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Dynamical magnetic susceptibility in antiferromagnet UPtGa5 determined by NMR:
Comparison with isostructural superconducting CeMIn5 systems
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We report, as an example, a complete analysis of nuclear spin-lattice relaxation time (T1) data for the strongly
correlated antiferromagnet UPtGa5, which has a typical HoCoGa5 (115) structure. Using a high-quality single-
crystal sample, the T dependence of T1 at 195Pt and at two crystallographically inequivalent 69Ga sites has
been measured for H ‖ a and c axes. Using previously obtained hyperfine coupling tensors from static Knight
shift results, the anisotropic spin fluctuation energy and �q dependence of the dynamic susceptibility have been
determined completely, forming a clear contrast to the cases of superconducting CeRhIn5, CeCoIn5, and CeIrIn5,
which are considered to be very near to a quantum critical point. We also note that a similar hyperfine coupling
scheme to that of CeRhIn5 has been found for UPtGa5.
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I. INTRODUCTION

In the last decade, Ce and actinide-based 115 compounds
have been studied intensively, since many interesting elec-
tronic behaviors have been observed in these systems [1],
e.g., unconventional superconductivity near a quantum critical
point [2–4], high-Tc superconductivity in PuCoGa5 [5], a
modulated superconducting phase in CeCoIn5 that is a strong
candidate for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [6], a possible quadrupolar-related order in NpFeGa5
[7], etc. We ascribe the exotic behavior of these systems
to strong electron correlations and spin-orbit coupling; it is
deeply related with the magnetism. In this context, it is useful to
determine the dynamic magnetic susceptibility of such systems
in detail.

UPtGa5 is an itinerant antiferromagnetic (AFM) compound
with Néel temperature TN = 26 K [8]. The Sommerfeld
coefficient γ = 57 mJ/mol K2 indicates that this system is
a weak heavy-fermion system. The magnetic structure of the
ordered state has been determined with neutron diffraction
measurements [9]. The correlation wave vector is �qcor =
(0,0,π/c), with the ordered AFM moment along the c axis;
thus Ising-type anisotropy is strong in this system. The small
0.24 μB AFM ordered moment reflects the itinerant nature of
this compound.

Although no superconductivity has been found in UPtGa5,
this compound is ideal for understanding the itinerant mag-
netism of a 115 system via NMR, since the magnetic
correlation is simple, i.e., �qcor is commensurate, with Ising
anisotropy, and no T -dependent hyperfine (HF) coupling is
observed [10], in contrast with CeCoIn5 [11] and CeIrIn5

[12]. In a previous paper [10], static properties such as
bulk magnetic susceptibility and the Knight shift have been
reported for UPtGa5. Based on that study, the dynamical
magnetic susceptibility is deduced here quantitatively from
spin-lattice relaxation data. In comparison with UPtGa5,
the sharp contrast with quantum critical metals such as
CeRhIn5, CeCoIn5 and CeIrIn5 is revealed. Anomalous HF
coupling in the [001], i.e., basal plane, is also clarified. The
present study suggests a general method to determine the
dynamical susceptibility in magnetic compounds by means

of NMR, underlining the importance of complete, detailed
experimental results for understanding the electronic state.
Since an inelastic neutron scattering measurement is difficult
in neutron-absorbent In-based compounds, the determination
of dynamical susceptibility by NMR is particularly useful for
such a case.

II. EXPERIMENTAL

High-quality single-crystal samples of UPtGa5 were grown
by the self-flux method [8]. A characterization of the samples
used has been reported previously [8]. NMR signal ampli-
tudes were obtained for 69Ga and 195Pt using fast Fourier
transformation (FFT) of spin-echo signals at constant applied
magnetic field H = 7.2416 T parallel to the a and c axes. The
gyromagnetic ratios of 69Ga (I = 3/2) and 195Pt (I = 1/2)
are γGa/(2π ) = 9.093 MHz/T and γPt/(2π ) = 10.219 MHz/T,
respectively. Spin-lattice relaxation times (T1) were measured
using the inversion and spin-echo recovery method. The
relaxation data were a good fit to the expected relaxation
functions for I = 3/2 and 1/2 [13].

III. DETAILED ANALYSIS

A. Crystal structure and NMR sites

Figure 1 shows the crystal structure of UPtGa5 (P 4/mmm).
There are two inequivalent Ga sites, the Ga(1) (1c) site and
the Ga(2) (4i) site, and one Pt (1b) site. When H ‖ a axis,
there are two inequivalent Ga(2) sites: Ga(2a) and Ga(2b).
The principal axis of the electric field gradient tensor �Vzz [14]
at the Ga(2) site is indicated in Fig. 1. The applied field H

is parallel and perpendicular to the principal axis �Vzz for the
Ga(2a) and Ga(2b) sites, respectively. Since the spin-lattice
relaxation processes are essentially identical for the Ga(2a)
and Ga(2b) sites in UPtGa5, results for the Ga(2a) site are
mainly presented in this report.

In the formulas below, the subscript α [= Ga(1), Ga(2a,2b)
or Pt] indicates parameters for those respective sites. The
subscripts i = a and c indicate components along the a and c

axes, respectively.

2469-9950/2016/93(20)/205155(7) 205155-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.205155


KAMBE, HATTORI, SAKAI, TOKUNAGA, AND WALSTEDT PHYSICAL REVIEW B 93, 205155 (2016)

Ga(1)

Ga(2b)

U

Pt

c

aa

Vzz
Vzz
Ga(2a)

H

θ

FIG. 1. Crystal structure of UPtGa5. �Vzz indicates the principal
axis of the electric field gradient tensor at the Ga(2) site. When the
applied field H is parallel to the a axis as indicated in the figure, their
low symmetry gives rise to inequivalent Ga(2a) and Ga(2b) sites.
The Ga(2) sites are equivalent for the H ‖ c case. The broken line
represents the direction of principal axis of HF tensor at Ga(2) site,
which has an angle θ with [100] direction.

B. Knight shifts and hyperfine coupling constants

The T dependence of the static magnetic susceptibility χi

(Fig. 2) and Knight shift Kα,i , and the Kα,i versus χi plots have
been presented in a previous report [10]. The T dependence of

FIG. 2. T dependence of the static magnetic susceptibility χi in
UPtGa5 [10]. Solid lines are calculated using Eq. (1) with parameters
from Table I.

TABLE I. Curie constants, Weiss temperatures, orbital suscepti-
bility terms, and effective moments for the static susceptibilities [10].

H ‖ a (i = a) H ‖ c (i = c)

Ci (emu/mol K) 0.41 0.15
�i (K) −74 −65
χorb,i (10−3 emu/mol) 0.83 0.72
μeff,i (μB ) 1.8 1.1

χspin,i follows Curie-Weiss behavior in the paramagnetic state:

χi = χspin,i + χorb,i , χspin,i
∼= Ci

T − �i

, (1)

where Ci is the Curie constant, �i is the Weiss temperature,
and χorb,i is the T -independent, orbital-related susceptibility
(Table I). The reduced effective moment μeff,i compared to
the value of free Ce3+ ion indicates the itinerant nature of the
system.

The Knight shifts and spin-lattice relaxation at the Ga
and Pt ligand sites probe static and dynamic transferred HF
fields from the magnetic U site, respectively. A linear relation
between Knight shifts Kα,i at the Ga(1), Ga(2), and Pt sites
and the static susceptibility χi has been confirmed in all cases,
implying that the transferred HF coupling constants Aα,i are
T -independent in the paramagnetic state. Thus

Kα,i = Aα,iχspin,i + Korb,α,i , (2)

where Korb,α,i = Aorb,α,iχorb,i is the T -independent orbital
Knight shift (Aorb,α,i is the HF coupling constant for χorb,i).

C. Spin-lattice relaxation rate 1/T1

The spin-lattice relaxation rate 1/T1 is a �q sum over
the Brillouin zone (BZ) of the dynamical susceptibility
Imχ (�q,ω)/ω times a �q-dependent HF form factor F (�q)2 with
subscripts that denote the ligand site and the fluctuation axis.
We present and analyze here a relatively complete set of T1 data
in order to gain a deep insight into the nature of the dynamic
susceptibility in UPtGa5. The essential considerations for HF
couplings in 115 systems have been presented by Curro [15].
Here we adopt his model. The general expression for T1T in
this kind of system is [13]

1/(T1,α,j T ) = γ 2
α

∑
i

∑
�q

F 2
α,i(�q)Im χi(�q,ωα)/(ωαnα), (3)

where α designates the ligand [Ga(1), Ga(2a), Ga(2b), Pt]; the
NMR frequencies ωGa(1,2a,2b) = γGaH ; ωPt = γPtH ; j desig-
nates the quantization axis for T1, i.e., the direction of applied
magnetic field H ;

∑
i goes over the axes contributing to the

relaxation process; and nα [nα = 4 for Ga(1), nα = 2 for Ga(2)
and Pt] is the number of the nearest-neighbor (n.n.) U ions for
the α ligand, i.e., the number making identical contributions
to the Aα,i coefficients given in Table II. Generally,

∑
i covers

the two mutually perpendicular directions that are both ⊥ j
axis. The HF form factors Fα,j (�q) are defined in detail below.
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TABLE II. Transferred hyperfine coupling constants in units of
kOe/μB at the Ga(1), Ga(2), and Pt sites for H ‖ a,c [10]. As the
Ga(2a,2b) sites are equivalent for the H ‖ c case, AGa(2a),c = AGa(2b),c.

H ‖ a (i = a) H ‖ c (i = c)

AGa(1),i 9.65 42.0
AGa(2a),i 19.8 10.2
AGa(2b),i 16.8 10.2
APt,i 41.3 87.3

For the purpose of further discussion below (see Sec. III E),
we define the magnetic fluctuation strengths Rα,i as

Rα,i ≡
∑

�q
F 2

α,i(�q)Imχi(�q,ωα)/ωα, (4)

where Imχi is subscripted in case the spin susceptibility, itself,
may be anisotropic [13]. Then from Eq. (3) and (4) we may
express 1/(T1,α,j T ) for ligand α with a field along the j axis,

1/(T1,α,cT ) = 2γ 2
α Rα,a/nα,

1/(T1,α,aT ) = γ 2
α (Rα,a + Rα,c)/nα. (5)

In Sec. III E, the values of Rα,i derived from experiment are
combined with values of the Aα,i coefficients from Table II
to estimate the “characteristic spin fluctuation energy” that
underpins the dynamic susceptibility. First, we need to spell
out the HF form factors Fα,i(�q).

D. Hyperfine form factors Fα,i (�q)

Owing to the �q dependence of the HF form factors Fα,i(�q),
each site probes Imχi(�q,ωα)/ωα in different regions of �q space.
In preparation for our interpretation of the entire body of T1

data on the ligands in UPtGa5, we enumerate here the HF form
factors [15] for the Ga(1), Ga(2a,2b) and Pt sites.

For the Ga(1) site, the HF form factors are

F 2
Ga(1),a(�q) = 4A2

Ga(1),a[cos2(qxa/2)cos2(qya/2)

+δ2
1sin2(qxa/2)sin2(qya/2)],

F 2
Ga(1),c(�q) = 4A2

Ga(1),ccos2(qxa/2)cos2(qya/2), (6)

where the coefficient δ1 is nonzero, because the basal plane
HF coupling tensor is anisotropic (i.e., different coupling
coefficients parallel and perpendicular to the radius vector).
This gives rise to an off-diagonal term in the HF coupling
tensor for Ga(1) [15]. The resulting δ1 parameter can be
estimated with spin-lattice relaxation data, as will be shown
below. From Eqs. (4) and (6), RGa(1),i probes the ferromagnetic
(FM) correlations in the basal plane, but is insensitive to
correlations along the c axis.

At the Ga(2a) site, the HF form factor is

F 2
Ga(2a),a(�q) = 2A2

Ga(2b),a

[
cos2(qxa/2) + δ2

2asin2(qxa/2)
]
,

F 2
Ga(2a),c(�q) = 2A2

Ga(2a),c

[
cos2(qxa/2) + δ2

2csin2(qxa/2)
]
,

(7)

where, again, the off-diagonal terms involving 2δ2a and δ2c

are estimated from spin-lattice relaxation data (see below). As
with the Ga(1) site, RGa(2),i probes FM correlations in the basal

plane, but is rather insensitive to correlations along the c axis
from Eqs. (4) and (7).

At the Pt site, the HF form factor is

F 2
Pt,a(�q) = 2A2

Pt,acos2(qzc/2),

F 2
Pt,c(�q) = 2A2

Pt,ccos2(qzc/2), (8)

indicating that AFM correlations along the c axis are filtered
out for RPt,i , in addition to being insensitive to the correlations
in the basal plane.

Regarding the correlation vector �qcor = (0,0,π/c) for
UPtGa5, the Ga(1) and Ga(2) sites do probe the FM corre-
lations of the basal plane, but are rather insensitive to the
AFM correlations along the c axis. The Pt site does not probe
correlations near �qcor = (0,0,π/c), either.

Generally, if there is no correlation between the fluc-
tuations at magnetic sites, i.e., Imχ (�q,ωα) is indepen-
dent of �q, then there are nα independent contribu-
tions of 2γ 2

α (Aα/nα)2Imχ (�q,ωα)/ωα from magnetic sites
to 1/(T1T ) at an α ligand site. Thus the relation
1/(T1T ) = 2γ 2

α (A2
α/nα)Imχ (�q,ωα)/ωα should be satisfied at

the ligand site, which corresponds to the relation Rα,i =
A2

α,iImχi(�q,ωα)/ωα for the present case. It follows that

�qF 2

α,i(�q)/A2
α,i = 1 [note that AGa(2b),a should be adopted here

for RGa(2a),a and F 2
Ga(2a),a from Eq. (7)]. In fact, this relation

is satisfied for the Pt site, i.e., for Eq. (8). On the other hand,
this relation is not satisfied for F 2

Ga(1),a(�q) and F 2
Ga(2a),i(�q) at

the Ga(1) and Ga(2) sites, owing to the finite values for δ1 and
δ2a,2c. Thus we have


�qF 2
Ga(1),a(�q)/A2

Ga(1),a = 1 + δ2
1,


�qF 2
Ga(2a),a(�q)/A2

Ga(2b),a = 1 + δ2
2a, (9)


�qF 2
Ga(2a),c(�q)/A2

Ga(2a),c = 1 + δ2
2c.

These equations indicate that the HF coupling constant
should be replaced by an effective value for Aα,eff,i , in order
to preserve the normalization relation 
�qF 2

α,i(�q)/A2
α,eff,i = 1.

Henceforth, we take

AGa(1),eff,a ≡ (
1 + δ2

1

)0.5
AGa(1),a,

AGa(2a),eff,a ≡ (
1 + δ2

2a

)0.5
AGa(2b),a, (10)

AGa(2a),eff,c ≡ (
1 + δ2

2c

)0.5
AGa(2a),c.

E. Characteristic spin fluctuation energy �i

At low levels of spin correlation, the dynamical suscepti-
bility can be approximated using the �q-averaged characteristic
spin fluctuation energy �i [16] giving

Imχi(�q,ωα)/ωα � χspin,i/ �i. (11)

We substitute the foregoing expression into Eq. (4) and
combine the result with Eqs. (9) and (10) to define the quantity

�α,i ≡ Rα,i

A2
α,eff,iχspin,i

= 1

�i


�qF 2
α,i(�q)/A2

α,eff,i

� 1

�i

for the uncorrelated case. (12)
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If correlations are negligible, then the �α,i evaluated using
experimental data for T1,α,i and for χspin,i can be used to
estimate �i . Note that for each axis, in the low correlation limit,
�i is expected to be independent of ligand site. In order for
the site independence of �i to be realized, reasonably accurate
values of δ1, δ2a , and δ2c must be used in Eq. (10). In the next
section, we describe how suitable values for the δ’s have been
chosen.

IV. EXPERIMENTAL RESULTS

In Fig. 3, a comprehensive body of T1 data for all three
ligand sites in UPtGa5 taken with a single-crystal specimen
is plotted in a log-log format as 1/T1T versus T . The plot is
limited to the paramagnetic region, extending from T = 26 up
to 260 K. For Ga(1) and Pt, there are two plots each for the
two distinguishable axes; for Ga(2) there are data for all three
distinguishable axes. However, for Ga(2b), the limited number
of points shown are seen to coincide with the Ga(2a) plot for
the field oriented in the basal plane. Only the Ga(2a) case will
be discussed below.

A. T dependence of 1/(T1,α,i T )

At higher temperatures, all six of the data plots in Fig. 3
vary in a fashion roughly consistent with T1 ∼ constant,
indicating that the localized character remains in effect up
to high temperatures. As T is lowered, the Ga site data plots
all exhibit an increase in 1/T1T that we ascribe to the onset of
critical fluctuations on approaching the AFM transition. The
basal-plane fluctuations are clearly contributing to this upturn
for Ga(1) (H ‖ c) and Ga(2a)(H ‖ c), since c axis fluctuations
are not involved for those cases. However, c axis fluctuations
are also very strong, as evidenced by the marked upturns in
the data curves for Ga(1) and Ga(2) for (H ‖ a). Remarkably,
the Pt sites are not sensitive to the AFM critical fluctuations.

FIG. 3. T dependence of 1/(T1T ) at Ga(1), Ga(2) and Pt sites for
H ‖ a,c axes in the paramagnetic state of UPtGa5. Size of symbols
corresponds to the experimental errors.

They are subject to both in-plane and c axis transferred HF
fluctuations, but in both cases the form factor [Eq. (8)] imposes
a broad minimum with a zero at �q = �qcor. See the next section
for more discussion of the Pt results. On the other hand,
the increase in critical-fluctuation behavior near the AFM
transition for the Ga(1) and Ga(2) shows that these fluctuations
extend into the qx and qy axes near TN , since the FGa(1,2a,2b),i

have no component involving qz, but have peaks near the center
of the BZ involving δ1,2a,2c [see Eqs. (6) and (7)].

B. Comparison of �α,i at different sites

In Fig. 4, we display the T dependence of six independent
curves for �α,i , calculated with Eqs. (4) and (12) using the
approximation given in Eq. (11) and the T1 data shown in
Fig. 3. In constructing the data plotted in Fig. 4, there are two
objectives in mind. The first is to determine the value of �i

associated with each � plot, and the second is to determine the
values of δ1,2a,2c parameters that will give consistent values for
�i that characterize each type of fluctuations (i.e., c axis and
basal plane).

First, we can construct curves for �Ga(1),c and �Ga(2),c,
using Eq. (4) with χspin,c. �Ga(1),c has no adjustable parameters,
and thus by itself determines an experimental value for �c ∼
8 meV. The curve for �Ga(2),c then is adjusted to coincide
with the high-T (minimum correlation) end of that for �Ga(1),c

by selecting |δ2c| = 0.95, giving the excellent correspondence
shown in Fig. 4. This rather small correlation energy for the c

axis is roughly consistent with the AFM ordering at TN = 28
K. However, it is a bit peculiar that the c-axis curve �Pt,c

that has no adjustable parameter, deviates widely from the
other two. The ostensible justification for this behavior is that
the form factor ∼ cos2(qzc/2) cuts a large hole in the BZ
just where the dominant c-axis AFM fluctuations reside. As
a result, �Pt,c ends up being dominated by much “harder”
fluctuations around the edges of the BZ. See below for further
discussion of the inconsistency among the �α,c.

FIG. 4. T dependence of �α,i . At high temperatures, �α,i is
independent of α except �Pt,c, whereupon it then corresponds to
1/�i .
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Concerning the fluctuations in the basal plane, the asymp-
totic high-temperature value of �Pt,a sets the scale for �a ,
since there are no adjustable parameters for �Pt,i . Next,
curves for �Ga(1),a and �Ga(2),a are brought into approximate
coincidence with �Pt,a with the estimates |δ1| = 4.3 and
|δ2a| = 0.9. The results are plotted in the lower cluster of
curves in Fig. 4. At the high-temperature (260 K) end of these
curves, basal-plane fluctuations would be least correlated,
giving a site-independent estimate �a ∼ 43 meV. These values
are reasonable, giving a nicely consistent picture for the
basal-plane fluctuations.

It is remarkable that no large difference is found between
�Pt,a and �Pt,c at the Pt site, in spite of dramatically different
values for �a and �c. Since the fluctuations with �q ∼ �qcor

cancel at the Pt site, this means that the Ising anisotropy
appears only in the vicinity of �qcor. This is a characteristic
of itinerant magnetism in which correlations localize around a
certain �q vector.

At all temperatures, �Ga(1,2),c is larger than �Ga(1,2),a ,
indicating that �c is expected to be smaller than �a . Thus
Imχc > Imχa , which is consistent with having the AFM
ordered moment along the c axis. In contrast, the static
magnetic susceptibility at q = 0 has the opposite anisotropy,
i.e., χspin,a > χspin,c (Fig. 2). This difference indicates again
that the Ising anisotropy appears only in the vicinity of �qcor.
Actually, similar opposite anisotropy between � and χ is
confirmed in CeCoIn5 [17] and CeIrIn5 [12].

V. DISCUSSION

A. Hyperfine coupling anomaly

Using the estimated |δ2a,2c| at the Ga(2a) site, the HF field
at the Ga(2) site can be decomposed based on the previous
simplified model [15]:

B0 ≡ (B‖ + B⊥)/2, BA ≡ (B‖ − B⊥)/2,

AGa(2b),a � 2(B0 + BAcosθ ), δ2aAGa(2b),a � 2BAsinθ,

AGa(2a),c � 2(B0 − BAcosθ ), δ2cAGa(2a),c � 2BAsinθ,

(13)

where B‖ and B⊥ are the HF coupling constants parallel and
perpendicular to the principal axis of Ga(2) HF tensor; θ is
the angle between the [100] direction and the principal axis
of HF tensor, which may be in the (010) plane (see Fig. 1).
These relations can be satisfied roughly with B‖ ∼ 13 kOe/μB ,
B⊥ ∼ 0.2 kOe/μB , and θ ∼ 75 degree if positive δ2a,2c are
adopted. Although θ is expected to be ∼ 45 degrees in a simple
model [15], the deviation from that value might be acceptable
considering the simplified nature of the model. If negative
δ2a,2c are adopted, a reasonable θ value can not be obtained.

Concerning T1 at the Ga(2b) site, another HF coupling
constant By may be introduced [15]. By is parallel to �νzz, but
perpendicular to H [15]. Since the T1 is almost the same at the
Ga(2a) and Ga(2b) sites, the following relation is suggested:(

1 + δ2
2a

)0.5
AGa(2b),a � 2By. (14)

Although its generality is not evident, the HF coupling at
the Ga(2) site is nearly isotropic in the plane perpendicular
to the c axis of UPtGa5, supported by the fact that AGa(2a),a

is quite similar to AGa(2b),a (Table, II). As Imχc > Imχa ,
the spin-lattice relaxation at the Ga(2) site is dominated by
fluctuations along the c axis. Thus the small difference between
AGa(2a),a and AGa(2b),a may be quite difficult to resolve in T1

measurements.
On the other hand, the large value of |δ1| ∼ 4.3 obtained

for the Ga(1) site was unexpected, but could be rationalized
with the scenario we now describe. For the case of Ga(1), one
has

B0 ≡ (B‖ + B⊥)/2, BA ≡ (B‖ − B⊥)/2,

AGa(1),a � 4B0, δ1AGa(1),a � 4BA, (15)

where B‖ and B⊥ are the HF coupling constants parallel and
perpendicular to the U-Ga(1) radius vector, respectively. It is
important to note that the adjustment of δ1 to obtain a suitable
curve for �Ga(1),a only determines the magnitude of δ1, so that
when we combine the last two of the Eq. (15), what we actually
find is BA = ±δ1B0. Using the first two equations, we then
find B‖ = B⊥(1 + δ1)/(1 − δ1) if δ1 is positive and the same
with B‖ and B⊥ reversed if it is negative. Using AGa(1),a =
9.65 kOe/μB from Table II, one then finds that (B‖,B⊥) =
(−8.0,12.8) kOe/μB , except that we do not know which is
which. A possible resolution of this puzzle might be effected by
invoking Bc ≡ AGa(1),c/4 = 10.5 kOe/μB (Table II). In terms
of the RKKY plus pseudodipolar mechanism for transferred
HF couplings, one might suppose that B⊥ and Bc are closely
related, both being perpendicular to the radius vector, differing
only in that one is in the basal plane, the other perpendicular
to it. This comparison would strongly suggest that B⊥ = 12.8
and B‖ = −8.0 kOe/μB with the negative δ1 = −4.3. Viewed
in this light, the seemingly large value for |δ1| appears more
reasonable.

In UPtGa5, the values of δ1,2a,2c are all found to be
appreciable; among 115 compounds these parameters would
be expected to vary widely. Beyond UPtGa5, the value of δ1

must certainly be substantial in order to explain the internal
field at the In(1) site in the antiferromagnetically ordered
state of CeRhIn5 [15]. In contrast, the values δ1,2a,2c ∼ 0
are likely in the In(1,2) sites of CeCoIn5 [17] and CeIrIn5

[12]. Although the microscopic origin of these differences
is still unclear, the present study shows that complete HF
coupling tensor data can lead to an accurate characterization of
the dynamic susceptibility. The importance of comprehensive
NMR measurements should be emphasized.

B. �q dependence of dynamical susceptibility
and correlation length

In order to treat the �q dependence of Imχ (�q,ωn) at �q =
�qcor + δ�q, the following equation under the condition �(�q) �
ωα is adopted [16] for δ�q ∼ �qB (�qB is the BZ boundary vector):

Imχ (�q,ωα)

ωα

� χ (�q)�(�q)

�(�q)2 + ω2
α

� χL�L

�(�q)2

� χL�L

�(�qcor)2[1 + 0.5(�ξδ�q/π )2]2
, (16)

where �ξ is the magnetic correlation length, and χL and
�L are the local susceptibility and spin fluctuation energy,
respectively. A correction factor 0.5 is adopted to treat δ�q ∼
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FIG. 5. T dependence of ξa/a in the basal plane. Based on
Eq. (17), ξa/a is estimated using RGa(1),a and RGa(2a),a .

�qB . Considering the FM correlations in the basal plane along
the a axis and the HF form factors which are insensitive to
the AFM correlation along the c axis in UPtGa5, one finds the
following approximate relations:

RPt,a

A2
Pt,a

∼ χL�L

�(�qcor)2{1 + 0.5(ξa/a)2}2
,

× RGa(1,2a),a

A2
Ga(1,2a),eff,a

∼ χL�L

�(�qcor)2
,

× RGa(1,2a),aA
2
Pt,a

RPt,aA
2
Ga(1,2a),eff,a

∼ [1 + 0.5(ξa/a)2]2,

ξa/a ∼ √
2

⎡
⎣(

RGa(1,2a),aA
2
Pt,a

RPt,aA
2
Ga(1,2a),eff,a

)0.5

− 1

⎤
⎦

0.5

, (17)

where the BZ boundary vector in the basal plane �qB =
(π/a,0,0) is adopted for δ�q at the Pt site, and ξa is the
correlation length along the a axis. Figure 5 shows the T

dependence of ξa . It is shown that there is almost no correlation
down to 100 K, then ξa increases rapidly below 50 K toward
TN = 26 K. Compared with the case of UPtGa5, ξa is enhanced
in CeIrIn5 [12], CeCoIn5 [3], and CeRhIn5 [18]. Figure 6
shows t dependencies of ξa/a in paramagnets CeIrIn5 [12]
and CeCoIn5 [3], and antiferromagnets CeRhIn5 [18] for
comparison with the present case of UPtGa5. In the spin-
fluctuation model [19], a relation TN ∼ 0.5� can be obtained
for typical AFM case. Based on this relation, the normalized
temperature t is defined as; t ≡ 2T/�a for paramagnet CeIrIn5

(�a ∼ 7 K [12]) and CeCoIn5 (�a ∼ 4 K [3]); in contrast,
t ≡ (T − TN )/TN for antiferromagnets CeRhIn5 (TN = 3.8 K
[18]) and UPtGa5. Not only the absolute ξa/a value but also
its critical exponent ν of ξa/a ∼ t−ν are enhanced in CeIrIn5,
CeCoIn5, and CeRhIn5. Around the quantum critical point,
quantum critical fluctuations are expected to survive up to
high temperatures [20]. Therefore the observed behavior may
indicate that these Ce-based compounds are very near to an

FIG. 6. T dependence of correlation length ξa/a in the basal
plane of CeIrIn5 [12], CeCoIn5 [3], and CeRhIn5 [18] compared
with the present ξa/a of UPtGa5 shown in Fig. 5. Here, t ≡ 2T/�a

for paramagnets CeIrIn5 (�a ∼ 7 K) and CeCoIn5 (�a ∼ 4 K),
t ≡ (T − TN )/TN for antiferromagnets CeRhIn5 (TN = 3.8 K) and
UPtGa5 (TN = 26 K). Solid lines represent ξa/a ∼ t−ν ; ν ∼ 0.75
for CeIrIn5, ν ∼ 0.4 for CeRhIn5, and CeCoIn5 and ν ∼ 0.25 for
UPtGa5. The correlation in the basal plane is more enhanced
in superconducting CeIrIn5, CeCoIn5, and CeRhIn5, since these
compounds are considered to be near the quantum critical point.

itinerant quantum critical point. In contrast, the variation of ν

remains for future study.

VI. SUMMARY

Through analysis of NMR spin-lattice relaxation tim mea-
surements, the nature of the dynamic magnetic susceptibility in
UPtGa5 has been investigated. First, Ising anisotropy appears
only in the vicinity the correlation vector �qcor = (0,0,π/c).
While the anisotropy of the characteristic spin fluctuation
energy at �qcor: �a > �c coincides with the direction of ordered
moment along the c axis, it is in fact opposite to the anisotropy
of the static susceptibility at �q = 0: χa > χc. This suggests a
�q dependence for the spin-fluctuation energy.

In nonsuperconducting UPtGa5, the correlation length de-
creases rapidly at temperatures above TN . The latter behavior
stands in contrast with unconventional superconductors near
quantum critical points such as CeRhIn5 and CeIrIn5, in which
the correlations survive up to high temperatures. Empirically,
in addition, the AFM-XY anisotropy is favorable for d-wave
superconductivity in f -electron systems, as compared with
Ising anisotropy [21,22]. For example, CeCoIn5 and CeIrIn5

show the AFM-XY anisotropy [21]. The relationship between
the character of the magnetic fluctuations and unconventional
superconductivity bears further investigation.
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