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We use the Gutzwiller density-functional theory to calculate ground-state properties and band structures of iron
in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction U = 9 eV
and Hund’s-rule coupling J = 0.54 eV, we reproduce the lattice parameter, magnetic moment, and bulk modulus
of bcc iron. For these parameters, bcc is the ground-state lattice structure at ambient pressure up to a pressure
of pc = 41 GPa where a transition to the nonmagnetic hcp structure is predicted, in qualitative agreement with
experiment (pexp

c = 10, . . . ,15 GPa). The calculated band structure for bcc iron is in good agreement with ARPES
measurements. The agreement improves when we perturbatively include the spin-orbit coupling.
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I. INTRODUCTION

The theoretical description of the structural and electronic
properties of iron poses an interesting but difficult problem.
Since iron is an essential element in the inner core of the
earth, it is desirable to know its phase diagram over a wide
temperature and pressure range. However, basic calculations
at ambient pressure and zero temperature reveal the intricacy
of the iron problem. Ab initio calculations with density-
functional theory (DFT) in the local density approximation,
DFT(LDA), predict a wrong lattice structure for the ground
state, namely face-centered-cubic (fcc) or hexagonal-close-
packed (hcp) [1,2]. Employing DFT with a generalized
gradient approximation, DFT(GGA), standard band structure
theory recovers the experimentally observed ferromagnetic
body-centered-cubic (bcc) structure and the bcc-hcp transition
[3,4]. Using the standard GGA functional of Perdew, Burke,
and Ernzerhof (PBE) [5], a good description of the lattice
parameter, magnetization, and compressibility of iron, cobalt,
and nickel is obtained [6,7]. However, as for nickel [8], both
DFT functionals lead to a d-electron bandwidth that is too large
and quasiparticle masses at the Fermi edge that are too small in
comparison with experiment [9]. This indicates that neither of
the DFT functionals takes into account the correlations among
the 3d electrons in an optimal way.

Coulomb correlations for electrons in narrow bands are
often modeled by a purely local, Hubbard-type interaction
[10–13]. Typically, the effective atomic interactions are pa-
rameterized by an intra-orbital Hubbard interaction U and a
Hund’s-rule coupling J . Unfortunately, Hubbard models pose
a notoriously difficult many-body problem.

Over the past three decades, two many-body approaches
emerged that permit a treatment of Hubbard-type interactions
in the limit of infinite lattice coordination number in combina-
tion with DFT. First, the dynamical mean-field theory (DMFT)
[14,15] maps the problem onto a single-impurity model. The
spectral function of the (multi-orbital) single-impurity model
is calculated numerically, typically using the quantum Monte-
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Carlo method [16]. With DMFT(QMC), iron’s structural and
magnetic transitions at temperatures T > 1000 K were studied
in Ref. [17] (and references therein), and the equation-of-state
for the bcc-hcp phase transition was investigated in Ref. [18].
Second, the Gutzwiller many-body wave function is com-
bined with DFT(LDA) to treat local interactions variationally
(“LDA+Gutzwiller,” “Gutzwiller-DFT”), see Refs. [8,19–32].
Recently, the LDA+Gutzwiller approach was applied to a
number of transition metals including nickel, iron, and iron
pnictides. [21,23,25,33,34]

The DMFT becomes exact in infinite dimensions but the
numerical effort is quite considerable, which often makes
further simplifications of the interactions advisable [17].
Moreover, the computational demands limit the studies to
elevated temperatures and prohibits an extensive scan in the
(U,J ) parameter space. On the other hand, the Gutzwiller
approach is a variational method at zero temperature and
therefore best suited for the calculation of ground-state
properties such as the lattice parameter, magnetization, and
bulk modulus. Dynamical properties, however, can only be
described within the quasiparticle picture, i.e., the method
provides a band structure but no quasiparticle lifetimes. Since
the Gutzwiller-DFT is computationally much cheaper than
DFT(LDA-DMFT), it permits a survey of the (U,J ) parameter
space for iron.

In this study, we present comprehensive results for iron
obtained from the LDA+Gutzwiller method. We obtain the ex-
perimental values for the lattice parameter, magnetization, and
compressibility, and provide a qualitatively correct description
of the structural transition from bcc to hcp iron under pressure.
When we take spin-orbit effects into account perturbatively,
we obtain a good agreement with ARPES measurements of
the quasiparticle band structure [35].

Our work is structured as follows. In Sec. II, we summarize
the Gutzwiller-DFT that was derived in detail in Ref. [8]; here,
we generalize it to the case of more than one atom per unit cell.
In Sec. III we discuss our results for the ground-state properties
of iron. In Sec. IV, we present the respective quasiparticle
band structures and compare them to ARPES data for bcc
iron. Conclusions, Sec. V, close our presentation.
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II. METHOD

The Gutzwiller-DFT and the minimization algorithm,
which we use in this work have been discussed in detail in
Refs. [8,36]. Therefore we will only summarize the main ideas
of these methods in the present section and focus on some
particular aspects that are relevant in our calculations for iron.

A. Gutzwiller-DFT

Instead of a single-particle reference system that leads
to the standard Kohn-Sham equations, the Gutzwiller-DFT
employs a many-particle reference system. It explicitly takes
into account the local Coulomb interaction (on lattice sites R)

V̂loc =
∑

R

V̂loc(R), (1)

V̂loc(R) =
∑

γ1,...,γ4

Uγ1,γ2
γ3,γ4

ĉ+
R,γ1

ĉ+
R,γ2

ĉR,γ3
ĉR,γ4

(2)

in those spin-orbital states φR,γ (r) ≡ φR,c,σ (r) which are
deemed to be strongly correlated. In our iron calculations,
these are the eg and t2g orbitals of the 3d shell. The explicit
form of the operator V̂loc(R) for d orbitals is given in Ref. [8],
see also Appendix. As also shown in that work, one obtains the
following “Hubbard density functional” for the many-particle
reference system:

EH[{nσ (r)}] = KH[{nσ (r)}] + U [{nσ (r)}] + VHar[{nσ (r)}]
+Vloc[{nσ (r)}] − Vdc[{nσ (r)}]
+EH,xc[{nσ (r)}], (3)

where EH,xc[{nσ (r)}] is the exchange-correlation functional,
see Sec. II C, and

U [{nσ (r)}] =
∑

σ

∫
drU (r)nσ (r), (4)

VHar[{nσ (r)}] =
∑
σ,σ ′

∫ ∫
drdr′V (r − r′)nσ (r)nσ ′(r′), (5)

KH[{nσ (r)}] = 〈
�

(n)
H,0

∣∣Ĥkin

∣∣�(n)
H,0

〉
, (6)

Vloc/dc[{nσ (r)}] = 〈
�

(n)
H,0

∣∣V̂loc/dc

∣∣�(n)
H,0

〉
. (7)

Here, we introduced the periodic potential U (r) of the nuclei
and the two-particle Coulomb interaction V (r − r′). The state
|�(n)

H,0〉 minimizes, by definition, the expectation value of the
Hamiltonian

ĤH = Ĥkin + V̂loc − V̂dc, (8)

for a given (and fixed) particle density nσ (r). Finally, the
“double-counting operator” V̂dc and the corresponding func-
tional Vdc[{nσ (r)}] account for the fact that the local Coulomb
interaction between electrons in the correlated orbitals is
already included in the Hartree energy and the exchange-
correlation functional. Unfortunately, there is no systematic
way to derive V̂dc for a given local Hamiltonian V̂loc. We work
with the widely used form of the double-counting functional
[14,21,37,38], see Appendix.

In contrast to the corresponding Kohn-Sham functional,
EH[{nσ (r)}] cannot be minimized without further approxima-
tions. In fact, it cannot even be evaluated because ĤH is a
many-particle Hamiltonian. We therefore use Gutzwiller wave
functions for the evaluation of (6) and (7). They are defined as

|�G〉 = P̂G|ψ0〉, (9)

P̂G =
∏

R

∑
�,�′

λ�,�′ (R)m̂R;�,�′ , (10)

where |ψ0〉 is a single-particle product state, and λ�,�′ (R) are
the elements of the variational parameter matrix λ̃(R). We
further introduced the eigenstates |�〉R of V̂loc(R) and the
operator

m̂R;�,�′ ≡ |�〉RR〈�′|. (11)

In our calculations for iron, we work with a diagonal
and lattice-site independent variational parameter matrix
λ�,�′ (R) = δ�,�′λ� , i.e., our energy functional depends on
n� = 210 = 1024 variational parameters λ� . Note that nondi-
agonal variational parameters do not substantially change the
results in our high-symmetry cubic situation in the absence of
spin-orbit coupling. Moreover, we do not find it necessary to
implement symmetry relations among the 1024 variational
parameters. This has been done in Ref. [33] where also
nondiagonal variational parameters λ�,�′ were taken into
account.

The evaluation of Eqs. (6) and (7) still is a difficult
many-particle problem. It can be solved in the limit of infinite
spatial dimensions where one obtains an analytical energy
functional. Using this energy functional in calculations on
finite-dimensional systems, as done in this work, is usually
denoted as the “Gutzwiller approximation” to the energy
functional EH[{nσ (r)}].

We shall not repeat here the details of the Gutzwiller ap-
proximation or the structure of the resulting energy functional
because it has been thoroughly discussed in earlier work.
Obviously, one obtains a functional of the form

EH = EH(|ψ0〉,{λ�}) (12)

that depends on the single-particle state |ψ0〉 and the variational
parameters λ� . The minimization of the energy functional with
respect to |ψ0〉 leads to an effective single-particle Schrödinger
equation for |ψ0〉. This “Gutzwiller-Kohn-Sham equation” is
the equivalent to the Kohn-Sham equation in ordinary DFT
calculations and is solved by an adapted version of the open
source QUANTUM ESPRESSO code [39].

For the minimization with respect to the variational param-
eters λ� (“inner minimization”), we use an algorithm whose
elements were discussed in Ref. [36]. The new feature of our
present calculations comes from the fact that in hcp iron we
have a unit cell with two iron atoms. Since both iron sites
have the same point symmetry one could actually use the
existing minimization algorithm [36]. For later use and testing
purposes, however, we developed a code that is capable to carry
out the inner minimization for a large number of in-equivalent
correlated atoms per unit cell. We explain this algorithm in the
following Sec. II B.

205151-2



QUASIPARTICLE BANDS AND STRUCTURAL PHASE . . . PHYSICAL REVIEW B 93, 205151 (2016)

B. Inner minimization for systems with multiple atoms
per unit cell

Let l = 1, . . . ,nl be the label for the nl atoms in the
unit cell and λ̃l the corresponding matrices of variational
parameters. Then, for a translationally invariant system, the
energy functional of the Gutzwiller approximation has the
form

E({λ̃l}) =
∑

l

Vl;loc(λ̃l) +
∑

l

∑
γ1,γ2

ql;γ2
γ1

(λ̃l)Kl
γ1,γ2

+ c.c.

+
∑
l,l′

∑
γ1,...,γ4

ql;γ2
γ1

(λ̃l)(ql′;γ4
γ3

(λ̃l′))∗I l,l′
γ1,γ2,γ3,γ4

. (13)

The third line describes the hopping of electrons between cor-
related orbitals, while the second line includes all contributions
from hopping processes into noncorrelated orbitals. During
the inner minimization, the tensors Kl

γ1,γ2
and I l,l′

γ1,γ2,γ3,γ4
are

just numbers that result from the solution of the Gutzwiller–
Kohn-Sham equation. Note that in our calculations for iron,
the renormalization matrices q

l;γ2
γ1 are real and diagonal, ql;γ2

γ1 =
δγ1,γ2q

l;γ1
γ1 , which simplifies the energy functional considerably.

The energy functional (13) needs to be minimized with
respect to all matrices λ̃l . Even with our diagonal Ansatz
for λ̃l , however, the total number of variational parameters
ntot = n� × nl would become prohibitively large if we tried
to minimize straightforwardly systems with different atoms
in the unit cell. Instead of minimizing (13) directly with
respect to all matrices λ̃l simultaneously, we therefore use
the following scheme. (i) Start with some initial values for the
matrices λ̃l

0 and the corresponding renormalization matrices
q

l;γ2
γ1;0 ≡ q

l;γ2
γ1 (λ̃l

0), e.g., the values in the noninteracting limit.
(ii) Minimize the nl individual energy functionals

El(λ̃
l) = Vl;loc(λ̃l) +

∑
γ1,γ2

ql;γ2
γ1

(λ̃l)Kl
γ1,γ2

+ c.c.

+ 1

2

∑
l′

∑
γ1,...,γ4

ql;γ2
γ1

(λ̃l)
(
q

l′;γ4
γ3;0

)∗
I l,l′
γ1,γ2,γ3,γ4

(14)

with respect to λ̃l , e.g., by means of the algorithm introduced
in Ref. [36]. (iii) If the matrices λ̃l

1 minimize the nl functionals
(14), set λ̃l

0 = λ̃l
1 and go back to step (i) until a converged

solution has been reached.
In our actual calculations, the band optimization

(Gutzwiller-Kohn-Sham equations for |ψ0〉) and of the local
parameters (inner minimization) are not separated. After an
update of the matrices λ̃l in step (ii), the matrices q

l;γ2
γ1 are

recalculated. Then, the Gutzwiller-Kohn-Sham equation is
solved again to arrive at new values for the tensors Kl

γ1,γ2

and I l,l′
γ1,γ2,γ3,γ4

in Eq. (14). Typically, we need 10 to 15
iterations of the combined cycle of band optimization and
inner minimization to reach a converged minimum.

C. Computational details

Our work is based on the open-source plane-wave pseu-
dopotential code QUANTUM ESPRESSO [39]. We implemented
the routines necessary for the Gutzwiller-DFT, as described
previously in Ref. [8], see the supplemental material for
further information [40]. For the Gutzwiller-Kohn-Sham cal-

culations we used the LDA exchange-correlation functional
of Perdew and Zunger for EH,xc[{nσ (r)}]; note that our
calculations start from the local spin-density approximation
(LSDA) so that we recover the results from DFT(LSDA)
for U = J = 0. For comparison, we also performed GGA
calculations based on the Perdew-Burke-Ernzerhof functional.
To model the electron-core interaction, we employed ultrasoft
pseudopotentials from the standard QUANTUM ESPRESSO dis-
tribution with nonlinear core corrections. These are Fe.pz-
nd-rrkjus.UPF (LDA), and Fe.pbe-spn-rrkjuspsl.0.2.1.UPF
(Fe.rel-pbe-spn-rrkjuspsl.0.2.1.UPF) for (scalar) relativistic
GGA calculations. The GGA pseudopotentials yield equilib-
rium lattice constants (aGGA = 5.39aB), magnetic moments
(mGGA = 2.25μB ), and electronic structure in excellent agree-
ment with previous full-potential calculations [35].

In Gutzwiller-DFT, we find that a very accurate integration
over k space is needed for a proper convergence. Therefore
integrations over the Brillouin zone are performed using the
tetrahedron method. For bcc iron, we use at least 624 k points in
the irreducible part of the Brillouin zone. For nonmagnetic hcp,
we work with 729 inequivalent k points. For all calculations a
wave cutoff of 60 Ry was set, and a charge-density cutoff of
600 Ry.

For the construction of the 3d orbitals, we employ the
program package POORMANWANNIER that is part of the stan-
dard QUANTUM ESPRESSO distribution. We generate Wannier
functions using a very large energy window of 90 eV around
the Fermi energy and the resulting 3d orbitals are very close
to localized 3d orbitals. More details on the choice of the
energy window and implementations are given in Sec. III A in
Ref. [40]. In the following, we denote our implementation of
the LDA+Gutzwiller scheme as “Gutzwiller-DFT.”

III. GROUND-STATE PROPERTIES

A. Adjustment of the Coulomb parameters

The Gutzwiller-DFT is not a fully ab initio method. The
Coulomb interaction between the 3d electrons is parameter-
ized by the Hubbard interaction U and the Hund’s-rule cou-
pling J . In this work, we choose to adjust these two parameters
such that the Gutzwiller-DFT reproduces the experimental
values for the lattice parameter a and the magnetization m;
see our discussion Sec. III A 3.

The DFT(LDA) predicts an fcc or hcp crystal structure as
the ground state for iron at ambient pressure [1,2]. Therefore
we do not show the results for U = J = 0 in the following.
This serious flaw of DFT(LDA) is easily overcome with
LDA+Gutzwiller, and also in DFT(GGA) where aGGA ≈
5.36 aB and m ≈ 2.2 μB are obtained [3,4]. For local inter-
actions as small as U � 1.0 eV and J = 0.06U , Gutzwiller-
DFT finds the experimentally observed ferromagnetic bcc
lattice structure. Therefore the correct ground-state structure
dominates the (U,J ) phase diagram, and it is straightforward to
search for the optimal Hubbard interaction U and Hund’s-rule
coupling J , as was done for nickel previously [8].

1. Lattice parameter

In Fig. 1, we display the bcc lattice parameter a(U,J ) as a
function of U for various ratios J/U . The horizontal dashed
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FIG. 1. Cubic lattice parameter a(U,J ) for bcc iron in units of the
Bohr radius aB = 0.529 Å as a function of the Hubbard interaction
U for J/U = 0.05, 0.06, and 0.075. The horizontal dashed line
indicates the experimental value aexp = 5.42aB = 2.87 Å.

line indicates the experimental value, aexp = 5.42aB = 2.87 Å
[41]. As also seen in nickel [8], the lattice parameter increases
monotonously as a function of the Hubbard interaction.
This effect is desired because the DFT(LDA) considerably
underestimates the lattice parameter for iron.

The influence of the Hubbard interaction is readily under-
stood. The Coulomb repulsion weakens the contribution of the
3d electrons to the metallic binding so that the crystal is less
tightly bound; the crystal volume increases as a function of
the Coulomb repulsion. Figure 1 shows that the Hund’s-rule
coupling J counteracts the Hubbard interaction U . The slope
of a(U,J ) as a function of U becomes smaller for larger J .
This indicates that the Hund’s-rule coupling J in iron has a
tendency to increase the electrons’ itineracy, see below.

2. Magnetization

In Fig. 2, we show the ordered magnetic moment m(U,J )
as a function of the Hubbard interaction U for the previously
used ratios J/U = 0.05,0.06,0.075. The horizontal dashed
line indicates the experimental value, mexp = 2.22μB [42]. The

FIG. 2. Magnetization m(U,J ) in units of Bohr magneton
μB as a function of the Hubbard interaction U for J/U =
0.05, 0.06, and 0.075. The horizontal dashed line indicates the
experimental value m = 2.22μB.

ordered magnetic moment m is calculated from the particle
densities nσ (r) as

m/μB =
∫

dr[n↑(r) − n↓(r)] , (15)

where we used g = 2 as the electrons’ gyromagnetic factor.
It is important to note that the DFT(LDA) predicts a large

magnetization, i.e., iron is a band ferromagnet in DFT(LSDA).
Figure 2 shows that the Coulomb corrections due to the intra-
atomic correlations in the 3d shell amount to only 10% of
the magnetization. Indeed, in the parameter regime shown in
Fig. 2, we have 2.0μB < m < 2.4μB for 1 eV � U � 9 eV
and J/U = 0.06 and 0.075.

Since the Coulomb correlations in the 3d shell are not the
primary cause for magnetism, the magnetization m(U,J ) does
not show a simple dependence on the Hubbard interaction U

in combination with the Hund’s-rule coupling J . In iron, for
vanishing Hund’s-rule coupling, J/U = 0, we find that the
magnetization increases as a function of U , as also seen in
LDA+U . This is the usual Stoner mechanism: in a magnetized
system there is less Coulomb energy to be paid, at the price
of a loss in kinetic energy. When we increase U , the energy
balance is shifted towards the exchange-energy gain so that
the magnetization increases.

Within the Gutzwiller-DFT, the Hund’s-rule coupling leads
to the rather unexpected behavior seen in Fig. 2. For fixed U ,
an increase of the Hund’s-rule coupling J leads to a decrease
of the magnetization m(U,J ). Such a behavior was observed
previously in iron [21], and also in nickel [8]. Moreover, the
influence of the Hund’s-rule coupling is not small. Indeed, as
seen in Fig. 2, it leads to a parabolic downturn of m(U,J ) as
a function of U for fixed J/U . We shall discuss the effect of
the Hund’s-rule coupling in more detail in Sec. III B 3.

Using the information in Figs. 1 and 2 we can deter-
mine the optimal values for the interaction parameters. For
Uopt = 9.0 eV and Jopt = 0.54 eV, we obtain good results
for the lattice parameter and the magnetic moment, aopt =
a(Uopt,Jopt) = 5.39aB = 2.85 Å and mopt = m(Uopt,Jopt) =
2.24μB, that agree very well with the experimental values.
In the rest of paper, we refer to the parameter set (Uopt,Jopt) as
our “optimal” atomic parameters.

3. Size of optimal atomic parameters

Before we proceed, we briefly comment on our optimal
Coulomb parameters because they are substantially larger
than parameters used in other studies for iron [17,43–46]. In
most previous studies, the values U = 2, . . . ,3 eV and J =
0.8, . . . , 1.0 eV are used, e.g., to describe the high-temperature
regime with the transition from fcc iron to bcc iron and the
Curie transition from nonmagnetic to magnetic bcc iron,
while more recent LDA+DMFT studies employ larger values,
Ū = 4.3 eV and J̃ = 1.0 eV [18]. In all cases, the explored
parameter regime appears to be quite different from ours.

First of all, we note that the large spread of values of
(U,J ) in the literature is due to the strong sensitivity of
these parameters to the energy window used for projecting,
or downfolding, the full electronic structure to an effective
many-body model [47]. It is well known that the bare Hubbard
parameters U are of the order of 20 eV, or larger [10]. They
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apply for instantaneous charge excitations of an isolated atom,
which are strongly screened in a solid. In Fe, for example, the
screening reduces U to ∼ 3 eV for d-only models [34,48].
Our self-consistent DFT method is based on a projective
technique to construct Wannier functions. In the present
calculations, we chose a large energy window, which ensures
a very good localization of the Fe 3d orbitals, and a minimal
dependence of the basis set on atomic positions. This large
energy window translates into larger values of U and J [49].
Other calculations can typically afford to retain fewer bands.

Second, we note that the Hubbard-U in our treatment
parameterizes the interaction of two electrons in the same
orbital, see Appendix. In other approaches, this quantity
describes some orbital average. For example, Pourovskii
et al. [18] use the Slater-Condon parameter F (0) = Ū , where
Ū = (U + 4U ′)/5, see Eq. (A9), and U ′ = A − B + C =
U − 2J is the interorbital Coulomb repulsion. Naturally, the
intra-orbital U is larger than an average over intraorbital and
interorbital Coulomb repulsions. Likewise, we work with the
average Hund’s-rule coupling J = 5B/2 + C, see Eq. (A6),
whereas J̃ ≡ (F (2) + F (4))/14 = 7B/2 + 7C/5 = 7J/5 [18].
Therefore F (0) = 4.3 eV and J̃ = 1.0 eV correspond to
J = 0.71 eV and U = Ū + 8J̃ /7 = 5.4 eV with J/U = 0.13.
We note in passing that we work with C/B = 4, whereas
others use F (2)/F (4) = 8/5, which corresponds to C/B =
175/47 ≈ 3.7 [50].

Lastly, in our Gutzwiller calculations, we use parameters
such as U and J to “match” selected experimental quantities.
In this way, we compensate approximations in the model
setup, e.g., the neglect of nonlocal correlations in Hubbard-
type models, and in the model analysis, e.g., the limit of
infinite dimensions or an approximate variational ground
state. For example, in Gutzwiller calculations, the optimal
Coulomb parameters must be chosen somewhat smaller when
the full atomic interaction is replaced by density-density
interactions only [34]. Similarly, larger U values are found
to be optimal when the impurity solver in quantum Monte
Carlo is rotationally invariant [17]. In the following, we will
show that our optimal atomic parameters lead to a good agree-
ment with experiment. In particular, our substantial Hubbard
interaction leads to noticeable bandwidth renormalizations and
an increase of the quasiparticle masses at the Fermi energy, as
seen in experiment [35,51].

We note that the atomic parameters for our study of iron
resemble those used in recent LDA+Gutzwiller studies by
Deng et al. [20,21] and our results agree quite well; on the
other hand, we do not agree with Borghi et al. [33] who
advocate small Hubbard interactions in their LDA+Gutzwiller
work; however, as discussed in the following, there are sizable
discrepancy between their and our results already at the
DFT(LDA) level, and this prevents a detailed comparison.

B. Physical properties within Gutzwiller-DFT

After fixing the parameters, we are in the position to
test the Gutzwiller-DFT against independent experimental
observations. Here, we choose the bulk modulus and the
transition from ferromagnetic bcc iron to nonmagnetic hcp
iron. Furthermore, we discuss the local occupancies in more

FIG. 3. Energy per atom e(v) in units of eV as a function of the
unit-cell volume v in units of a3

B for nonmagnetic and ferromagnetic
bcc iron and nonmagnetic hcp iron at U = 9 eV and J = 0.54 eV
and ambient pressure. The energies are shifted by the same constant
amount.

detail to elucidate the unexpected effect of the Hund’s-rule
coupling on the magnetization seen in Fig. 2.

1. Bulk modulus

In Fig. 3, we show the ground-state energy per atom,
e(v) = E(V )/N , as a function of the unit-cell volume v =
V/N = a3/2 in the vicinity of the optimal value v0 = a3

opt/2 =
78.3a3

B = 11.6 Å3 with aopt = 5.39aB = 2.85 Å. The bulk
modulus at zero temperature is defined as the second-derivative
of the ground-state energy E(V ) with respect to the volume,

B = v0
d2e(v)

dv2

∣∣∣∣
v=v0

. (16)

This implies the Taylor expansion e(v) = e(v0) +
(Bv0/2)(v/v0 − 1)2 + · · · for the ground-state energy
(Birch-Murnaghan fit). Therefore we find the bulk modulus
from the curvature of e(v) near v = v0.

In Gutzwiller-DFT we find a bulk modulus of B =
165 GPa, in very good agreement with the experimental
value, Bexp = (170 ± 4) GPa [41,52]. The LDA+Gutzwiller
value substantially improves the DFT(LDA) value of BLDA =
227 GPa, it is slightly better than the values from DFT(GGA)
studies, BGGA = (190 ± 10) GPa [41] and agrees with the
value obtained in DMFT calculations, BDMFT = 168 GPa [18].

2. Pressure-induced transition from bcc to hcp iron

Figure 3 shows that the bcc structure is only stable because
it is ferromagnetic [53]. By reducing the volume by applying
external pressure, a first-order structural transition is observed
at a pressure of p

exp
c = 10, . . . ,15 GPa at room temperature

[54], together with the concomitant electronic and magnetic
changes [9,55].

In Fig. 4, we plot the enthalpy difference per atom between
the nonmagnetic hcp lattice and the ferromagnetic bcc lattice as
a function of applied pressure for U = 8.0, 9.0 and 10 eV for
fixed ratio J/U = 0.06. For our optimal parameter set (U =
9.0 eV and J = 0.06U = 0.54 eV), we obtain pc = 41 GPa as
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FIG. 4. Enthalpy difference per atom hhcp − hbcc in units of
eV between nonmagnetic hcp iron and ferromagnetic bcc iron as
a function of applied pressure p for U = 8.0, 9.0, 10 eV and
J/U = 0.06. Inset: magnetization as a function of pressure.

critical pressure at zero temperature, in qualitative agreement
with experiment. The critical parameter only slightly depends
on the value of U in the vicinity of U = Uopt. We find at
J/U = 0.06 that pc decreases as a function of U , from
pc = 44 GPa for U = 8.0 eV down to pc = 38 GPa for
U = 10 eV. Therefore the transition at positive pressures is
a robust feature in Gutzwiller-DFT. We note in passing that
the critical pressure sensitively depends on the ratio J/U . For
U = 9 eV, we find pc = 18 GPa for J/U = 0.075. In this
case, the magnetization at ambient pressure is smaller than
in experiment, m = 2.05μB, and, correspondingly, it requires
less pressure to destroy the ferromagnetic bcc ground state.

Our Gutzwiller-DFT values for pc are larger than the
experimental values observed at room temperature. Our calcu-
lation applies to zero temperature while, at finite temperatures,
phonon, magnon, and electronic quasiparticle contributions to
the entropy also add to the difference in the Gibbs’ free energies
between the two phases. The latter contributions may not be
unimportant because the magnetic order is destroyed at the
transition. Whether the bcc or the hcp phase is stabilized by
the various entropy contributions is unresolved.

We note in passing that, for simplicity, we have done the
hcp calculations with the same local Hamiltonian as used for
the bcc calculations, see Appendix. The latter explicitly uses
cubic symmetry. Since we work in spherical approximation in
any case, we do not expect that this additional approximation
induces significant corrections.

In the inset of Fig. 4, we show the magnetization in bcc
iron as a function of pressure when we ignore the structural
transition. The magnetization changes by less than 10% from
ambient pressure to pc, and it would vanish at much large
pressures, pm > 600 GPa � pc. Therefore we find that the
first-order transition at pc is not triggered by a collapse of the
magnetization in bcc iron.

3. Local occupancies

In iron, the atomic 4s electrons strongly hybridize with the
3d levels and increase their average occupancy from the atomic
value natom

d = 6 to nLDA
d = 7.3 in DFT(LDA). The double-

counting correction used in this work, see Appendix, keeps

FIG. 5. Local charge distribution of iron atoms nd (n) for U =
0 (LDA limit) and U = 9 eV and J/U = 0.05, 0.06, and 0.075
(Gutzwiller-DFT) for optimal lattice parameters.

nd essentially constant. We find nGDFT
d = 7.2 for U = 9 eV

and J/U = 0.06. Therefore the local Coulomb interactions
merely redistribute the electrons among the 1024 atomic 3d

configurations.
The average 3d-electron density nd and the magnetization

m do not change much as a function of (U,J ). However, this
does not imply that correlations are small in iron. In order
to display the correlated nature of the ground state, we study
some local properties.

First, we discuss the local charge distribution nd (n), which
gives the probability to find n electrons in the 3d shell on
an iron atom. Figure 5 shows nd (n) from Gutzwiller-DFT
in the LDA limit, U = 0, and for U = 9 eV and J/U =
0.05, 0.06, and 0.075. For U = 0, we find quite a broad
distribution nd (n) with significant values for nd (n) for 4 � n �
10. For U = 9.0 eV and J/U = 0.05, 0.06, and 0.075, only
configurations with n = 6, 7, and 8 electrons in the 3d shell
have a substantial weight. This does not come as a surprise
because the Gutzwiller correlator suppresses the occupation
of local configurations that are energetically unfavorable. This
behavior was also observed in previous studies [34,48].

More revealing is the local spin distribution function ns(s)
shown in Fig. 6 where ns(s) gives the probability to find the
local spin quantum number s on an iron atom. From ns(s), we
can calculate the expectation value for the local spin as〈

Ŝ2
i

〉 =
∑

s

ns(s)s(s + 1) ≡ Sm(Sm + 1). (17)

Here, Sm defines our average spin per atom. Figure 6 shows
that the local spin distribution is fairly broad for U = 0. Since
nd = 5 is finite for U = 0, the local spin distribution has
a finite weight even for s = 5/2. For U = 9 eV, the local
configurations 3d7 and 3d8 dominate, see Fig. 5. Therefore,
applying Hund’s first rule, we expect to find peaks in the local
spin distribution ns(s) at s = 3/2 and s = 1 which is indeed
seen in Fig. 6. Concomitantly, the average spin per atom is a
bit larger for U = 9 eV, Sm = 1.3 for J/U = 0.06, than for
U = 0,SLDA

m = 1.23.
In contrast to Hund’s first rule, Sm(J ) decreases as a

function of the Hund’s-rule coupling J . This is seen from
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FIG. 6. Local spin distribution of iron atoms ns(s) for U =
0 (LDA limit) and U = 9 eV and J/U = 0.05, 0.06, and 0.075
(Gutzwiller-DFT) for optimal lattice parameters.

Fig. 6, which shows that the weight of configurations with
spin s = 0,1/2 increases at the expense of configurations with
spin s = 3/2. Therefore both the overall magnetization m and
the local spin Sm decrease as a function of the Hund’s-rule
coupling. This seems to contradict Hund’s first rule which
states that, in an atom, a larger J stabilizes configurations with
a larger spin. Apparently, the solution to this problem must be
related to the fact that we are investigating a metal in which
band-magnetism dominates.

In Table I, we list the values for several quantities for
J/U = 0.05, 0.06, and 0.075 at fixed U = 9.0 eV and
fixed lattice parameter a = 5.39aB. The data redisplay the
behavior seen in Figs. 2 and 6: when we increase J/U ,
the magnetization m decreases. Note, however, that upon an
increase of J/U , the electronic correlations actually increase,
too, as can be seen from the bandwidth reduction factors (q2).
The itineracy of the electrons becomes progressively worse
when the weight of local configurations is redistributed by
the Gutzwiller correlator for increasing J/U . The effect of
the Hund’s-rule coupling on the bandwidth reduction is fairly
pronounced. The (q2) factors decrease by 
(q2) ≈ 0.2 when
we vary U from zero to U = 9.0 eV but they change by as
much as 
(q2) ≈ 0.1 for the majority spin species when we go
from J/U = 0.05 to J/U = 0.075 at U = 9 eV. Apparently,

TABLE I. Magnetization m, bandwidth reduction factors (qeg
)2

and (qt2g
)2 for 3d(eg) and 3d(t2g) electrons, respectively (resolved for

majority spins and minority spins), kinetic energy Ekin per atom, and
interaction energy Eint per atom; Gutzwiller-DFT data for U = 9.0 eV
for J/U = 0.05, 0.06, and 0.075. The lattice parameter is fixed at
a = 5.39aB.

J/U = 0.05 J/U = 0.06 J/U = 0.075

m/μB 2.49 2.24 2.05
(qeg

)2 0.794, 0.799 0.748, 0.799 0.712, 0.795
(qt2g

)2 0.790, 0.783 0.746, 0.779 0.718, 0.770
neg

0.985, 0.350 0.985, 0.341 0.985, 0.332
nt2g

0.970, 0.546 0.925, 0.594 0.887, 0.632
Ekin (eV) 94.82 94.90 95.05
Eint (eV) 1.68 1.48 1.16

it is favorable for the kinetic energy to flip majority spins
back to minority spins, i.e., there is a tendency to reduce the
magnetization as a function of J/U . As seen from table I,
the partial occupancy neg

of the eg levels remains almost
unchanged, and the reduction of the magnetization from
m = 2.49μB at J/U = 0.05 to m = 2.05μB at J/U = 0.075
is generated by flipping majority-spin t2g electrons.

The Hund’s-rule coupling J changes the weight of isoelec-
tronic local configurations with different spin. Apparently, this
level splitting impedes the average electron transfer between
atoms much more than the elimination of charge states with
n = 4, 5, 9, and 10 by the Hubbard interaction U . The loss
in kinetic energy by this “configurational hopping blockade”
cannot be compensated fully by a gain in local interaction
energy that is at most of the order of 
EJ = (J1Sm,1 − J2Sm,2)
with 
EJ ≈ 0.2 eV per atom in our example. Instead, the
system prefers to regain kinetic energy by reducing the
magnetization at the price of loosing exchange energy; recall
that in a band magnet the loss in kinetic energy is compensated
by the gain in exchange energy. Since all quantities are
determined self-consistently in Gutzwiller-DFT, the kinetic
energy, the exchange energy, and the gain in Hund’s-rule
energy must be newly balanced to readjust m when we change
J/U for fixed U . Apparently, in band magnets, we observe a
intricate interplay between atomic and band-structure physics.

IV. BAND STRUCTURE

A. Bandwidth renormalization

We begin with a comparison of the quasiparticle bands
from DFT(LDA), DFT(GGA), and Gutzwiller-DFT with U =
9 eV and J/U = 0.06 for ferromagnetic bcc iron at ambient
pressure (a = 5.39aB). Moreover, we compare bands from
DFT(LDA) and Gutzwiller-DFT for nonmagnetic hcp iron
with lattice parameter ahcp = 4.60aB and (c/a)hcp = 1.60;
the results change marginally when we use the ideal ratio
(c/a)ideal = √

8/3 = 1.63.
In order to obtain smooth band plots and to include

the effects of the spin-orbit coupling on the band structure
perturbatively, see Sec. IV B 1, we introduced a further post-
processing step. The Gutzwiller-Kohn-Sham quasiparticles
were used to generate maximally-localized Wannier functions
using WANNIER90 [56], from which we constructed a tight-
binding model to calculate the band structure at arbitrary k
points. These Wannier functions are used only for plotting
purposes, and are unrelated to those chosen to perform the
self-consistent calculations.

We checked that the tight-binding dispersion relation agrees
with the calculated energy levels from QUANTUM ESPRESSPO

for our selected independent k points in the Brillouin zone.
The small wiggles in the 4s bands close to the � point seen
in Fig. 7 are a result of the tight-binding fit. We disregard the
problem because this does not influence the 3d bands close to
the Fermi energy and has no effect on the total energy, which
is calculated using the original quasiparticles.

1. Ferromagnetic bcc iron

In Fig. 7, we compare the band structure for ferromag-
netic bcc iron from DFT(LDA) and from Gutzwiller-DFT
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SCHICKLING, BÜNEMANN, GEBHARD, AND BOERI PHYSICAL REVIEW B 93, 205151 (2016)

FIG. 7. Comparison between DFT(LDA) bands (blue, dashed
lines) for aLDA = 5.21aB and bands from Gutzwiller-DFT (red, full
lines) for the optimal atomic parameters U = 9.0 eV, J = 0.54 eV,
and a = 5.39aB for ferromagnetic bcc iron. For clarity, we do not
discriminate between majority and minority spin bands. The Fermi
energy is at EF = 0 (dashed black horizontal line).

for U = 9.0 eV and J = 0.54 eV. Both calculations are
performed at the optimal lattice parameter, aLDA = 5.21aB and
aGDFT = 5.39aB. Figure 7 shows the common characteristics
of correlation-induced effects on energy bands. First, the
uncorrelated, 4sp-type parts of the quasiparticle bands deep
below the Fermi energy do not differ much, e.g., the lowest
4sp-type majority bands are at �LDA

low,↑ = 9.0 eV and �G-DFT
low,↑ =

8.57 eV below the Fermi energy EF = 0. Minor deviations are
related to slightly different lattice parameters and 3d-electron
numbers nd in DFT(LDA) and Gutzwiller-DFT.

Second, the Gutzwiller-correlated 3d-type parts of the
quasiparticle bands close to the Fermi energy are shifted with
respect to the DFT(LDA) bands, and the bandwidths of the
correlated bands are reduced by factors proportional to (qt2g

)2

and (qeg
)2 for the 3d-t2g and 3d-eg majority and minority

bands. Note that, due to the hybridization of the quasiparticles,
a meaningful symmetry character can only be assigned to the
bands at high-symmetry points in the Brillouin zone.

The bandwidth reduction in iron is not as strong as in
nickel. Nevertheless, for selected symmetry points, the dis-
crepancies between the quasiparticle bands from DFT(LDA)
and Gutzwiller-DFT are quite large. For example, at the H

point in the Brillouin zone, we find a bandwidth reduction
for the majority band by 36%, from H LDA

low,↑ = 5.38 eV down
to H G-DFT

low,↑ = 3.94 eV, in good agreement with experiment,
Hlow,↑ = 3.8 eV [57]. Likewise, at the N point in the Brillouin
zone there is a majority spin band at Nlow,↑ = 4.5 eV below
the Fermi energy in experiment [57], in comparison with
NLDA

low,↑ = 5.47 eV in DFT(LDA) and NG-DFT
low,↑ = 3.90 eV in

Gutzwiller-DFT. At the � point, the bandwidth reduction is
only about 10% for bands close to the Fermi edge. In addition,
the bandwidth renormalization at the � point is overlaid with
a bandshift of about 0.4 eV.

For completeness, we show the band structure for fer-
romagnetic bcc iron from Gutzwiller-DFT for U = 9.0 eV
and J = 0.54 eV in comparison with those from (scalar
relativistic) DFT(GGA) calculations in Fig. 8. The two band
structures differ less than in Fig. 7 because our DFT(GGA)

Γ H P N Γ P

-8

-6

-4

-2

0

2

4

en
er

gy
 (

eV
)

FIG. 8. Comparison between DFT(GGA) bands (black, dashed
lines) for aGGA = 5.39aB and bands from Gutzwiller-DFT (red, full
lines) for the optimal atomic parameters U = 9.0 eV, J = 0.54 eV,
and a = 5.39aB for ferromagnetic bcc iron. For clarity, we do not
discriminate between majority and minority spin bands. The Fermi
energy is at EF = 0 (dashed horizontal line).

provides the same equilibrium lattice parameter as used in
Gutzwiller-DFT, aGGA = 5.39aB. The bandwidth of the 3d

electrons from the DFT(LDA) is calculated for aLDA = 5.21aB

so that the 3d orbitals have a larger overlap in DFT(LDA)
than in DFT(GGA), and the 3d bandwidth is larger in LDA
than in GGA. Nevertheless, the correlations in the Gutzwiller
approach lead to an additional bandwidth reduction of the d

bands across the Brillouin zone.

2. Nonmagnetic hcp iron

In Fig. 9, we compare the band structure for nonmagnetic
hcp iron from DFT(LDA) and from Gutzwiller-DFT for U =
9.0 eV and J = 0.54 eV. Both calculations are performed at

FIG. 9. Comparison between DFT(LDA) bands (blue, dashed
lines) and bands from Gutzwiller-DFT (red, full lines) for the atomic
parameters U = 9.0 eV and J = 0.54 eV for paramagnetic hcp iron at
a = 4.60aB and c/a = 1.60. The Fermi energy is at EF = 0 (dashed
black horizontal line).
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the lattice parameter a = 4.60aB and c/a = 1.60 so that the
unit-cell volume is v0 = √

3/2(a2/2)c = 67.4a3
B. The partial

densities are almost identical, nd = 7.3.
As for ferromagnetic bcc iron, the uncorrelated, 4sp-type

parts of the quasiparticle bands deep below or high above
the Fermi energy do not differ much. Again, the Gutzwiller-
correlated 3d-type parts of the quasiparticle bands close to the
Fermi energy are shifted with respect to the DFT(LDA) bands,
and the bandwidths of the correlated bands are reduced. The
Fermi-liquid properties (Fermi surface topology, wave vectors,
velocities) differ only quantitatively.

B. Comparison with ARPES measurements

1. Inclusion of spin-orbit coupling

As the effective parameter for the spin-orbit interaction
we choose ζ = 0.06 eV, in agreement with previous studies
[58,59]. The small value permits a perturbative treatment of
the spin-orbit coupling. In effect, it leads to negligibly small
changes in the band structures but for avoided crossings of
majority and minority bands where it induces band gaps
of the order of ζ . Since some of the avoided crossings
are energetically close to the Fermi energy, the spin-orbit
interaction has some noticeable effect on the positions of the
Fermi points and the Fermi velocities.

For our perturbative treatment, we start from the majority
and minority bands as calculated from Gutzwiller-DFT for
(U = 9.0 eV and J = 0.54 eV) at a = 5.39aB and use the
program WANNIER90 [56] to derive a tight-binding Hamilton
operator. Then, the two block-diagonal parts of the Hamil-
tonian for the majority and minority bands are coupled by
the spin-orbit interaction. We obtain the band structure with
spin-orbit coupling from the diagonalization of this effective
Hamilton matrix. For larger values of ζ , a fully self-consistent
treatment of the spin-orbit interaction is necessary that requires
the formulation of a relativistic Gutzwiller-DFT.

2. Quasiparticle bands close to the Fermi energy

Figures 10 to 13 show an overlay of ARPES data from
Schäfer et al. [35] with the results of our perturbative spin-
orbit calculation based on the Gutzwiller-DFT. A quantitative

FIG. 10. Overlay of quasiparticle bands from LDA+Gutzwiller
for U = 9.0 eV, J = 0.54 eV, and lattice parameter a = 5.39aB

with ARPES data along the �-P direction [35].

FIG. 11. Overlay of quasiparticle bands from LDA+Gutzwiller
for U = 9.0 eV, J = 0.54 eV, and lattice parameter a = 5.39aB

with ARPES data along the �-H direction [35].

comparison between theory and experiment is given in Table II
where we list the Fermi wave numbers and velocities for
various directions and Fermi sheets for LDA+Gutzwiller
and ARPES [35]. For completeness, we also include in the
table values from our fully relativistic GGA calculations, see
Sec. II C for details.

We begin our discussion with the �-P high-symmetry
line in the Brillouin zone. From Fig. 10 we see that, close
to the � point, we observe a very good agreement between
LDA+Gutzwiller and experimental data for the Fermi sheet VI.
Moreover, the Fermi wave numbers and the velocities agree
very well, as seen from Table II. Our LDA+Gutzwiller im-
proves the theoretical values for the Fermi velocity. The mass
ratio between theory and experiment reduces from vd/vR =
1.9 in DFT(GGA) to vG/vR = 1.6 in LDA+Gutzwiller. Note
that the mass ratio is unity for a perfect agreement between
theory and experiment, and it is larger than unity when the
theoretical mass is smaller than measured value, v/vR =
mR/m.

The largest discrepancies between experiment and
LDA+Gutzwiller theory are seen at and around the P point.
The LDA+Gutzwiller bands are about 0.3 eV below the
ARPES bands, and the discrepancy in LDA+Gutzwiller is
actually worse than in LDA(GGA). We do not have an
explanation for this deviation.

Half way on the line �-P there is the Fermi sheet I. For this
band, the values for the Fermi wavenumbers from DFT(GGA)
and LDA+Gutzwiller are very close to the experimental value
but the Fermi velocities deviate considerably, even though
LDA+Gutzwiller has a slightly better mass ratio, vG/vR = 2.8
versus vd/vR = 3.4.

In Fig. 11, we plot the data overlay along the high-
symmetry line �-H . As discussed before, the agreement of
the quasiparticle bands, wave numbers, and velocities of Fermi
sheet VI close to the � point is very good. The same holds true
for the Fermi sheet II close to the H point.

For the majority Fermi sheet I half way between the points
� and H we find a large mass ratio as in LDA(GGA),
vG/vR = 3.0 versus vd/vR = 2.1. Note, however, that several
bands meet at the Fermi energy with the same Fermi wave
number, and the spin-orbit coupling leads to a splitting of
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TABLE II. Comparison of Fermi wave numbers and velocities for various Fermi sheets between fully relativistic DFT(GGA),
LDA+Gutzwiller for U = 9.0 eV, J = 0.54 eV, and a = 5.39aB, and ARPES results [35]. FS stands for the Fermi sheet, kF is the Fermi wave
number, and vF = v/� = �kF/m is the Fermi velocity.

Direction Spin FS kF GGA kF LDA+G kF ARPES Slope vd Slope vG Slope vR Mass ratio Mass ratio

(Å
−1

) (Å
−1

) (Å
−1

) GGA (eVÅ) LDA+G (eVÅ) ARPES (eVÅ) vd/vR vG/vR

�-P Min. VI 0.31 0.33 0.32 1.66 1.38 0.88 1.9 1.6
Maj. I 0.95 0.94 0.97 4.74 3.86 1.40 3.4 2.8

�-H Min. VI 0.47 0.49 0.46 1.08 0.83 0.72 1.5 1.2
Maj. I 1.09 1.10 1.08 2.36 3.35 1.12 2.1 3.0

II 1.94 1.93 1.70 0.64 0.58 0.67 1.0 0.9
�-N Min. VI 0.33 0.35 0.36 1.52 1.25 0.80 1.9 1.6

Maj. I 1.21 1.21 1.22 1.89 1.53 1.16 1.6 1.3
H-P Min. V 0.65 0.64 0.68 4.82 4.16 1.79 2.7 2.3

bands. Therefore it is difficult to determine the Fermi velocity
due to the sequence of crossings. This region around the
Fermi energy is not very suitable for a meaningful comparison
between theory and experiment.

In Fig. 12, we plot the data overlay along the high-symmetry
line N -�. In experiment, the intensity along this direction is
suppressed close to the point N due to matrix-element effects.
However, we reproduce a crossing of the Fermi energy close
to the N point and the slope of the bands agree quite well.

For the minority band VI close to the � point, we find a mass
ratio of vG/vR = 1.6, versus vd/vR = 1.9 in DFT(GGA). For
the majority band I half way between � and N , we find a mass
ratio of vG/vR = 1.3, versus vd/vR = 1.6 in DFT(GGA). In
both cases, we find a slight improvement over the DFT(GGA)
results. Half way between the points N and �, it seems as if the
LDA+Gutzwiller bands at energies of about −0.5 eV do not
agree very well with the ARPES bands but better experimental
data are needed for a definitive statement.

Lastly, we take a look at the direction H -P in Fig. 13. As
already seen from the other plots, the agreement at and around
the point H is quite good, while the comparison at point P

reveals some discrepancies between theory and experiment.
In addition, the ARPES data show some distinct Fermi level
crossing half way between H and P . The LDA+Gutzwiller
approach yields a Fermi wave number for this crossing that

FIG. 12. Overlay of quasiparticle bands from LDA+Gutzwiller
for U = 9.0 eV, J = 0.54 eV, and lattice parameter a = 5.39aB

with ARPES data along the N -� direction [35].

deviates slightly from experiment with a mass ratio vG/vR =
2.3 versus vd/vR = 2.7 in DFT(GGA).

Depending on the Fermi wave vector, the quasiparticle mass
in Gutzwiller-DFT is some 20% larger than in DFT(GGA).
A similar mass enhancement is observed in DFT(DMFT)
calculations [18,51]. However, as seen from Table II, the mass
ratio between theory and experiment is consistently larger
than unity, vG/vR = mR/mG > 1, and strongly depends on
the Fermi wave vector. The correlation-induced mass enhance-
ment alone cannot account for the large mass renormalization
as seen in experiment. The resolution of this discrepancy
remains one of the incompletely understood problems for iron
and other magnetic materials.

V. CONCLUSIONS

In this work, we used the Gutzwiller-DFT for a detailed
study of the ground-state properties and the quasiparticle band
structure of iron. We find that, for a Hubbard interaction of U =
9 eV and a Hund’s-rule coupling of J = 0.54 eV, we reproduce
the experimental lattice parameter and magnetization, and we
obtain the bulk modulus of ferromagnetic bcc iron in very
good agreement with experiment. Upon increasing pressure we
qualitatively reproduce the transition to nonmagnetic hcp iron.

FIG. 13. Overlay of quasiparticle bands from LDA+Gutzwiller
for U = 9.0 eV, J = 0.54 eV, and lattice parameter a = 5.39aB

with ARPES data along the H -P direction [35].
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We find that the ground-state magnetization sensitively
depends on the Hund’s-rule coupling J . In contrast to physical
intuition, an increase of J leads to a decrease of the mag-
netization. For example, at U = 9 eV, an increase from J =
0.45 eV to J = 0.68 eV decreases the magnetization from m =
2.5μB to m = 2.05μB. The Hund’s-rule coupling generates a
splitting of isoelectronic atomic levels, and the corresponding
redistribution of local occupancies considerably impedes the
electrons’ motion through the lattice (“configurational hopping
blockade”). In a band magnet, the delicate balance between
the Hund’s-rule and exchange-energy gains against the cor-
responding losses in kinetic energy makes the magnetization
sensitive to the Hund’s-rule coupling. Therefore the absolute
value of J is much more decisive for physical quantities than
the value of the Hubbard interaction. For the calculation of
some physical quantities, a larger value of J can be “traded
in” for a smaller U .

Gutzwiller-DFT renormalizes the quasiparticle bands as
obtained from DFT(LDA). While the 4sp-type parts are almost
unchanged, the 3d bands are shifted and their width is reduced,
in agreement with experiment. Shifts and renormalizations are
also observed when we compare the Gutzwiller-DFT results
with GGA calculations although the effects are quantitatively
smaller. The applied double-counting corrections make sure
that the average 3d-electron density remains essentially the
same, nd ≈ 7.2. The agreement between the Gutzwiller
quasiparticle bands with ARPES data is fairly good when we
take spin-orbit effects into account perturbatively. In general,
Gutzwiller-DFT agrees better with ARPES data than DFT,
both in the LDA and GGA approximations.

Finally, we note that the optimal atomic parameters in the
present Gutzwiller-DFT study on iron resemble those used by
Deng et al. [20,21] but are sensibly higher than those used
in a more recent Gutzwiller-DFT work by Borghi et al. [33]
who propound a U -parameter of UB = 2.5 eV for iron that is
significantly smaller than our values. Part of the discrepancy
is probably due to their different choice of energy window
and basis set for the construction of the many-body model.
However, there are also substantial differences already at
the bare DFT(LDA) level (U = J = 0); Borghi et al. use a
localized orbital code (SIESTA) whose results deviate from
other DFT codes for iron. Table III of Ref. [33] gives the
lattice constant aBorghi = 2.83 Å = 5.35aB, while we find a0 =
5.2aB, in agreement with earlier LDA-LAPW calculations [1].
Since the lattice constant monotonically increases as a function
of U , see Fig. 1, it is not surprising that Borghi et al. require
a smaller Hubbard interaction to reproduce the experimental
lattice parameter a = 5.42aB, and claim a different role of
electronic correlations in iron.

Despite the improvements of Gutzwiller-DFT and
DFT(DMFT) over standard DFT(LDA and GGA), the the-
oretical Fermi velocities are typically too large, i.e., the
quasiparticle masses from theory are too low in comparison
with experiment. This systematic discrepancy could have
several reasons. First, it might be necessary to process the
theoretical band structures further to mimic the excitation
process in ARPES experiments [60]. However, this approach
could not explain why the systematic mass enhancement is
also seen in de Haas-van Alphen measurements for iron and
ferromagnetic nickel compounds [61]. Therefore it is more

likely that the effective mass results from the interaction
of the quasiparticles with low-energy magnetic excitations,
i.e., magnetic polarons exist near the Fermi energy [62]. At
present, however, the inclusion of long wave-length excitations
is beyond the Gutzwiller-DFT.
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APPENDIX: ATOMIC INTERACTIONS AND DOUBLE
COUNTING

For the 3d shell of eg and t2g orbitals in transition metals,
the local Hamiltonian (2) reads (σ =↑ , ↓)

V̂loc = 1

2

∑
c,σ

U (c,c)n̂c,σ n̂c′,σ̄ + 1

2

∑
c(
=)c′
σ,σ ′

Ũσ,σ ′(c,c′)n̂c,σ n̂c′,σ ′

+ 1

2

∑
c(
=)c′

J (c,c′)(ĉ†c,↑ĉ
†
c,↓ĉc′,↓ĉc′,↑ + H.c.)

+ 1

2

∑
c(
=)c′;σ

J (c,c′)ĉ†c,σ ĉ
†
c′,σ̄ ĉc,σ̄ ĉc′,σ

+
[ ∑

t ;σ,σ ′
(T (t) − δσ,σ ′A(t))n̂t,σ ĉ

†
u,σ ′ ĉv,σ ′

+
∑
t,σ

A(t)(ĉ†t,σ ĉ
†
t,σ̄ ĉu,σ̄ ĉv,σ + ĉ

†
t,σ ĉ

†
u,σ̄ ĉt,σ̄ ĉv,σ )

+
∑

t(
=)t ′ (
=)t ′′
e,σ,σ ′

S(t,t ′; t ′′,e)ĉ†t,σ ĉ
†
t ′,σ ′ ĉt ′′,σ ′ ĉe,σ + H.c.

]
.

(A1)

Note that the factors 1/2 in the first three lines have been
erroneously missing in our previous publications [8] and [48].
Here, Ũσ,σ ′(c,c′) = U (c,c′) − δσ,σ ′J (c,c′), and we suppressed
the site index R. The index c sums over all five d orbitals,
while t and e are indices for the three t2g orbitals with
symmetries xy, xz, and yz and the two eg orbitals with
symmetries u = 3z2 − r2 and v = x2 − y2, respectively. Of
all the parameters U (c,c′),J (c,c′), A(t),T (t),S(t,t ′; t ′′,e) only
ten are independent in cubic symmetry [8,64]. When we
assume that all 3d orbitals have the same radial wave function
(“spherical approximation”), all parameters are determined by,
e.g., the three Racah parameters A,B,C. They are related to
the Slater-Condon parameters via

A = F (0) − F (4)

9
, B = 1

49

(
F (2) − 5

9
F (4)

)
,

C = 5

63
F (4), (A2)
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or, inversely,

F (0) = A + 7

5
C , F (2) = 49B + 7C , F (4) = 63

5
C.

(A3)
Explicit expressions for the relations between the parameters
in Eq. (A1) and the Racah parameters A, B, and C can be
found in Appendix C of Ref. [8]. For comparison with other
work, we introduce the Coulomb interaction between electrons
in the same 3d orbitals (intraorbital Hubbard interaction),

U = A + 4B + 3C, (A4)

the average Coulomb interaction between electrons in different
orbitals (interorbital Hubbard interaction),

U ′ = 1

10

∑
c<c′

U (c,c′) = A − B + C, (A5)

and the average Hund’s-rule exchange interaction,

J = 1

10

∑
c<c′

J (c,c′) = 5

2
B + C. (A6)

These three quantities are not independent but related by the
symmetry relation U ′ = U − 2J . This means that by choosing
two of these parameters (e.g., U and J ) the three Racah
parameters, and therefore all the parameters in Eq. (A1) are
not uniquely defined. Hence we use the additional relation
C/B = 4, which is a reasonable assumption for transition
metals [64]. It corresponds to F (2)/F (4) = 55/36 = 1.53, in
agreement with the estimate F (2)/F (4) ≈ 1.60 = 8/5 by de
Groot et al. [50]. For completeness, we give the dependencies

of the Racah parameters on U and J

A = U − 32

13
J, B = 2

13
J, C = 8

13
J. (A7)

In our previous study on nickel [8], we have tested three
different types of double-counting corrections that had been
proposed in the literature. It turned out that only one of them
leads to sensible results for nickel. As for nickel [8], we employ
the widely used functional [37,38]

Vdc = Ū

2
n̄(n̄ − 1) − J̄

2

∑
σ

n̄σ (1 − n̄σ ). (A8)

For 3d electrons, we have

F (0) = Ū = 1
5 (U + 4U ′) , J̄ = Ū − U ′ + J, (A9)

and

n̄σ ≡
Nc∑
c=1

CG
c,c;σ , n̄ ≡ n̄↑ + n̄↓, (A10)

where Nc is the number of correlated orbitals, in our case,
Nc = 5. Moreover,

CG
c,c;σ = 〈�G|ĉ+

R,c,σ ĉR,c,σ |�G〉
〈�G|�G〉 = 〈ψ0|ĉ+

R,c,σ ĉR,c,σ |ψ0〉
(A11)

is the σ -electron density for the correlated 3d orbital c in the
Gutzwiller wave function. Note that the second equality only
holds in the limit of infinite dimensions for our eg-t2g orbital
structure [8].
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