
jj ′ 〈Si ′Sj ′

(t0)〉, (31a)

nk(t0 + �t) ≈ nk(t0), (31b)

si
k(t0 + �t) ≈ [

R�′
k
(′

k�t)
]
ii ′s

i ′
k (t0). (31c)

With these approximations, the source terms can be
decomposed into

b
αk2
lk1

(t0 + �t) ≈
∑
m

b
αk2
lk1

(ωm)
(t0)eiωm�t , (32)

where m counts all the possible oscillation frequencies ωm

which consist of combinations of the frequencies ωMn(z) and
′

k.
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Now, the Markov limit of Eqs. (10) can be established
by using the Markov approximation in Eq. (18) with the
Sokhotski-Plemelj formula in Eq. (19) on the expression for

the time evolution of the correlations in Eq. (27), simplifying
the products of exponential matrices with the relations (30)
and decomposing the source terms according to Eq. (32):

Q
αk2
lk1

≈ π
∑
m

∑
χMn,χk1 ,χk2

δ̄

[
ωk2 −

(
ωk1 + χMnωMn + 1

2
χk1

′
k1

+ 1

2
χk2

′
k2

− ωm

)][
E

χk1
k1

(
E∗

k2

)χk2
]
αγ

(
RχMn

ωMn

)
ll′b

γ k2

l′k1

(ωm)
(t ′) (33)

or more explicitly

Q
αk2
lk1

(z) ≈ π
i

�
Jsd |ψ(z)|2d

∑
χk1 ,χ ′

k1
,χk2 ,χ ′

k2
,χMn

δ̄

{
ωk2 −

[
ωk1 +

(
1

2
χk1 − χ ′

k1

)
′

k1
+
(

1

2
χk2 − χ ′

k2

)
′

k2
− χMnωMn(z)

]}

×
{[

E
χk1
k1

(E∗
k2

)χk2
]
α0

( 〈SlSj ′
(z) + Sj ′

Sl(z)〉
2

(
R

χMn

ωMn(z)

)
jj ′

[
δχ ′

k1
,0

(
R

χ ′
k2

�′
k2

)
jk′

sk′
k2

− δχ ′
k2

,0

(
R

χ ′
k1

�′
k1

)
jk′

sk′
k1

]

+ i

2
εj ′li ′′ 〈Si ′′ (z)〉(RχMn

ωMn(z)

)
jj ′

[
δχ ′

k1
,0(1 − nk1 )

(
R

χ ′
k2

�′
k2

)
jk′

sk′
k2

+ δχ ′
k2

,0(1 − nk2 )
(
R

χ ′
k1

�′
k1

)
jk′

sk′
k1

− 2iεjki

(
R

χ ′
k1

�′
k1

)
kk′

(
R

χ ′
k2

�′
k2

)
ii ′

sk′
k1

si ′
k2

])
+ [

E
χk1
k1

(
E∗

k2

)χk2
]
αk

((
R

χMn

ωMn(z)

)
kj ′δχ ′

k1
,0δχ ′

k2
,0

×
[ 〈SlSj ′

(z) + Sj ′
Sl(z)〉

2

nk2 − nk1

4
+ i

2
εj ′li ′′ 〈Si ′′ (z)〉

(
nk2 + nk1 − nk1nk2

4

)]

+ i

2
εj ′li ′′ 〈Si ′′ (z)〉(δjkδk′k′′ − δjk′δkk′′ − δjk′′δkk′)

(
R

χMn

ωMn(z)

)
jj ′

(
R

χ ′
k1

�′
k1

)
k′i

(
R

χ ′
k2

�′
k2

)
k′′i ′

si
k1

si ′
k2

+ i

2
εjki

〈SlSj ′
(z) + Sj ′

Sl(z)〉
2

(
R

χMn

ωMn(z)

)
jj ′

[(
R

χ ′
k2

�′
k2

)
il′

δχ ′
k1

,0s
l′
k2

+
(
R

χ ′
k1

�′
k1

)
il′

δχ ′
k2

,0s
l′
k1

]

− 1

4
εjkiεj ′li ′′ 〈Si ′′ (z)〉(RχMn

ωMn(z)

)
jj ′

[(
R

χ ′
k2

�′
k2

)
il′

δχ ′
k1

,0(1 − nk1 )sl′
k2

−
(
R

χ ′
k1

�′
k1

)
il′

δχ ′
k2

,0(1 − nk2 )sl′
k1

])}
, (34)

Finally, inserting the expression for Q
κk2
lk1

of Eq. (34) into
the quantum kinetic equations of motion (10a)–(10c) for the
carrier and impurity variables yields the desired set of ordinary
differential equations for nk, sk, and 〈S〉 where the correlations
are eliminated, but their effects are still accounted for.

E. Numerical implementation of the Markovian
equations of motion

The numerical advantage of the Markov limit over the
original quantum kinetic equations is mainly that, because
of the δ function in Eq. (34), only those electronic states with
wave vectors k2 contribute to the time evolution of electron
variables with wave vector k1 that are allowed by energy
conservation. Here, the total energy consists of the kinetic
energy as well as Zeeman-like spin-dependent energies due to
the impurity magnetization, the external magnetic field, and
the k-dependent effective magnetic field due to the Rashba or
Dresselhaus terms as well as the impurity Zeeman energy.

The complicated interplay of the different contributions to
the total energy makes it hard to find the roots of the argument
of the δ function in Eq. (34), which is necessary in order to
identify the wave vectors k2 of the electronic states which are
relevant for the calculation of the time evolution of electronic
states with wave vector k1. In particular, the k dependence of
the energies, the dimensionality of the k vector, and the fact

that the number of roots is in general not known turn out to be
major obstacles for the direct numerical solution of Eq. (34).

Here, we solve this problem by rediscretizing the electron
variables. The roots of the argument of the δ function in
Eq. (34) are given by

ω̄k2 (ξ2) = ω̄k1 (−ξ1) − χMnωMn(z) (35a)

with

ω̄k(ξ ) := ωk − ξ′
k, (35b)

ξ ∈
{
−3

2
, − 1

2
,
1

2
,
3

2

}
. (35c)

After the space of ω̄ is discretized into small intervals, we
create a list of discretization points in k space which contribute
to the corresponding interval with respect to ω̄. Since the
construction of this list has the complexity O(N2

k ), where Nk

is the number of discretization points of a linear dimension in
the two-dimensional k space, and the correlations

∑
k2

Q
αk2
lk1

which enter in the equation for a single electron variable with
wave vector k1 become of the order of O(N0

k ) due to the δ

function, the problem of solving the Markovian equations in
the full k space isO(N2

k ). This provides a significant advantage
over the full quantum kinetic theory which has the complexity
O(N4

k ) for a quantum well.
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F. Case NMn � Ne without spin-orbit fields

The Markov limit (34) of the equations of motion (10)
yields quite lengthy expressions. However, these can be
simplified dramatically in a case which is very common
for experimentally studied DMS samples: If the number of
the magnetic impurities NMn exceeds largely the number of
quasifree carriers Ne, such as in the case of optically excited
intrinsic DMSs, the impurity spin 〈S〉 only changes marginally
due to the influence from the quasifree carriers. One can
therefore assume that the impurity spin will approximately
be defined by its thermal equilibrium value in the external
magnetic field. In particular in the paramagnetic regime,
the impurity spin will be parallel (σB

S = +1) or antiparallel
(σB

S = −1) to the magnetic field,

〈S〉 = σB
S |〈S〉| B

|B| . (36a)

Since usually the Zeeman contribution to the energy of the
magnetic ions is much stronger than the mean-field s-d term
due to the carrier spins [39], we assume that

ωMn = σB
MnωMn

B
|B| (36b)

and that ωMn is independent of z. If only electrons with
small wave vectors are excited, no electric field is applied,
and the sample has a rather high impurity concentration, the
s-d interaction usually dominates over spin-orbit coupling
effects, so that one can neglect the latter [21]. Here, we shall
first concentrate on this case and defer the discussion of the

interplay between s-d interactions and spin-orbit coupling to
Sec. III B. Since the external magnetic field as well as the
effective s-d field due the impurity spins are parallel, we find
also

�k = ωe = σB
e ωe

B
|B| . (36c)

Because of the k independence of the effective magnetic
field for the carriers, the matrix Ek1E

∗
k2

can be simplified to

Ek1E
∗
k2

=
(

1 0
0 Rωe

)
. (37)

Additionally, comparing Eq. (13) with Eq. (29) yields

〈Si ′Sj ′ 〉 = 〈S‖2〉(R0
〈S〉
)
i ′j ′ + 〈S⊥2〉(R+

〈S〉 + R−
〈S〉)i ′j ′

+ |〈S〉| 1
2

(
R+

〈S〉 − R−
〈S〉
)
i ′j ′ . (38)

Now, the products of matrices in Eq. (34) can be evaluated
using

R
σB

S χ

〈S〉 = R
σB

Mnχ
ωMn

= R
σB

e χ
ωe

= R
χ

B , (39)

and the relation (30a). After a lengthy but straightforward
calculation, we arrive at the Markov limit of the equations of
motion for the occupations of the spin-up and -down subbands
with respect to the direction of the external magnetic field
n

↑/↓
k := nk

2 ± B
|B| · sk and the perpendicular spin component

s⊥
k := sk − B

|B| (
B
|B| · sk):

∂

∂t
n

↑/↓
k1

|cor ≈
∫ d/2

−d/2
dz π

J 2
sd |ψ(z)|4NMnd

�2V 2

∑
k2

{
δ(ωk2 − ωk1 )

〈S‖2〉
2

(n↑/↓
k2

− n
↑/↓
k1

) + δ
(
ωk2 − [

ωk1 ± (
σB

e ωe − σB
e ωMn

)])

×
[(

〈S⊥2〉 ± σB
S

|〈S〉|
2

)
(1 − n

↑/↓
k1

)n↓/↑
k2

−
(

〈S⊥2〉 ∓ σB
S

|〈S〉|
2

)(
1 − n

↓/↑
k2

)
n

↑/↓
k1

]}
, (40a)

∂

∂t
s⊥

k1

∣∣
cor ≈

∫ d/2

−d/2
dz π

J 2
sd |ψ(z)|4NMnd

�2V 2

∑
k2

{
− δ(ωk2 − ωk1 )

〈S‖2〉
2

(s⊥
k2

+ s⊥
k1

)

− δ
(
ωk2 − [

ωk1 + (
σB

e ωe − σB
e ωMn

)])[1

2

(
〈S⊥2〉 − σB

S

|〈S〉|
2

)
+ n

↑
k2

σB
S

|〈S〉|
2

]
s⊥

k1

− δ
(
ωk2 − [

ωk1 − (
σB

e ωe − σB
e ωMn

)])[1

2

(
〈S⊥2〉 + σB

S

|〈S〉|
2

)
− n

↓
k2

σB
S

|〈S〉|
2

]
s⊥

k1

− 1

π

1

ωk2 − [
ωk1 + (

σB
e ωe − σB

e ωMn

)][1

2

(
〈S⊥2〉 − σB

S

|〈S〉|
2

)
+ n

↑
k2

σB
S

|〈S〉|
2

]
B
|B| × s⊥

k1

+ 1

π

1

ωk2 − [
ωk1 − (

σB
e ωe − σB

e ωMn

)][1

2

(
〈S⊥2〉 + σB

S

|〈S〉|
2

)
− n

↓
k2

σB
S

|〈S〉|
2

]
B
|B| × s⊥

k1

}
, (40b)

where ∂
∂t

n
↑/↓
k1

|cor and ∂
∂t

s⊥
k1

|cor describe the contributions to the time derivative of the respective quantities beyond the mean-field
dynamics. In the case studied here, the total time evolution is given by

∂

∂t
n

↑/↓
k1

= ∂

∂t
n

↑/↓
k1

∣∣
cor, (41a)

∂

∂t
s⊥

k1
= ωe × s⊥

k1
+ ∂

∂t
s⊥

k1

∣∣
cor, (41b)

∂

∂t
〈S〉 = ωMn × 〈S〉 + ∂

∂t
〈S〉∣∣cor, (41c)
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where ∂
∂t

〈S〉|cor can be obtained by replacing NMn

∫ d/2
−d/2 dz

by −d
∑

k1
on the right-hand side of Eq. (40b). This follows

directly from the fact that the s-d interaction conserves the
total spin.

Note that Eqs. (40) generalize Eqs. (6) of Ref. [37] by
incorporating a k-dependent precession frequency for the
electrons, an external magnetic field and the z dependence
of the coupling due to the form of the envelope function of the
quantum well.

Equation (40a) can be interpreted like equations resulting
from Fermi’s golden rule: A spin-up electron is scattered either
to another spin-up state with the same value of the kinetic en-
ergy �ωk [term proportional to δ(ωk2 − ωk1 )] or to a spin-down
state with kinetic energy �ωk2 = �ωk1 + �(σB

e ωe − σB
e ωMn)

and vice versa. To understand the latter term it is important
to keep in mind that the total mean-field energy of a spin-up
electron is �(ωk + 1

2σB
e ωe) while for a spin-down electron

one finds �(ωk − 1
2σB

e ωe). Also, since the s-d interaction
conserves the sum of the electron and impurity spins, a flip
of an electron spin in one direction is always accompanied by
a flip of an impurity spin in the opposite direction. Thus, in
order to fulfill the conservation of the total mean-field energy,
the energy �(σB

e ωe − σB
e ωMn) that is freed by an impurity

mediated flip of an electron from the spin-up to the spin-down
state has to be compensated by a difference of the kinetic
energies of the electronic states ωk2 − ωk1 .

Although Eq. (40a) for the spin-up and spin-down occupa-
tions can also be derived by Fermi’s golden rule, the energy
shifts in the δ functions are often not correctly accounted for
in the literature [22,32]. The consequences are discussed in
Sec. III A. Here, the spin-flip terms of Eq. (40a) also correctly
account for Pauli-blocking effects by the terms proportional to
(1 − n

↑/↓
k ) which are usually put in by hand in a golden-rule

derivation. Furthermore, a golden-rule treatment only allows
us to derive transition rates between energy eigenstates and
does not provide equations governing the dynamics of the
coherences between those eigenstates, i.e., the components of
the electron and impurity spins perpendicular to the direction
of the external magnetic field, which is given in our derivation
by Eq. (40b). As in the equations for the spin-up and spin-down
occupations, we find that the equations for the perpendicular
spin components connect states whose difference in kinetic
energies �(ωk2 − ωk1 ) is either zero or ±�(σB

e ωe − σB
MnωMn).

Note that in contrast to the equations for n
↑/↓
k1

, here we find
terms proportional to the imaginary part of δ̄. While the real
part leads to a ratelike damping of the perpendicular electron
spin, the imaginary part yields an additional contribution to the
precession frequency. Such frequency renormalizations have
been extensively discussed in Ref. [28].

From Eqs. (40) one can also find decay rates for spin-up
[(τ↑

k0
)−1] and spin-down [(τ↓

k0
)−1] electron states as well as the

spin components parallel [(τ ‖
k0

)−1] perpendicular [(τ⊥
k0

)−1] to
the external magnetic field, if it is assumed that only very few
quasifree carriers are excited, so that one can regard only single
electrons by setting n

↑/↓
k2

= δωk1 ,ωk2
n

↑/↓
k1

and s⊥
k2

= δωk1 ,ωk2
s⊥

k1
:(

τ
↑
k0

)−1 = �−�
[
ωk0 + (

σB
e ωe − σB

MnωMn

)]
, (42a)(

τ
↓
k0

)−1 = �+�
[
ωk0 − (

σB
e ωe − σB

MnωMn

)]
, (42b)

(
τ

‖
k0

) = (
τ

↑
k0

)−1 + (
τ

↓
k0

)−1
, (42c)

(
τ⊥

k0

)−1 = �0 + 1

2

[(
τ

↑
k0

)−1 + (
τ

↓
k0

)−1]
, (42d)

with

�0 = IπD2D J 2
sdNMn

�2V 2
〈S‖2〉, (42e)

�± = IπD2D J 2
sdNMn

�2V 2

(
〈S⊥2〉 ± σB

S

|〈S〉|
2

)
, (42f)

I = d

∫ d/2

−d/2
dz |ψ(z)|4, (42g)

where �(x) is the Heaviside step function.
Thus, the main effect of the frequency shifts due to the

precession of the correlations is the opening and closing of
decay channels due to the corresponding step functions which
originate from the step of the two-dimensional density of states
at ωk=0.

III. RESULTS

A. Magnetic field dependence of the spin transfer rates

Now, we compare the theory derived in the present paper
with the different treatments of the s-d interaction presented
by other groups. To this end, we focus on the case without
spin-orbit interactions and NMn � Ne, so that the correlation
induced changes in the carrier variables can be described by
Eqs. (40). Often in the literature rates for the carrier-impurity
spin transfer dynamics are obtained from Fermi’s golden
rule [25,29–31]. In two-dimensional systems one finds in the
absence of magnetic fields:

∂

∂t
si
ω1

= −Iπ
J 2

sd

�2

NMn

V 2

2

3
[S(S + 1)]

×
∫

dω D2D(ω)δ(ω − ω1)si
ω = −τFGRsi

ω1
, (43a)

τFGR = Iπ
J 2

sd

�2

NMn

V 2

2

3
[S(S + 1)]

Am∗

2π�
, (43b)

where we assume isotropy so that the carrier spin variables
are independent of the angle of the wave vector and can
equivalently be described by si

|k| or si
ω, with the kinetic energy

�ω = �
2|k|2
2m

. τFGR is Fermi’s golden-rule spin-transfer rate at
B = 0. In contrast, if an external magnetic field is applied, the
conduction band is energetically split by σB

e ωe. This leads to
the appearance of an additional energy offset in the δ function.
In our treatment, we also find an energy offset corresponding
to the impurity Zeeman splitting σB

MnωMn which is necessary
for the simultaneous conservation of the total carrier and
impurity energy as well as the total spin. Furthermore, Fermi’s
golden rule is only able to predict transitions between energy
eigenstates, whereas it makes no statement about the transfer of
the carrier spin components perpendicular to the quantization
axis. The distinction between parallel and perpendicular
components does not arise for B = 0, since in this case all
directions are equivalent. Additionally, the factor S(S + 1) has
to be modified in the presence of a magnetic field that causes
a nonzero paramagnetic impurity magnetization.
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In particular, the energetic offset caused by the impurity
Zeeman splitting is often overlooked in studies based on
the golden-rule approach [22,29]. In Ref. [22], which is
based on the kinetic spin Bloch equations (KSBEs), even
the band splitting σB

e ωe is disregarded, but the magnetic field
dependence of the second moments of the impurity spin, which
enters in the rates, was kept. There are also studies [25,26,30]
that explicitly include the band splitting as well as the impurity
Zeeman terms, but since there the rates are derived by Fermi’s
golden rule, no expression for the perpendicular spin transfer
component was given.

In this context, one particularly notable theoretical deriva-
tion of magnetic field dependent carrier-impurity spin transfer
rates was given by Semenov in Ref. [32], which is based on
a projection operator method. There, the electron spins are
treated as a subsystem which interacts with a bath of impurity
ions. In Ref. [32], it was assumed that the electron density
matrix can be factorized into one part accounting for the spin
degree of freedom and the k-dependent part, which is described
by a Fermi distribution. Tracing out the k-dependent part of
the carrier density matrix as well as the impurity system, rates
were obtained for the spin degree of freedom of the carriers. In
contrast to the theory of the present paper, where only energetic
shifts associated with the spin-flip-flop processes of the form
|σB

e ωe − σB
MnωMn| appear, the projection operator method of

Ref. [32] also finds terms proportional to |σB
e ωe + σB

MnωMn|.
As mentioned earlier, such energy shifts are in conflict with
the conservation of the total carrier and impurity energy. We
trace the appearance of the energy nonconserving terms in
Ref. [32] back to the fact that, there, only the positive frequency
component of the electron-spin precession was regarded,
whereas the negative frequency component explicitly shows
up in the theory of the present paper and leads to a cancellation
of terms in the expression for the correlations which oscillate
with ±(σB

e ωe + σB
MnωMn).

Having discussed the different expressions for the magnetic
field dependence of the carrier-impurity spin transfer rates that
can be found in the literature, we compare them at the example
of the situation discussed in Ref. [32]. There, it was assumed
that the spectral electron distribution is

n↑(ω) = n↓(ω) ∝ e−ω/T (44)

for some carrier temperature T , irrespective of the spin-split
subband. With this assumption, the decay rate of the total
parallel (T −1

1 ) and perpendicular (T −1
2 ) carrier spin with

respect to the magnetic field direction can be obtained from
Eqs. (42) of the present theory:

T −1
1 ∝

∫ ∞

0
dω e−ω/T [τ ‖(ω)]−1 ∝ T −1

↑ + T −1
↓ , (45a)

T −1
2 ∝

∫ ∞

0
dω e−ω/T [τ⊥(ω)]−1 ∝ �0 + 1

2
(T −1

↑ + T −1
↓ ),

(45b)

T −1
↑ ∝

∫ ∞

0
dω e−ω/T [τ↑(ω)]−1 ∝ �−

× min(1,e(σB
e ωe−σB

MnωMn)/T ), (45c)

T
i(

0)
/
T

i(
B

)

x = 1.7%

i = 1
i = 2
i =↑
i =↓
i
i

i = 1, ωMn = 0
i = 2, ωMn = 0

i = 1, ωe = ωMn = 0
i = 2, ωe = ωMn = 0

= 1
= 2

FIG. 1. Magnetic field dependence of the parallel (i = 1) and
perpendicular (i = 2) spin transfer rates normalized with respect to
B = 0 in a 8-nm-wide Cd0.983Mn0.017Te quantum well at temperature
T = 4 K. Red and blue lines (PESC) represent rates according
to the theory of the present article [Eqs. (45)] and red and blue
crosses show the rates calculated by the projection operator method
(proj.) of Ref. [32]. Furthermore, cyan and orange triangles and lines
show the results of Eqs. (45), when the energetic shifts due to the
Zeeman impurity splittings in spin-flip-flop processes (ωMn = 0) or
additionally the spin splittings (ωe = ωMn = 0) are neglected. T↑ and
T↓ are the relaxation rates of spin-up and spin-down occupations,
respectively.

T −1
↓ ∝

∫ ∞

0
dω e−ω/T [τ↓(ω)]−1 ∝ �+

× min(1,e−(σB
e ωe−σB

MnωMn)/T ), (45d)

where also the values for the decay rate of the spin-up (T −1
↑ )

and spin-down occupations (T −1
↓ ) are given explicitly. For

B = 0, the rates T −1
1 = T −1

2 = 2T −1
↑ = 2T −1

↓ coincide with
the rate calculated by Fermi’s golden rule τFGR, which defines
the normalization of the rates in Eq. (45).

Figure 1 shows the magnetic field dependence of the parallel
and perpendicular spin transfer rates according to Eqs. (45)
with the parameters of Ref. [32], where a d = 8-nm-wide
Cd0.983Mn0.017Te quantum well was considered at T = 4 K.
The value for the coupling constant is Jsd = 15 meV nm3 and
the electron and Mn g factors are ge = −1.77 and gMn = 2.0
respectively. The present theory predicts that the parallel spin
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FIG. 2. Magnetic field dependence of the electron (red solid
line) and impurity Zeeman energy (green dashed line) as well as
their difference (blue dotted line) for a DMS quantum well (same
parameters as for Fig. 1).

transfer rate T −1
1 first decays fast from B = 0 to B ≈ 1 T,

then levels off. The perpendicular spin transfer rate T −1
2 first

decays with increasing magnetic field, reaches a minimum
at B ≈ 1 T, and finally increases again. This behavior of
T −1

1 and T −1
2 can be explained by considering the rates T −1

↑
and T −1

↓ separately, together with the values of the energy
shifts σB

e ωe − σB
MnωMn presented in Fig. 2. The mean-field

impurity energy �σB
e ωMn is mainly dominated by its Zeeman

energy and therefore increases linearly with B. In contrast,
the mean-field carrier energy �σB

e ωe is strongly modified by
a contribution proportional to a S = 5

2 Brillouin function due
to the impurity magnetization, which starts linearly in B but
begins to saturate at B ≈ 2 T. For high magnetic fields (B > 6
T), �σB

e ωe decreases again, when the impurity magnetization
is fully saturated and the negative electron g factor becomes
important. Although σB

e ωe − σB
MnωMn eventually becomes

negative for very high magnetic fields (not shown in Fig. 2), for
typical experimentally accessible fields, it is mostly positive
and increases linearly up to B ≈ 2 T, just like σB

e ωe.
It follows from Eq. (45c) that T −1

↓ decreases approximately
exponentially with B in the regime where σB

e ωe − σB
MnωMn

increases linearly. Therefore, we find that the spin-splitting
introduced by the external magnetic field closes the transfer
channel T −1

↓ . In the case studied here, the magnetic field

dependence of the rate T −1
↑ comes exclusively from the

prefactor, since due to the positive value of σB
e ωe − σB

MnωMn

the corresponding transfer channel is maximally open. Noting
that

�0(B → ∞) → 15
14τFGR, (46a)

�+(B → ∞) → 0, (46b)

�−(B → ∞) → 3
7τFGR, (46c)

we find that T −1
1 approaches 5

8τFGR and T −1
2 → 9

7τFGR ≈
1.29τFGR for large values of B.

The magnetic field dependence of rates predicted from the
projection operator method of Ref. [32] is qualitatively similar
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i = 1, ωe = ωMn = 0
i = 2, ωe = ωMn = 0

FIG. 3. Magnetic field dependence of spin transfer rates for a
Cd0.9983Mn0.0017Te quantum well (cf. Fig. 1).

to that of the present theory, as can be seen in Fig. 1. However,
they suggest quantitatively smaller values for the rates, with
deviations of the order of ∼0.2τFGR. In the case studied here,
the offset due to the impurity Zeeman splitting σB

MnωMn plays
a less significant role, so that the rates calculated neglecting
these terms (triangles in Fig. 1) coincide with the calculation
which conserves the total energy. However, neglecting the spin
splittings σB

MnωMn is found to lead to the correct rates only for
large values of the magnetic field while for smaller magnetic
fields qualitative features, such as the minimum in T −1

2 , are
not obtained.

In our analysis of the magnetic field dependence of the
spin transfer rates it was important that σB

e ωe − σB
MnωMn > 0.

The situation can change significantly, if this is not the case.
In order to study this regime of parameters, we repeat the
same calculations shown in Figs. 1 and 2 but we assume a Mn
concentration x = 0.17% which is smaller by a factor of 10
than in the previous calculations. The results are displayed in
Figs. 3 and 4 respectively. We find in Fig. 4 that now also the
electron spin splitting is dominated by the Zeeman term and
the mean-field contribution from the impurity magnetization
is rather small. In particular, one finds that σB

e ωe − σB
MnωMn is

now negative for all values of B > 0. This fact has immediate
consequences on the magnetic field dependence of the spin
transfer rates. The main qualitative difference between the
rates shown in Fig. 3 and in the previous case is that now

205201-11



M. CYGOREK, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 93, 205201 (2016)

-8

-6

-4

-2

0

2

4

0 1 2 3 4 5 6 7

Z
ee

m
an

en
er

gy
[m

eV
]

magnetic field B [T]

x = 0.17%

σB
e h̄ωe

σB
Mnh̄ωMn

σB
e h̄ωe − σB

Mnh̄ωMn

FIG. 4. Magnetic field dependence of the Zeeman energies for a
Cd0.9983Mn0.0017Te quantum well (cf. Fig. 2).

the parallel spin transfer rate T −1
1 decays to zero for large

values of B. Here, the spin transfer channel corresponding
to T −1

↑ is closed due to the energy splitting, whereas T −1
↓

decreases to zero, because the prefactor �+ tends to zero for
B → ∞. The physical reason for this behavior is that due to
the negativity of σB

e ωe − σB
MnωMn spin flips from the spin-

up to the spin-down band face an energy penalty, while a
flip from the spin-down to the spin-up band would require a
corresponding decrease of an impurity spin in order to satisfy
the spin conservation. However, for B → ∞ the impurity spins
are already fully aligned antiparallel to the magnetic field,
so that this spin flip is also forbidden. The magnetic field
dependence of the perpendicular spin transfer rate T −1

2 for
x = 0.17% is quantitatively similar to the case of x = 1.7%.
However, here, the asymptotic value for strong magnetic fields
is T −1

2 (B → ∞) → 15
14τFGR.

For the smaller impurity concentrations, the projection
operator method of Ref. [32] overestimates the spin transfer
rates. Figure 3 also shows that, in this case, neglecting the
impurity Zeeman terms leads to significant deviations from
the energy-conserving rates.

In order to establish a connection between the theories dis-
cussed above and the experimentally determined electron-spin
relaxation rates, it has to be noted that in most magneto-optical
experiments on II-VI DMS quantum wells so far (cf. Ref. [3]
and references therein) the pump laser is tuned to the electron-
heavy-hole exciton energy. To model these experiments also
the Coulomb correlations between electrons and holes have
to be taken into account, which is beyond the scope of the
present paper. It was found in Ref. [3] that different groups
consistently measured perpendicular electron-spin relaxation
rates T −1

2 which are about five times larger than τFGR at
B = 0. This discrepancy can be understood by the fact that
the effective electron mass has to be replaced by the exciton
mass in the expression for the rate τ−1

FGR [46], which yields an
increase of the rate by a factor of ∼4.6 in the case of CdMnTe.
Nevertheless, the finding of the present paper that the rate T −1

2
varies only weakly with the magnetic field and stays essentially
within 30% of τ−1

FGR is consistent with the tendency of most of
the experimental results summarized in Ref. [3]. However,
especially for samples with low impurity concentration at

low temperatures, there are also some experiments which
measured a maximum (instead of a minimum predicted by
the present theory) of the magnetic field dependence of the
perpendicular spin transfer rate as well as changes in the
rate which span about one order of magnitude of its value at
B = 0, which was suggested [3] to stem from local fluctuations
of the impurity magnetization. In order to distinguish these
imhomogeneity effects from Coulomb correlation effects we
suggest experiments where the pump pulse is tuned to energies
well above the exciton resonance.

B. Interplay between s-d and Rashba interactions

The fact that in the derivation of Eq. (34) the k dependence
of an effective magnetic field was taken into account makes
it possible to discuss the interplay between the spin-orbit
coupling and the s-d interaction on a rigorous microscopic
basis, where the spin-orbit interaction also acts during s-d
scattering events. In earlier works, the interplay between
these effects was studied [21,47], where only the direct
effects of the spin-orbit coupling on the electron spins was
considered, yielding an additional k-dependent contribution
to the mean-field precession frequency, whereas the dynamics
of the correlations was not modified, i.e., the spin-orbit
interaction was only accounted for between s-d scattering
events. It was found that already on a mean-field level,
the carrier spin dephasing due to the k dependence of
the precession frequencies can be strongly suppressed by a
motional-narrowing-type mechanism caused by the precession
in the mean field of the impurity magnetization. Furthermore,
it was argued that both mechanisms can be tuned in a wide
range, especially in Hg1−x−yCdyMnxTe quantum wells with
applied electric fields. In this material, the strength of the s-d
interaction is determined by the Mn concentration x, while the
Cd concentration y can be used to change the gap between
conduction and valence bands which controls the strength of
the Rashba [19] field. When both types of interaction are
similarly important, a complex oscillatory time evolution of
the carrier spin was found, which is absent when either one of
the interactions dominates.

Now, the question arises whether neglecting the effects of
the Rashba field on the dynamics of the correlations is indeed
a good approximation or if qualitative changes have to be
expected if they are accounted for. We study this question
in a case in which the strengths of the Rashba and the s-d
interactions are comparable. We consider a d = 20 nm wide
Hg1−x−yCdyMnxTe quantum well with electric and magnetic
fields applied along the growth direction z. The voltage drop
between the barriers of the quantum well leads to a strong
Rashba interaction of the form

HR = 2�αR

∑
kσσ ′

(
kys

x
σσ ′ − kxs

y

σσ ′
)
c
†
kσ ckσ ′ , (47)

where we assume a value of αR = 4.87 meV nm [21].
Further parameters that enter the calculation are the

effective mass m∗ = 0.093m0, the s-d coupling constant Jsd =
15 meV nm3, the lattice constant a = 0.645 nm and the Mn
concentration x = 7%. The initial Mn state is modelled by a
thermal equilibrium state following a Brillouin function with
temperature T = 4 K in an external magnetic field pointing in
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the −z direction with |B| = 50 mT. The g factors for impurities
and conduction-band electrons are gMn = 2. and ge = −1.5,
respectively. Furthermore, as we consider an intrinsic DMS
where the quasifree carriers originate purely from optical
excitation, NMn � Ne is clearly fulfilled, so that we can
neglect the back action of the carriers on the impurities.
Thus, the Mn magnetization remains homogeneous, which
allows us to integrate along the growth direction yielding a
factor of I = 1.5. The initial electron spin was modelled by a
Gaussian distribution in the spin-up band centered at the band
edge with standard deviation Es = 1 meV corresponding to
a σ− polarized laser with pulse duration (full width at half
maximum) ∼140 fs. For these parameters, the mean-field
energy splitting caused by the impurity magnetization is
∼ − 0.75 meV (the spin-up-subband is energetically favored),
while the strength of the Rashba interaction for an electron with

kinetic energy �
2k2

0
2m∗ = 1 meV is 2�αRk0 ∼ 0.89 meV. Here,

the Zeeman terms yield significantly smaller contributions of
geμB |B| ≈ −0.004 meV and gMnμB |B| ≈ 0.006 meV to the
respective spin splittings.

Figure 5 shows the results of numerical simulations for
this set of parameters. As reported earlier [21], the Rashba
interaction alone (blue dashed line) leads to a fast dephasing
of the carrier spins. If additionally magnetic impurities with a
finite magnetization are present, already a mean-field treatment
(purple circles) can lead to a strong suppression of the
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FIG. 5. Time evolution of the total electron-spin polarization after
spin-polarized optical excitation in a magnetic field perpendicular
to the quantum well plane (cf. text for parameters). The red solid
line describes the results according to Eqs. (10b) and (10c) with the
Markovian expression for the correlations from Eq. (34). The green
dashed line corresponds to a calculation without Rashba coupling,
where only the s-d interaction is considered. The blue dotted line
presents the results of the case in which only the Rashba interaction
is present. The mean-field calculation, which is obtained by dropping
the correlations completely, is shown as the purple circles. The cyan
crosses describe the results where the effects due to the Rashba
interaction on the dynamics of the carrier-impurity correlations are
neglected, so that in addition to the mean-field terms, the time
derivative of the carrier variables obtains the correlation induced
contribution of Eqs. (40).
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FIG. 6. Time evolution of the total electron-spin polarization after
spin-polarized optical excitation in a magnetic field parallel to the
quantum-well plane (cf. Fig. 5).

dephasing by motional narrowing caused by the precession of
the carrier spin in the mean field of the impurity magnetization.
Without the Rashba interaction, the s-d interaction causes a
spin transfer from the carriers to the impurities which can
be seen in Fig. 5 as an exponential decay to a nonvanishing
equilibrium value. In the previous studies [21], the correlation
induced spin transfer was combined with the mean-field
precession, but the effects of the Rashba interaction on the
dynamics of the correlations were neglected (here shown
as cyan crosses). In Fig. 5, also the complete carrier spin
dynamics is shown, where the Rashba interaction is explicitly
accounted for in the calculation of the correlations (red solid
line). By comparing both calculations, it can be seen that the
total carrier spin is hardly influenced by the effects of the
Rashba spin-orbit coupling on the correlation dynamics.
The same result is also obtained for the situation where the
magnetic field is applied parallel to the quantum well plane,
as shown in Fig. 6.

Similar to the fact that the precession-type motion of
the correlations discussed so far leads to changes in the
kinetic energy of scattered carriers, also the Rashba inter-
action enforces a precession of the correlations resulting in
corresponding changes in the electron energies. In Fig. 7 the
carrier occupations at t = 0 and t = 50 ps are shown for
calculations with and without accounting for the Rashba effect
on the correlation dynamics for the situation described in Fig. 5
with magnetic field parallel to the growth direction. Without
the Rashba interaction, the kinetic-energy dependence of the
occupations at t = 50 ps shows a distinctive step at �ωk =
|�σB

e ωe − �σB
MnωMn| which corresponds to a redistribution of

carriers with an excess energy in the spin degree of freedom
to states with higher kinetic energies. When the Rashba
coupling is turned on, the step shifts towards slightly higher
kinetic energies. This can be explained by the fact that in the
configuration with a magnetic field along the growth direction
and a Rashba field in the quantum well plane the energy
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FIG. 7. Kinetic-energy dependence of the occupation of carrier
states at times t = 0 ps and t = 50 ps for the calculations shown in
Fig. 5.

eigenvalues of an electron with wave vector k are

E± = �ωk ± 1
2 �

√
(2αR|k|)2 + (

σB
e ωe

)2
. (48)

Including the shifts due to the impurity Zeeman splittings,
the step in the kinetic-energy dependence of the occupation

is therefore shifted to �

√
(2αR|k|)2 + (σB

e ωe − σB
MnωMn)2.

However, the shift of the energy splitting is too small to cause
a significant impact on the time evolution of the total spin.

C. Connection to the theory of collective carrier-impurity
precession modes in DMSs

In the derivation of the theory, the z dependence of the
carrier envelope function was taken into account. We see from
Eqs. (42) that one effect of this z dependence is that the spin
transfer rate obtains the prefactor I . Assuming a constant
linear impurity density NMn

d
, a constant z envelope yields a

value of I = 1 while the extreme case of a quantum well with
infinite barriers yields I = 3

2 . This effect has also been found
in previous studies of DMSs [3,15,32].

Like the spin transfer rates, also the electron-spin precession
is influenced by the z dependence of the envelope of the
electron wave function. In particular, it can be seen from
Eq. (11c) that the contribution to the electron-spin precession
frequency from the impurity spin is proportional to

∫ d/2

−d/2
dz |ψ(z)|2〈S(z)〉.

Thus, the impurity spin as a function of z can be decomposed
into this mode which couples to the electron-spin precession
and NMn − 1 orthogonal modes, which do not influence
the electron spins directly on a mean-field level. In the
parameter regime where the precession frequencies of the
electron and impurity spins almost coincide, the coupling
between the above impurity mode and the electron spin is
particularly large, leading to an avoided crossing indicating
a collective motion of impurity and carrier spins. This
fact has been discussed in a number of recent papers by
different groups [6,11,39,40,48,49]. In these works, however,
the carrier-impurity correlations have been disregarded.

In the following, we will derive equations describing the
situation studied, e.g., in Ref. [39] taking the effects due to the
correlations into account. There, an n-type CdMnTe quantum
well in an external magnetic field parallel to the quantum well
plane (x direction) was considered, leading to equilibrium
values of the impurity and carrier spins antiparallel to the
magnetic field. A circularly polarized pump beam induces
electron-hole pairs with spin polarization along the z direction.
During the decay of the hole spins on a time scale of ∼5 ps, the
impurity magnetization precesses around the p-d exchange
field of the holes, causing a small tilt of the impurity spins
away from the equilibrium x axis into the y axis. The optically
induced electron spins contribute to the z component of the
total carrier spin. Thus, after the holes are decayed, one ends
up with a situation where the impurity and carrier spins precess
around each other.

The fact that the spin components perpendicular to the
equilibrium values are small compared with the parallel
components allows one to linearize Eqs. (40) and (41) with
the expression for the rates from Eq. (42):

∂

∂t
s⊥
>/< = geμB

�
B × s⊥

>/< + JsdNMn

�V
Sx,(1) × s⊥

>/< − JsdNMn

�V
sx
>/< × S⊥,(1) − 1

d

∫ d/2

−d/2
dz �>/<(z)s⊥

>/<, (49a)

∂

∂t
S⊥,(j ) = gMnμB

�
B × S⊥,(j ) − Jsd

V �
Sx,(j+1) × (s⊥

> + s⊥
<) + Jsd

V �
(sx

> + sx
<) × S⊥,(j+1)

+ dj−1
∫ d/2

−d/2
dz |ψ(z)|2j [�>(z)s⊥

> + �<(z)s⊥
<], (49b)

�(k,z) := π
Am∗

2π�

J 2
sdNMn

�2V 2
d2|ψ(z)|4

[
〈S‖2〉 +

(
〈S⊥2〉

2
− σB

S

|〈S〉|
4

)
�
{
ωk + [

σB
e ωe − σB

e ωMn(z)
]}

+
(

〈S⊥2〉
2

+ σB
S

|〈S〉|
4

)
�
{
ωk − [

σB
e ωe − σB

e ωMn(z)
]}]

(49c)
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with

sx/⊥
>/< :=

∑
k

>/<
sx/⊥

k , (50a)

�>/<(z) :=
∑

k

>/<
�(k,z), (50b)

Sx/⊥,(j ) := dj−1
∫ d/2

−d/2
dz |ψ(z)|2j 〈Sx/⊥(z)〉, (50c)

where the indices x and ⊥ denote the spin components parallel
and perpendicular to the equilibrium axis x and

∑
k
>/<

describes the sum over all wave vectors k with ωk > ω0 or
ωk < ω0, respectively, where ω0 = |σB

e ωe − σB
MnωMn|. The

distinction between states with higher or lower kinetic energy
than ω0 is a direct consequence of the steplike k dependence
of the spin transfer rates.

Equations (49) of the present paper differ mainly from
Eqs. (4) and (5) of Ref. [39] in that carriers with ωk < ω0

are distinguished from carriers with ωk > ω0 and in that the
terms proportional to the rate �>/<(z) are omitted in the
mean-field treatment of Ref. [39]. Instead, a phenomenological
relaxation rate τ−1

e was added manually in Ref. [39]. Another
difference is the appearance of the corresponding spin transfer
term in the equations for the impurities. This is due to the
fact that the s-d interaction is spin conserving so that the
electron spin that is removed from s⊥

>/< has to be transferred
to the impurity system. Taking these corrections with respect
to the description of Ref. [39] into account would lead to
a more accurate modelling of the collective carrier-impurity
precession modes. However, as discussed earlier, the variation
of the perpendicular spin transfer rate in the presence of an
external magnetic field is limited to � 30% of the golden rule
value at B = 0, so that the spin transfer rate remains in the same
order of magnitude. Thus, the phenomenological treatment of
the rate can be justified for the purpose of the discussion in
Ref. [39].

IV. CONCLUSION

A quantum kinetic description of the carrier spin dynamics
in paramagnetic intrinsic II-VI DMSs was presented which,
in contrast to previous works [33,36,37], also accounts for
a wave-vector-dependent effective magnetic field as well as
Zeeman terms for carriers and impurities. The Markov limit
of the quantum kinetic equations allow us to extract rates
for spin transfer processes between carriers and magnetic
impurities. From the rigorous treatment of a precession-type
dynamics of the carrier-impurity correlations it is found that
the redistribution of carriers in k space is not only influenced
by the spin splitting of the electron subbands due to the
Zeeman energy enhanced by the impurity magnetization, but
also acquires an energetic shift corresponding to the Zeeman
level splitting of the magnetic impurities. This shift accounts
for the fact that a spin flip of an electron involves a spin flop of
the magnetic impurity in the opposite direction and the total
energy of the magnetic impurity and the electron spin has to
be conserved. The energetic shifts in the description of the

spin-flip-flop processes are often not correctly accounted for
in the literature.

The impact of these energy shifts was investigated using
the example of the magnetic-field dependence of the carrier-
impurity spin transfer rates parallel and perpendicular to the
impurity magnetization. Two distinct parameter regimes were
identified, one for rather high doping concentrations of the
order of x ∼ 1% and one for extremely diluted systems with
x � 0.1%. These regimes correspond to cases where the total
change of the kinetic electron energy as given by (σB

e ωe −
σB

MnωMn) is mainly positive or negative. In both situations the
perpendicular spin transfer rate T −1

2 varies within ∼30% of
the value for B = 0, which also coincides with the results for
T −1

1 obtained by Fermi’s golden rule. However, in the first
case, the parallel spin transfer rate T −1

1 decays monotonically
for an increasing magnetic field to 5

8 of the golden-rule value
at B = 0, while in the extremely diluted case, T −1

1 eventually
vanishes. In calculations where the carrier spin splitting �ωe or
the impurity Zeeman splitting �ωMn is neglected, as is often
done in the literature, the magnetic field dependence of the
spin transfer rates deviates significantly from that predicted
by the accurate description involving both energetic shifts.
Accounting for the impurity Zeeman splitting for the spin-
flip-flop processes turns out to be particularly important in the
very dilute case.

Furthermore, the interplay between the s-d interaction
between carrier and impurities and the Rashba interaction in
a Hg1−x−yCdyMnxTe quantum well was investigated. In the
standard rate description approach one usually calculates for
each interaction a corresponding scattering rate and ignores
that other interactions might change the dynamics during the
scattering process. This was the point of view adopted in
previous studies of the combined dynamics of s-d and Rashba
couplings [21,47]. However, such mutual dependencies of
different interactions have been shown in the literature to be
of importance, e.g., in the case of a static electric field acting
during phonon-scattering process known as intracollisional
field effects [38]. Technically, the dynamics during an ongoing
interaction process is represented by correlation functions. In
the present paper, we presented a quantum kinetic description
where s-d and Rashba interactions have been fully accounted
for in the combined dynamics of the single-particle density
matrices and the carrier-impurity correlations, thus fully
covering all mutual cross effects between these interactions.
While it is a priori difficult to predict how important these cross
effects actually are, we have demonstrated for the present case
that the total carrier spin is hardly affected by this mechanism.

Finally, taking into account also the z dependence of the
carrier envelope function makes it possible to show how
the phenomenological treatment of the spin transfer rate
in the description of collective carrier-impurity precession
modes in Ref. [39] can be based on a solid microscopic
foundation.

In summary, our microscopic treatment of the effects of
a k-dependent magnetic field and the impact of the shape
of the carrier envelope function justifies the approximations
made in earlier studies of the dynamics of the total electron
spin [21,39]. Apart from this insight, the present theory further
contributes to the progress in the field of spin physics in

205201-15



M. CYGOREK, P. I. TAMBORENEA, AND V. M. AXT PHYSICAL REVIEW B 93, 205201 (2016)

DMS by not only deriving rates for carrier spins parallel
but also perpendicular to the impurity magnetization in the
presence of an external magnetic field. The latter are expected
to be the dominant contribution to the carrier dephasing
time in time-resolved magneto-optical Kerr measurements
in Voigt configuration. In contrast to earlier approaches
found in the literature [22,32], the rates derived in this
paper are fully compatible with the energy conservation
of an individual spin-flip-flop process. Our study reveals
that the difference between the predictions of the discussed

theories is most prominent for extremely diluted magnetic
semiconductors.
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