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BEC-polaron gas in a boson-fermion mixture: A many-body extension of Lee-Low-Pines theory
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We investigate the ground state properties of the gaseous mixture of a single species of bosons and fermions at
zero temperature, where bosons are major in population over fermions, and form the Bose-Einstein condensate
(BEC). The boson-boson and boson-fermion interactions are assumed to be weakly repulsive and attractive,
respectively, while the fermion-fermion interaction is absent due to the Pauli exclusion for the low energy s-wave
scattering. We treat fermions as a gas of polarons dressed with Bogoliubov phonons, which is an elementary
excitation of the BEC, and evaluate the ground state properties with the method developed by Lemmens, Devreese,
and Brosens (LDB) originally for the electron polaron gas, and also with a general extension of the Lee-Low-Pines
theory for many-body systems (eLLP), which incorporates the phonon drag effects as in the original LLP theory.
The formulation of eLLP is developed and discussed in the present paper. The binding (interaction) energy of the
polaron gas is calculated in these methods and shown to be finite (negative) for the dilute gas of heavy fermions
with attractive boson-fermion interactions, though the suppression by the many-body effects exists.
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I. INTRODUCTION

Elementary excitations in condensed matter physics are
important degrees of freedom to understand various phe-
nomena from the many-body point of view [1]. Polarons
are such excitations observed for electrons conducting in
polar crystal environments, where electrons are dressed with
excited phonons, and drag due to interaction with them [1,2].
Theoretical development for the electron polarons is originated
in Landau and Pekar’s works [3], and later the modern concept
has been established by Frohlich [4] for the electron-phonon
systems; such systems have been studied by various methods
including the mean-field type approach by Lee, Low, and Pines
(LLP) [5], Feynman path-integral approach [6,7], many-body
Green function methods [8—11], and models for small polarons
have also been developed [12—-14].

Recently, the BEC-polarons attract interests, which occurs
in the Bose-Einstein condensate (BEC) of optically trapped
ultra-cold atoms [15,16]: a single atomic impurity immersed
in the BEC dressed with BEC Bogoliubov phonons [17-22].
Also, there are studies on atomic polarons in the environment
of interacting Fermi gas [23-29]. Since they are conceptually
similar to the electron polaron with crystal phonons, conven-
tional methods mentioned above are applied to study them
theoretically.

The experimental advantages in treating these atomic
impurities in the BEC is that, because of the controllability
of the systems using the change of optical trap of the system
and the interatomic interactions using the Feshbach reso-
nances, the various properties of the BEC-polaron systems
can be observed in various situations: the mobility, the
damping rate, and the binding energy of impurities. For
instance, the direct observations of the energy of the BEC
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polaron to the bare impurity is proposed from the radio-
frequency absorption between two hyperfine states, which are
dressed (polaronlike) and undressed (bare-impurity-like) with
Bogoliubov phonons [30]. Another experimental possibility is
to trace the position of the BEC polaron in the optical traps [31]
and to tune the interaction intensity between impurities and the
condensate by external lasers [32].

In contrast to the conventional electron-phonon system with
the Coulomb interaction, the effective interaction between
atomic impurity and Bogoliubov phonons in the BEC can be
tuned from weak to strong couplings, including the unitarity
limit where two atoms start to form a molecular bound
state [33-37]. For studies of the single polaron in such
strongly-coupled systems, more advanced nonperturbative
methods are needed [38—44]. Especially, in the region around
the unitarity limit, the nonperturbative renormalization group
method has figured out the spectral properties of Fermi
polarons in the polaron-molecule crossover regime [45].
Recently, a quantum Monte-Carlo method has been used for
the microscopic description of impurities in the BEC, which
includes regimes from weak to strong coupling constants [46].

The aim of the present paper is at studying the case
where the number of fermionic impurities is increased to
make a dilute Fermi gas in the BEC. For this purpose, we
consider the gaseous mixture of single component bosons and
fermions, where immersed fermions are treated as a dilute gas
of polarons interacting with the Bogoliubov phonons excited in
the BEC; the interaction between fermion and boson (phonon)
is assumed to be weakly attractive. Thus the strong correlation
effects such as boson-fermion pair fluctuations are irrelevant
in the mixture.

In this paper, we calculate the ground state properties of
the system at zero temperature as a BEC-polaron gas, dressed
with phonon clouds as in the single polaron treatment. To
this end we first employ the unitary transformation method by
Lemmens, Devreese, and Brosens (LDB) originally developed
for the gas of electron-phonon polarons [47-49], which

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.93.205144

EINI NAKANO AND HIROYUKI YABU

has been applied to many-polaron systems in the BEC for
bosonic and fermionic impurities in general situations with
bare interactions among impurities [50,51]. Then, we also
develop the method using the different unitary transformation,
which generalize the LLP theory of the single polaron to
many-polaron systems, in order to incorporate the drag effect
absent in LDB. In these methods, we evaluate the ground
state energy of the many-polaron gas, and the single polaron
properties in the gas, such as the binding energy per fermion
and the effective mass, and calculate their dependence on the
density and mass ratios of the fermion to the boson, and on the
boson-fermion interaction strength.

This paper is organized as follows: In Sec. II, we introduce
a low energy effective Hamiltonian for the boson-fermion
mixture and implement the Bogoliubov approximation to
obtain a Frohlich-type effective Hamiltonian. In Sec. III, we
study the single BEC-polaron system in the LLP theory and
show some properties of the solution. In Secs. IV and V, we
apply the LDB and the eLLP methods to the Frohlich-type
effective Hamiltonian obtained in Sec. III and evaluate the
ground state properties. We also compare the obtained results
with those from the LLP theory for the single polaron in the
appropriate limit. The last section is devoted to summary and
outlook.

II. LOW ENERGY EFFECTIVE HAMILTONIAN

We consider the uniform system of the gaseous mixture
consisting of single species of bosons and fermions. In terms
of the boson and fermion field operators, ¢(r) and ¥ (r), the
effective Hamiltonian of the system is

2
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where the Fourier gxpansions, ¢(r)=V~'23 eP"b, and
Yr)=V-12 Zp e'?’a,, have been used with the discreet
values of momentum p in the volume V (to be sent to infinity

for the thermodynamic limit), and the free single-particle
i i =2 = 2
energies of bosons and fermions are ¢, = 53— and §, = 7

respectively, with the bare boson and fermion masses m,
and my. The creation and annihilation operators satisfies
the commutation or anticommutation relations: [bk,bi,] =
O, p and {ak,a;,‘;} = &, p. Throughout this paper, we use the
abbreviations [, = [d’r and [, = [d*k/(27)’ for the real
and momentum space integrals, respectively, and use the
natural unit 4 = ¢ = 1.

PHYSICAL REVIEW B 93, 205144 (2016)

In the case of the mixture of the dilute gas, the boson-
boson and boson-fermion coupling constants, gy, and gy,
are represented by the s-wave scattering lengths, a;, and ayy,
respectively; in the T-matrix approach, the relations are given
by [16]

=b.f)
©))

mij 1 1 ..
——=—+ 5 3 O
2wa;; g » P*/2m;) + p?/(2m;)

m;m;
mi—+m;

where m;; = is the reduced mass of particles i and

J. In the weak coupling regime, it becomes gy, = = ap,

and g,y = n%—;’fabf for the boson-boson and boson-fermion
interactions. The above formulation is valid only for systems
with a mean interparticle distance much larger than a typical
size of particles ry, which introduces the natural cutoff of

~1/r¢ in the momentum integral in Eq. (2).

A. Bogoliubov phonon of BEC

In the mixture of the weak boson-boson repulsive and
boson-fermion attractive interactions, we assume that all
bosons are in the state of the Bose-Einstein condensation
(BEC) at zero temperature, and the low-energy elementary
excitation is primarily the Bogoliubov phonon. Thus, keeping
only terms including the condensation parts with zero momen-
tum to the quadratic order of excitations in the boson sector,
we obtain the Hamiltonian (Appendix A for detail):

2
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where N, is the boson total number, and ng = Ny/V is the
condensed-boson density obtained from the condensed-boson
number Ny, which is approximated by Ny ~ N, in the present
system of the weak interactions and zero temperature. The
C, and C; are the annihilation and creation operators of the
Bogoliubov phonon with the excitation energy:

E, = \/eq(eq + 2gmpm0), “)

and they satisfy the commutation relations: [CP,C;] =08p.qs
and others. The first and second c-number terms in the last
line of (3), which correspond to the ground state energy of the
pure Bosonic gas, are dropped in the remaining part of this

paper.

B. Frohlich-type Hamiltonian of phonon-fermion system

We also use the Bogoliubov approximation for the boson-
fermion interaction (Appendix A), and obtain the Frohlich-
type Hamiltonian of the interacting fermion-phonon system
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from (1) and (3):
H = H; + Hy + Hin
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where we have replaced the fermion number operator
fr I/I(F)TI/I(F) by the total fermion number N of the mixture,
and the Yukawa-type coupling constant g, for the fermion-
phonon interaction is given by

1 1

Ny ( ) Ny g ©)
= — ur, — v = — —_—
8q v 8bf Uk k v 8bf E,

Note that it includes the momentum dependent factor,

(U — ) = /f;—kk, stemming from the Bogoliubov transfor-

mation, defined in (A2) in Appendix A.

III. SINGLE POLARON IN BEC: LEE-LOW-PINES
THEORY

In this section we review the single BEC-polaron system
for weak/intermediate interaction regimes and show some
properties of the solution obtained in the LLP theory: the
ground state energy, drag parameter 7, and the effective mass,
which are already presented in, e.g., Refs. [30] and [43]. In
addition, we estimate the size of the phonon cloud directly
from the solution and give validity conditions for the effective
Frohlich Hamiltonian. These results in the LLP theory will
be helpful as references in discussions on many-body BEC-
polaron systems later.

A. LLP transformation

In the case of a single fermion impurity immersed
in the BEC at the position x, the fermion density
operator is represented as ¥ (r)y(r) =8P —x), and
the Hamiltonian (5) becomes

H = Hy + Hy, + Hiy,

V)% —ix- i ix-
=_2m.+ZEqC;C4+Zg4(e 16+
I g0 470
+ gprno. @)

This Hamiltonian enables us to map the argument of the con-
ventional electron polaron onto the BEC polaron, so in order
to discuss the ground state properties of it we employ the Lee-
Low-Pines (LLP) theory for relatively weak coupling regimes,
in which some unitary transformations are utilized. These
transformations are also used in extended forms for many-body
systems of fermions in the later parts of the present paper.
First, the unitary transformation S(x) is defined by

S(x)=exp | —ix- Y _qCiC, |, (8)
q#0
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which serves as a gauge transformation for the phonon
operators:

S7'C,S = Cye™4, STICIS = Cle, ©

and remove the phonon contribution from the total momentum
operator:

ST —iVe+ > qCiC, ¢S = —iV.. (10)
970

It implies that the transformed momentum operator is that
observed in the frame comoving with the impurity. So the
transformed Hamiltonian does not depend on the coordinate
X:

1 -\
— ¢—1 _ 3 _ E T
H = S HS = %< le /qC;Cq> + EquCq
a q#0

+ ) 8,(Ch+Cy) + gupmo. (1)
970

and it includes the phonon-phonon interaction term which does
not exist originally in (7). Since the transformed Hamiltonian
H commutes with the momentum operator of the impurity,
we can replace the operator —i V, in (7) with the ¢ number P
that is the momentum eigenvalue when we consider the plane-
wave state ¢!’ for the impurity; consequently the parameter
P in the transformed Hamiltonian is the total momentum of
the single polaron including that of the dressed phonon. Now
the problem reduces to solve the energy eigenvalue equation:
H(P)|V) = E(P)|W¥). B

Second, as the ground state for the H in the LLP theory, we
take the state of the phonon cloud: |¥) = T'|0) where |0) is the
phonon vacuum state, and the unitary transformation operator
T, which produces the phonon cloud, is defined by

T=exp| Y (f,Ch—£7Cp|. (12)

q7#0

We should note that the state |¥) = T'|0) is a coherent
state with the parameter f,; through the relation f, =
(0|T’1CqT|O). The parameter f, is found to be the phonon
momentum amplitude of the momentum ¢ in the state |\V),
which is to be determined variationally from the minimum of
the energy expectation value (¥|H(P)|W).

Accordingly, in the LLP theory, the ground state of a single
polaron with momentum P for the Hamiltonian H is described
by the product state:

lx: P) = P ST|0) = P US|0) = PU|0), (13)
where the unitary operator U is defined as U = STS™! =
Q).

U= ST571 :eQ(r) = exp Z(efikvcfkc;{f _ k*eik‘XCk) ,
k0
(14)

and S]0) = |0) has been used in the derivation of (13).
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B. Ground state energy and drag parameter

The energy expectation value with the ground state (13) is
calculated to be

Epoi(P) = (x; P|H|x; P)

P? 1
= o~ 2 Bt I | 2 alfel?

970 q#0

2
+Z<E— +2—)|fq|+gbmo (15)

970

The stationary equation §Epq(P)/8f; =0 determines the
phonon momentum amplitude f;, = f,.p (We denote the P de-
pendence of the solution f,; p explicitly for later convenience):

2 arp oy p-l
q” —2(1 —n)q P] ’ (16)
me

Jap = —8&4 [Eq +

where the drag parameter n is determined from the self-
consistency condition:

nP = (x;P|Y_qCiCylx: P) = qlfyrl>. (7

q#0 q#0

It implies that the mean value of the phonon momentum
is proportional to the polaron momentum. Substituting (16)
into (15), we obtain the single polaron energy with the
momentum P:

a- 772)P2 2 / 2
E P) = 3 + — — —v
pol(P) = gprho 2m, 8hrho q(”q )
2_21—=n)g-P1"
X[Eq i ) }
me
(uy — v )2 P2
= gpflo — g;%,«”o/ 14 + O(PY),
q Eqg+ 2(,17—” 2megy
(13)
where the polaron effective mass m.g is defined by
m
Mot = ——. (19)
l—n

The drag parameter 7 is represented as n = s/(1 4+ s) using
the parameter s:!

1
32(1 + R)? apng

3 l
ap,

[ee) Z2
« / dz Re)
0 V72 + 167 (R 72 + 167 + 2)°

where R =my/my is the mass ratio. The formula (20)
shows that the parameter s is proportional to the so-called

polaronic-coupling parameter o« = éa;,;, x abfn(l)/ 2/a,i,é2,

that, at n = 1 or equivalently s — oo, the polaron effectlve
mass m.g becomes infinite. The dependence of the parameter
s on the mass ratio R is shown in Fig. 1.

'See Appendix B for derivation.
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FIG. 1. Parameter s, normalized by s = 5a; ng /a;,, as afunction
of the mass ratio R = my/my.

C. Estimation of polaron size

We also investigate the property of the phonon distribution
around the polaron. Using the phonon field operator ¢,;(r) =
V123" €7 C,p, the photon-distribution probability at a
position r is given by (x; P|¢);h(r)qbph(r)|x; P)=|f(@r— 0%,
where f(r) = V=12 Zp e'"? f,.p is the inverse Fourier trans-
form of f,.p. The phonon spatial amplitude f(r) for the static
polaron (P = 0) is given by

1 .
aprng(R+1) [ d elr < q° >4
T

£y =— — (5%
r q —|—$—2
q Ryl +2)
X - 5
( 1)(] + 2R 2R2 q2

where £ = 1/4/8mnpay is the coherence length of the BEC.
The detailed behavior of f(r) depends on the structure of the
momentum distribution f;,9 given in (16), which corresponds
to the phonon propagator in the static limit. As seen from
the above expression of f(r), the integrand has the pole

at g = £,/ 267! for 0 < R < 1 but with the vanishing

residue, thus in this case we can estimate by the dimensional
analysis that f(r) ~ r=>/2 for large r. While for R > 1, the
€
which implies that the size of the spatial distribution may be set
by the order of the coherence length £. However, this situation
is not exactly the same as that the coherence length sets the size
of the Yukawa type potential between two probe fermions (see
Appendix C for detail), since the residue theorem cannot be
applied directly because of the existence of the branch points
at ¢ = 0,+i+/2£7" in this case. We postpone the rigorous
discussion on the asymptotic analysis for the large r behavior
elsewhere.

Nevertheless, such a mass-ratio dependence has also been
observed in numerical simulations for the single-polaron for
R < 1[40]; as the boson-fermion interaction varies from weak
to strong couplings, nonperturbative approaches give a variety
of results but show the deviation from mean-field approaches.

pole emerges on the imaginary axis, at g = +i
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Thus, the qualitative change in the phonon spatial amplitude
shows the deviation from the mean-field to the nonperturbative
regimes which occur around R ~ 1. Actually, the mean-field
solution in the LLP theory becomes exact in the limit of
my — 00 (R — o0), where the effective phonon-phonon
coupling vanishes.

D. Validity of Frohlich Hamiltonian

In construction of the Frohlich type Hamiltonian, we have
dropped the four-point interaction among excited phonons
(g # 0) using the Bogoliubov approximation, which may be
allowed when the number of excited phonons N, =n,,V
is very small with respect to that of the condensed bosons
(q =0): npp/ng <K 1 as the density ratio. The number of
bosons N, is expressed in terms of the phonon operators by

N, = No + Z [v + (v +ul)CiC,
q7#0
— vy (C,C—y + CL,CHY], 1)

]
where the first term is the condensed bosons, the second term
accounts for the virtual phonon excitations given by

)"

Ny =Y v T’ (22)

970
and the real phonons excited by the boson-fermion coupling
is evaluated for the LLP ground state to be, in the probe
approximation (7 ; — 00),

N =Y (2 +ud)Che, — v (C,Coy + CT L Ch)

970
1/3
(no apf )
/lfq 1/1 1/25 (23)
V7 (ngapy)
where we have used the relation:

(x5 PL[, @b ()dpn(rlx; PY = | fyp P The N7,
corresponds to the excited phonons by the single fermion,
and if the spatial extension of the phonon cloud is of the
order of the coherence length, & = 1/4/8mapyng, for heavy
fermions as discussed above and also from the momentum
dependence of the Yukawa coupling [43,52], the density of
the excited phonons around the fermion may be estimated
by n),, ~ N, & =3, As a result, a condition for the Frohlich
Hamiltonian is given by

P _ Mpn
no N no
13 \3/2
- (no3\a/bi R (" avs)* (ngap) < 1. (24)

When only the second term is kept for a small boson-boson
scattering length, the above formula is consistent with those
obtained in Refs. [43] and [52].

Now we define the density of excited phonons by a
different way: n’,, = N, Ny/V = N ,n; being multiplied
by the density of fermions, which is for the single fermion
Ny =1 at moment, and can be used in the thermodynamic
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limit for many fermions. This leads to a condition:

v r
nph _ nph +nph

no no
_ (nPaw)”  2nga)” oy

I T

< 1. (25

The above formula accounts for an averaged number of excited
phonons per fermion, and thus may gives a validity condition
of the Frohlich Hamiltonian for many-body polaron systems.

IV. POLARON GAS IN BEC:
LEMMENS-DEVREESE-BROSENS METHOD

In the previous section, we have discussed the single
fermion immersed in the BEC, which behaves as a polaron
dressed with Bogoliubov phonons. Now we study the system
of a dilute but finite density of fermions. If the interparticle
distance of fermions is much larger than the size of each
polaron, which is to be ~& for R > 1, the dilute system of
fermions should be described as the dilute polaron gas.

In order to evaluate the ground state properties of such a
gas, we will first employ the method by Lemmens-Devreese-
Brosens (LDB) originally developed for the electron-polaron
gas [47], and, then we will propose a more general method
which incorporates the drag effect as in the LLP in the next
section. Both methods are based on the second quantization
of the LLP theory for many-fermion systems. As shown in
Eq. (13) the unitary transformation of the Hamiltonian in the
LLP theory is composed of two consecutive transformations
S and T defined in (8) and (12): H — T~ 'S™'HST. These
two transformations are not commutable, and another trans-
formation U has been introduced in (14). In the calculation of
the expectation value by the phonon vacuum in (15), we could
use the U transformation only because the phonon vacuum is
invariant against the S transformation: S|0) = |0). It means
that the U transformation absorbs the effects of phonon and
plays a role of making the fermions dressed with the phonon
cloud. Thus we will eventually construct the second-quantized
U transformations and use them for describing the polaron

gas.?

A. LDB transformation

In Lemmens-Devreese-Brosens (LDB) theory, the transfor-
mation U = ¢2® in LLP is extended to

() —> > 0(r) = / A p(r) Q).

where r; is the position of ith polaron, the fermion density
operator 7 s(r) is defined by 7 ;(r) = Y1)y (r). The boson
operator Q(r) is the same as that in (14). Thus the U

“Note that these methods for polaron systems trace back to the
scalar meson theory [53] and also to the nucleon with meson cloud
by Tomonaga [54].
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transformation of LDB becomes?

U=exp| Y (fyap_,apCl— frah apCy)|. (26)

q.P

Note that no P dependence is assumed for the phonon mo-
mentum amplitude f; in LDB. The anti-Hermiticity of(r) =
—Q(r) guarantees the unitary condition UTU = 1.

In the U transformation of the LDB method, no momentum
anisotropy is assumed in the momentum amplitude f,, i.e.,
[ = f-g from which we can prove Y _,qlfyI> =0; in
comparison with (17), it shows that no drag effect is included
in the LDB formulation (n = 0). Inclusion of the anisotropic
effect f # f—4 is presented in Appendix D.

The transformation laws with the U transformation (26)
become

U™ )U = ey (x),
U™ @)U = yl(x)e 2,
U™'VY()U = VU 'Y (x)U) = 2DV + VO )y (x),
U™V iU = VU 'y (0)U)
= [Vy () — ¢ (x)VQ(x)]e 2w

for fermion fields and their derivatives, and

Uu'c,U=0C,+ f, /ﬁf(r)e*"ﬂ,

vo'clu=cl+ f; /ﬁf(r)e"”f
for the phonon fields. Note that the transformed fermion field

operators have the factor 2™, which entails the phonon cloud.
Thus the Hamiltonian (5) is transformed as

U''HU =U'"H; U+ U "H,U + U 'HpuU  (27)

where

1 N ,
U'H U = o / VY i) — ¢ (x)VOX)]
mye Jx
VY (x) + VO@)Y ()], (28)

U_leU = ZEk |:C11 + fk* /‘ﬁf(r)eir'ki|
k r
x [Ck i [ f(r)e"""}, 29)

U'Hy,U = /ﬁf(r)zgq [eiq-rC; +é7C,
g 470

+ /ﬁf(x){fq*eiq-(x—r)+fqe—iq.(x—r)}}

+gbfnoNf. (30)

30ur notation is consistent with the original LDB transformation
up to the definition f, — — f".
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Taking the normal ordering for phonon fields, we classify the
terms of the Hamiltonian in the order of fermion fields:

U''HU = H") + H® + HY + H", (31

where the first term is the mean-field contribution

H(mf) = gbfnoNf, (32)
o = [l )[ Vv |f|2]w<> 33)
= xX)| —— —_— x),
X ZI’Hf 720 me K

H® = / / Apoig(y) Y ey
xJy

q#0

X[Eq| fol? + 84(f*, + f]. (34)

and the H) includes the normal ordered products of phonon
fields such as C,C,,C,C,, and C}C}, which will vanish in the
expectation value for the phonon vacuum state.

B. Ground state energy

In this section, we evaluate the ground state energy E from
the expectation value of the transformed Hamiltonian (31)
with the variational ground state of the polaron gas that is
constructed as the product state of the phonon vacuum and
the many-fermion state. When the phonon vacuum is operated
on the Hamiltonian, the phonon normal-ordered term H (no)
vanishes and the other terms including fermion fields remain.
Then, we obtain the energy expectation value per fermion:

1

E
— = Exn+ 8o+ 5— Y g’ fI?
N, kin + &bfN0 o, #Oq [ /4l

+ ) S@AEGfyl + 8(f7y + £}, (35)
q7#0

where the kinetic energy per fermion is defined by

N o
Eyin = —3 (VI ()V7h(x)), (36)
mf X

where (---) denotes the expectation value by the many-
fermion state, and the structure factor S(g) in the last term
is defined by

1 )
s = [ [ amam. 61
f Jrdx

which encodes the fermion contribution in the interaction
energy of (39).

The stationary condition §E /§f, = 0 determines the mo-
mentum amplitude:

fo= - (38)

qZ
Eq + 2myS(q)

Substituting it into (35), we obtain the ground state energy of
the polaron gas in LDB:

E S, — v,)?
— = Eyin — gian'/ qq—zq + gpfno. (39)
q

q
Ny E; + 2m,5@)
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Using the Hartree-Fock approximation [55] for the many-
fermion state, the structure factor S(q) is given by

1
T i
N_f Z (@ qaay,_qap)

k.p

S(g) =

12

1
——/9(% Ck+gDOgr — KD+ 1
I’lf k

3
_ {— ~ (%)

1 for g > 2qr

forqg < 2qr 40)

where g = (67%n f)l/ 3 is the Fermi momentum correspond-
ing to the fermion density ny = N/ V. Also, in this approxi-
mation, the kinetic energy par fermion is given by

Exin = 2€p, (41)

where ep = q%/ 2m y is the Fermi energy.

C. Renormalization of boson-fermion interaction

The interaction energy in (39) has an ultra-violet (UV)
divergence, which is attributed to the microscopic behavior
of the low energy s-wave scattering amplitude, and can
be renormalized in terms of s-wave scattering length a;,
observable in experiments [40]. From Eq. (2) in the T-matrix
approximation, the coupling constant g, is represented in
terms of the scattering length a;, at the low energy limit:

8bf = {1 +

Zm”f/ ! +} (42)
My myr Jg q%/2mps '

where the divergent integral is regularized by the UV cutoff
~r0_1. It should be noted that Eq. (42) is valid in the case of
the weak boson-fermion interaction (small value of ay /).

The leading divergence of the interaction integral in (39)
can be extracted as

27ra;,f

2 S*(q)
q S(q)(Gq + 2gbbn0) + R~ Eq

1
2

=—g n()/_—+...
P, (R 4+ De,

2 2 1
:—( nabf) nO/ 5 +..., (43)
My q 9°/2mys

where R = my/my, is the boson-fermion mass ratio. Using
Eq. (42), the leading-order contribution of the mean-field
energy gprho in (39) becomes

Znabf 1o + (27‘[abf>2n0 / 1 (44)
My Mmyf ¢ 42/2mys’

the second term of which exactly cancels out the divergent
term in (43).
Finally, the renormalized ground state energy thus becomes

E 2ma 2ma 2 1
_— = bf}’l() + < bf) n()/ A + Ekin
Ny my Mys g q%/2mps

<27rabf )271 / SZ(CI)
- 0 m
My g S(@)eg + 2gppn0) + 2 Ey

8pfno =

. (45)
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which is consistent with that obtained in Ref. [50] in the
absence of the bare fermion-fermion interaction.

V. POLARON GAS IN BEC: A MANY-BODY
EXTENSION OF LLP

In the LDB method, no drag effect is included in the phonon
cloud around polarons (n = 0). In the case of the dilute fermion
gas, it is natural to expect that the fermions undergo such an
effect as in the single-polaron LLP. In order to incorporate the
drag effect in the many-polaron system, we use the extended
U transformation

U= =exp| Y (furap_,arCl— fripapar—sCy) |,
q,P

(46)

where the P-dependent phonon momentum amplitude f.p is
used instead of f;, in (26). Note that the above U transformation
keeps the unitarity condition UTU =1 and includes the U
transformation of the LDB method as a special case where no
P dependence exists in the function f,;p. Although the way
to extend the single-polaron LLP to many-fermion systems is
not unique, it seems very reasonable to develop the method
with the transformation (46) because of the success of LLP
and LDB; thus, we take the extended U transformation to
include the drug effect and call the method the extended LLP
(eLLP). In what follows we assume that the f,.p in (46) is a
real function as in LLP and LDB.

A. Transformations of field operators

The existence of the drag effect ( # 0) of the photon
cloud around polarons means that the cloud shares the part
of the total polaron momentum as in the single-polaron LLP
through the relation: nP = ) 42091 fg: p|2. Then, because of
the finite value of 7, the function f,» should have momen-
tum anisotropy and be expanded as f,;p =co+ci(q - P)+
c(q - P)? + . ... Since the momentum P is of the order of the
Fermi momentum at most, only the leading term dominates
in the dilute regime of fermions. With this observation, we
consider the transformation of the field operators by (46).

Using the general formula of the similarity transformation,
the fermion field v/ (x) obeys the transformation:

U™ U = ¢(x) + [=S, ¥ (x)]

1
+5[—S,[—S,¢(x)]] +..., ¢4

where the commutators are given by

(=S ()] = f (e (),

[=S.[=S. vl = | [wlx,y)(y—2)

Y4
+a(x,y)a(y,z)]¥(z), and so on,

(48)
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where operators «(x,y) and w(x,y) are defined as

1 . .
alx.y) =+ Y OO f0Cl — fioiCoi),
k,Q
(49)
1 . .

k.P,Q

x{feo fir = fro—k fapidabap i (50)

We note that the operators a(x, y) and w(x’,y’) are computable:
[@(x,y),w(x’,y")] = 0. The transformation (47) generates
infinitely many terms of higher order products of phonon and
fermion fields, which are expected to be less contributed in
dilute Fermi gas. However, the terms producing the drag effect
are summed up to be an exponential form:

1 o
U lapU ~ v Z/ e POV (x1ef | yyag,  (51)
Q V5

where we have used the bracket notation:

1 A 1
(xletly) = (xly) + (xIAly) + 0 /(XIAIZH lAly) + ...,

1
=6(x —y)+ A(x,y) + 21 /A(x,z)A(z,y) + ...

(52)
and the operator A(x,y) is defined as
A(x,y) = (x]Aly) = a(x,y) + w(x,y). (53)

The derivation of the above equations is given in Appendix E.
In contrast, the transformation of the phonon field is
obtained in the exact form:

UT'CU =Cy+ Y frrah_,ap. (54)
P

UT'Clu = Cl+ " furabapi. (55)
P

Here we should note the following properties: The transfor-
mation (46) preserves the total momentum of the system, and
the approximate transformation of fermion (51) together with
exact ones (54),(55) also gives the exact transformation for the
total momentum operator,

P =3"Pabar+) qClC,. (56)
P q

i.e., commutes with it, [U, f’] = 0 (see Appendix F in detail),
which supports the use of (51) in the present calculations
of eLLP. In addition, as discussed in the next section, the
transformation (46) provides exactly the same results of the
LLP theory for the single fermion state, and thus a natural
many-body extension of the LLP theory.

B. Transformation of Hamiltonian

Under the transformations in (51) and (54), the Frohlich
Hamiltonian (5) becomes

U'HU ~ H™ + H, + Hy + H]. (57)

PHYSICAL REVIEW B 93, 205144 (2016)

The first term H ™) = g, ;nyN s is the mean-field contribution,
and Hy.,Hp, and H; are represented by

H}. sz —— Y ap(P —up)ap
Zm_ kZP@P k—(up +up_y)-kabh_ Xi pap

k-Kap_ XipX), pap_y, (58)
2I’Hf KKLP

iy =Y 5 (cz oy fT>
k P
X (Ck + Z fk;PaL_kaP>y (59)
P
HI/ = Z 8k (C}; + Z fk;paLap_k>aLkaQ + H.c.

k.P.Q P
(60)

where up = ", kf{Zp and
1 . .
Xeo =y / 0T A, y)
V ey

= fk;chir — fek0-kCx

+1Z{fk. fer = frk—ofrp—i)abap_i. (61)
22 ;0 Jk; —kik—Q J—k;P—k 1@ padp—
After the normal ordering operation for the phonon field

operators, we rearrange the Hamiltonian (57) in the order of
fermion field operators as

U''HU ~H™ 4+ H® + H@ L g (62)

where the momentum representation of H'® and H'® are

given by
) f q2; P

H'(Z)ZZ (P_MP) +Z<

P q#0
— 2> gy fur |abar. (63)
g#0
H® =— Z {Eq fg:p fa:0 + 84(fa:p + fq:0)}
q.P.Q
X a}agfqap_qag, (64)

and the H'" including the phonon operators in the normal
ordering vanishes when the expectation value is taken with the
phonon vacuum.

C. Many-polaron ground state including drag effect

Now we calculate the expectation value of the Hamilto-
nian (62) with the phonon vacuum and the many-fermion state.
Using the Hartree-Fock approximation for fermions as in the
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LDB method:
aLaTquap,an ~ aI,aQ(aTquap,q)
= ahapf(qr — |P — q))dp.g. (65

we obtain the energy expectation value:

E = gynoNs + Y 0(qr — |PD{Epa(P) — €"(P)}, (66)
P

where the Fock exchange contribution € (P) is given by

e"(Py= _0(qr —|P — q){Es f}.p + 284 fy:p ). (67)
970

The stationary equation of the energy expectation value
8E/8f,.p = 0becomes

1 2 - P
0(qr — 'P')[m_f (Z kf,ip) 4+ (2,"71—f - "m—f> fusr
k

1 —0(gr — IP — gDNEq fg:r + gq)i| =0. (68)

Existence of the drag parameter n shows the inclusion of the
drag effect of the phonon cloud through the relation nP =
>~ k| fi.p|* as in the single-polaron LLP, with which we can
solve the stationary equation (68) for f,.p (|P| < gr):

8q

2
9> _ g:PU-n)
Eq + 2my mg

Jop =— 0P —ql—qr). (69)

Substituting it into (66) and using the variational condition,
we obtain the ground-state energy:

E = gyrnoNy + V/ 0(gr — |PE¢(P), (70)
P

where the single-particle energy E y(P) is given by

1 -y 2 2
Ey(P) = =P = gigm | 0P =gl = ar)
q
(uq - Uq)2
X . VT (71)
Eq+ g =5

The interaction energy in the above expression includes the
divergent term as appeared in LDB (Sec. IV C), hence we apply
the same renormalization procedure in terms of the boson-
fermion scattering length. Finally, we obtain the renormalized
ground state energy per fermion in the present formalism:

E Znabf <2nabf>2 / 1 2
— = no + ny | ——=— + Eun(1 —1n°)
Ny my Mpf q 4°/2mpg

) N 2
_<ﬂ%ﬁ1&/ 0(gr — 1PDOP — gl — qr)
q,P

Mmpy ny
2
Uy, — v
x (g = vy) ) (72)
E, + 9> _ g P(-n)
q 2m ¢ my
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D. In-medium effective mass

Here we discuss the drag effect in the polaron gas, which
manifests itself as a finite value of the parameter n. This
parameter is determined from the self-consistent equation:

g;ff"o(uq - vq)2

nP=fq
g (Eq+i_w)

2m mg

0P —ql—qr). (73)

Expanding the right hand side to the order of P, we obtain
_X+W
1+ W

n (74)

where

5
2 qr
_ 2g,pmo 2my

T 302n)? 212
( ) EQF(EqF+q_F)

2my

24> @P)
th myg

and W = g2,y / <0(gl —gr) (75

g q( q+%)

with P = P/|P|.
Using these results, we can expand the single particle energy
of the fermion as
(g —vy)?* P?
Es(P)= —gifno/ 0(ql —qr)——+ 53—
4 Eqts5, P "

+O(PY),

(76)

and the effective mass m* reads

mf 1—R2
c=1-n—(1-n- X-Z, an
m 2

where

5
2 2 4F
_ gbfnoR 2my,

- 3@ny E)

(78)

Note that these results reproduce the LLP theory for the single
polaron in the dilute limit (g — 0).

For comparison with the LDB result, we employ the inertial
mass m", which corresponds to a linear response to the
external velocity v coupled with the total momentum operator
of the whole system. The expression of the inertial mass in the
LDB method for the same system as ours is given by Eq. (15)
in Ref. [50]:

A 2 8,5(q)’k?
m(‘")=mf+—z . 2 3"
3T E;S(q) +q7/2my]

(79)

It is obvious from the behavior of S(g) that the above
expression reduces to the effective mass in the LLP theory
at the low density limit.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the polaron
gas in the BEC calculated in LDB and eLLP including the drag
effect, and shortly explain how in-medium modifications of
polaronic properties such as binding energy and effective mass
can be observed in experiments. Also, we compare the present
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FIG. 2. The ground state energies, (45) and (72), in the eLLP and the LDB methods (left), and their difference (right) as functions of 7,;.
Parameters are set as 1y, = 100, my/m; = 1.5, and n,/n; = 1,10,100.

results with the second order perturbation theory to clarify
relations among these methods, and then briefly discuss a
criterion for the validity of the mean-field type approximations
used in this study.

A. Ground-state energy

In Fig. 2, we show the ground state energies calculated
with (45) and (72), respectively, in LDB and eLLP methods
for the inverse of the boson-fermion scattering length; the
dimensionless energy E per fermion, the inverse of the
scattering lengths, 1, and ny;, are scaled as

_ E 1
E=——\ Moy =——3: b= ""173
o

= (80)
Nf Ey ! apf AppN

2/3
where Ej, = % is the boson zero-point energy. The boson-
fermion mass ratio R =my/m; is fixed to R =1.5, and
we approximate that bosons are all condensed, i.e., n, = ny.
For comparison with experimental setups, we refer to the
system of ytterbium isotopes, "°Yb —!73Yb, with scattering
lengths ap, = 3.435 nm and a,r = —4.373 nm [56], which
are of the order of the atomic size so that the system is not
strongly correlated. The spatial extension of the condensation
estimated from a trap frequency (w ~ 27 x 10> Hz) is of
the order of 1 ~ 10 um, and the number of the condensed
bosons can be varied from ~10° to ~10° which then
amounts to 7, ~ 2.9 x 10’2 and Ny ~ —2.3 X 10'2. In
what follows, we plot figures for values of the coupling
strength up to n,r ~ —10, which is consistent with the present
approximations for weak/intermediate coupling regimes. The
strongly correlated regime around the unitary limit, where
strong correlation effects dominate, corresponds to roughly
[npr| < 10 as illustrated in Refs. [38] and [46].

Figure 2 (right) shows the energy difference between the
eLLP and LDB ground states calculated for the boson-fermion
mass ratios ¥ = n,/ny = 1,10,100.

We find that the ground state energies calculated in these
two methods are almost on top of each other; however, detailed
observation shows that eLLP gives slightly lower values of
the ground-state energy and the difference becomes larger
in the case of lower fermion densities. Possible reasons for
these results are that the P dependence of f,.p extends the

variational space in the eLLP method, and the small difference
between eLLP and LDB is attributed to the smallness of
the in-medium drag parameter n in eLLP, and also to the
evaluation of the induced fermion-fermion interactions (34)
and (64). As for the interaction energy (the binding energy),
it is approximated by the Hartree-Fock approximation in both
methods, and in-medium effects appear as the Pauli blocking
effects in the interaction integrals in Eq. (39) and Eq. (70).
The difference comes from the variational determination of
the phonon momentum amplitude: the LDB leads to the recoil
effect via S(g) in Eq. (38), and the eLLP further includes
the modification of kinetic energy of fermions through the P
dependence in f;,p, and the drag effect by 1 in addition to the
overall blocking factor in Eq. (69).

Now we show the dependence of the ground state energy
E on the density and mass ratios, n;/n s and m r/my, both in
eLLP and LDB. Since the kinetic energy has the same form
in these two methods, we evaluate the interaction energy per
fermion in Eq. (45) and Eq. (72) defined by

E; E
nt — = _ Ekin'
Ny Ny

81)

This quantity is comparable to the single polaron energy
Epoi(P) in (18) in LLP, and we set P =0 to have the
interaction (binding) energy Ejy = Epo(0) for the appropriate
comparison in the dilute limit. Figure 3 shows the scaled
interaction energies as functions of the density and mass ratios,
respectively; the scaling of the energy is given in (80). As
expected from the results presented above, the interaction
energy approaches to the single-polaron LLP result in the
dilute limit. On the other hand, the mass dependence (the
right panel of Fig. 3) shows that the interaction energy
converges to some asymptotic values in the heavy fermion
limit: While the result in LLP approaches to the exact
mean-field value as mentioned earlier, those in eLLP and
LDB are different. This is because the many-body effects
still remain in the limit. These interaction energy (binding
energy per fermion) can be measured from the radio-frequency
absorption experiment [30], provided that the system is dilute
and not so strongly-correlated for polarons to be identified as
quasiparticles.
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FIG. 3. The interaction energies per fermion normalized as Eii = Eint /NsEy (81) as functions of ¥ =n;/ny (left) and R =m/m,
(right). The inset shows the blow-up of small R region. Parameters are set as 1, = —10, n,, = 100,R = 1.5 (left), and ¥ = 10 (right).

B. Drag parameter and effective mass

As shown in Fig. 4, the drag parameter 1 in the medium
of fermions is very small and even smaller than that in the
single-polaron LLP. Itis due to the Pauli blocking effectof f.p
in Eq. (73). Also, Fig. 4 (left) shows that the in-medium effect
weakens as the system is diluting and the result approaches to
that in LLP in the dilute limit, and Fig. 4 (right) that the increase
rate of n is very slow for the dimensionless boson-fermion
scattering length inverse 7.

Figure 5 shows the effective (inertial) masses in eLLP (76)
and in LDB (79) as functions of the density ratio and the
boson-fermion coupling constant. It is noticed that the inertial
and effective masses are different quantities: The former is a
response function as the whole system to the external velocity,
and the latter a curvature of polaronic dispersion relation.
The mass in LDB is always larger than that in eLLP, and
approaches to the LLP result from above (eLLP from below)
in the dilute limit as shown in Fig. 5 (left). Although in both
cases the effective masses increase only by a few percent even
for relatively large boson-fermion scattering lengths as shown
in Fig. 5 (right), the many-body effects in the polaron gas
seem to be significant when confronted with the case of the
single polaron. As pointed out in Refs. [50], [57], and [58],
these modifications in polaron masses in various situations can
be measured from the Bragg spectroscopy for absorption and
emission of the pair of laser beams by polarons.

B e l
L 1p5=100, 7,=—100, m,/m,=1.5 |
< 4 - m
o .......
o
é r 1 <
2 — -
o L \ \ \
1 2 3 4
Ny
L0910ﬁf

C. Comparison with perturbation theory

The dilute gas of boson-fermion mixture being the same
as the present case has been studied in the second order
perturbation theory with respect to the boson-fermion coupling
gps in Ref. [59], where the Bogoliubov approximation is
made, and the ground state energy is calculated in the form
of EP" = Ny Eyin + Ei'ftrt. The kinetic contribution N s Exiy is
in common with ours, and the interaction one Eﬁf’tﬂ, which
corresponds to the second order sunset diagram of the fermion
self energy with the Yukawa interaction, is given by

Eﬁftn Znabf Znabf 2 1
_ = —ng + no 2—
NfE() Mmpyf mpyf q q /Zmbf

2ma 2n
—( bf) —0/ 0(qr — |PDOP — gl — qr)
mpy nygJgrp

2
Ug — 0
x—(qqz q)q,P, (82)
Eq+ 2, = w;

where we have rescaled variables in the equation (15) in
Ref. [59], A(w,«), for comparison. The above equation (82)
coincides with the eLLP result (72) if the drag parameter n
is taken to be zero therein. In the previous section the drag
parameter for many-body polarons was evaluated in the form
of n = (X + W)/(1 + W) (74); this result is nonperturbative

T T T T T T T T r
0.06 - -—-n,/n=10  MNp=100, m/m,=1.5 N
i — =100 ‘
....... LLP
0.04 -
0.02
0.00 [EOUOTTTRTT DUUUO oo
-100 -80 -60

FIG. 4. Dependences of the drag parameter n (74) on density ratio (left) and on boson-fermion coupling (right) for n,, = 100 and

m//m;, =1.5.

205144-11



EINI NAKANO AND HIROYUKI YABU

Tl I R
%6 4 2 0 2 4 6

I 1 I 1 I 1 I 1 I L]

0 200 400 600 800

ny/ng

1000

PHYSICAL REVIEW B 93, 205144 (2016)

T T T T T T T T T
Y=10, 1,,=100, m;/m,=1.5

elLP {

L L I

T T O O BB |

FIG. 5. Effective masses, (19), (77), and (79), as functions of the density ratio (left) for n,; = —10 and of the boson-fermion coupling
(right) for Y = n,/ny = 10. The inset figure (left) shows m*/m  as a function of log,, >. The other parameters are setby R = m/m;, = 1.5

and 7, = 100.

since X and W are each of the order of a,%f for the other
parameters fixed. At the low density limit, the LLP theory is
reproduced: X — 0 and W — s, where s scales completely
by a,ff(no /abb)l/ 2 (20). Therefore, in the perturbative regime
of the boson-fermion coupling, n ~ O(aff). The ground
state energy (72) in the eLLP method includes the 7 in
the denominator of the interaction integral and also in the
modification of the kinetic energy ~n?, thus the eLLP
method provides nonperturbative results via the mean-field
type treatment of the phonon distribution function. Although
the direct comparison between perturbative and nonperturba-
tive results is not appropriate, the above observation shows
that the eLLP method reduces to the second order perturbation
theory asymptotically in the small boson-fermion coupling
limit. It is also interesting to note that the same is true on the
LLP theory for the single polaron [43].

On the other hand, the LDB result (45) seems to be of the
order of agf, however, a many-body correlation effect comes in
nonperturbatively through the structure factor S(g). Actually,
the LDB result reduces to the perturbative result in the low
density limit.

D. Criterion for mean-field regime of polaron gas
As discussed in the literature [30], we can observe the

breakdown of the mean-field regime in the momentum am-
plitude f;.p in LLP. Using (16), the self-consistency condition

ne = Zq;é() ql fq:p | becomes

qg-Pe > =201 —nq-P]°
n = gino /q WE_Z[E" + o . (83)

This condition spoils when a singularity arises in the integral;
for the small g region, the denominator is expanded, and, up
to the linear order, it becomes

221 =n)g-P -
g+ L= ma- P |q|<v,,,, _ —'7|P|cose>,
2mf I’I’Zf

(84)

where v,;, = «/4mwapyno/my, is the sound velocity of phonon,
and 0 is an angle between ¢ and P. Then, nonsingularity
condition gives the limitation for the polaron velocity, beyond

ng’

which the mean-field solution does not work:

L=nIP| _|P| _

Uph- (85)
myg Meff

This is actually the signal that phonons are excited sponta-
neously by the interaction with the polaron faster than v .

For the polaron gas, we replace the momentum P in the
above condition with the Fermi momentum pp, and obtain a
similar criterion in terms of the boson-fermion density, mass
ratios no/ny, and R = my/my:

<_n0>1/3 > —(6 O ~1 1n1/2 (86)
A
2

ALY ,/nabbn(l)/3

Since the drag parameter n varies from unity to zero with
increasing R, the mean-field-like approximation employed in
this paper works for dilute and heavy mass regimes, which
is consistent with the argument presented with the numerical
results.

VII. SUMMARY AND OUTLOOK

We have studied the ground state properties of a boson-
fermion gaseous mixture at zero temperature, where fermions
are treated as a dilute gas of polarons in the BEC in the eLLP
and the LDB methods, in which the unitary transformations
are made for the eigenvalue problem of the system:

H|V) = E|V) - U 'HU|V') = E|V'), &7)

where the ground state for |W’) is approximated by the product
of the phonon vacuum state and the Hartree-Fock ground state
for fermions.

It is found in both methods that the interaction energy per
fermion, which should correspond to the binding energy of
the single polaron in LLP, is suppressed by the many-body
effects as the density of fermion is increased, but indeed
becomes negative in relevant situations, i.e., for dilute and
heavy fermions in the relatively weak coupling regime of the
boson-fermion attraction. Also, we have found that the drag
effect in eLLP is very small due to the many-body effect, and
the difference of the ground state energy between eLLP and
LDB is not significant in the present approximations.
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For further studies, it is important to analyze the generalized
unitary transformation (46) in more detail. In fact, this
transformation generates higher order interaction terms among
fermions, which we have truncated as they are expected to be
negligible in the dilute gas of fermions, and kept only four-
fermion interactions in the present study. This approximation
seems to be valid because the higher-order interactions vanish
when the P dependence of the phonon momentum amplitude
fq:p 1s negligible; the momentum P is assigned to that of
fermions and is of the order of the Fermi momentum at most.
Since the f,.p is determined variationally for a given state, it is
interesting to figure out in which region of the full parameter
space the higher order interactions are controllable. Also, it
is interesting to see how the perturbative corrections to the
ground state modify results, since the transformed Hamiltonian
U~'HU includes different type interactions in eLLP and LDB.

Also, methods presented here are applicable only to uniform
and infinite systems. Further extensions to finite systems with
discrete quantum states, such as in the harmonic trap potential
or the optical lattice [31,32], can be possible, as well as to
possible inhomogeneity of the background BEC induced by
polarons.

The other interesting directions include study of the strong
coupling regime using nonperturbative treatments. For this
purpose we have to turn on the residual interactions having
been dropped in the Bogoliubov approximation so far, which
includes the boson-boson and boson-fermion interactions
without condensation parts. These residual interactions ac-
count for many-body correlation effects beyond the present
approximation, for instance, boson-fermion pair fluctuations
develop to form composite fermion molecules around the
unitarity limit of the boson-fermion attractive interaction. So
it is interesting to observe such strong coupling effects on
condensation fraction, modification of the polaron gas picture,
spectral properties, and so on.

APPENDIX A: BOGOLIUBOV APPROXIMATION

In this appendix, we present the Bogoliubov approximation
for the effective Hamiltonian (3) and derive the the Frohlich-
type Hamiltonian (5). The effective Hamiltonian (1) provides
the boson sector in the momentum representation:

Hy =) g4blb, +
P

gbb Z bp-&-qbk—qbkbpv
k.p.q

where the boson annihilation/creation operators, b, and b;,
are defmed by ¢(r) = V172 Zp e'’b. Keeping the terms
including the zero momentum component we obtain

N 11
Hbo—zb“q b, + gbb +V§gbb
970
x > (4bjbob}by + bibibyb_g + bL bl bobo).
970

In the case of the weak interaction at 7 = 0, the ground
state should be the BEC in the zero-momentum state of
the condensed-particle number Ny, and we can use the
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approximation: bo, ~ /Ny. Then, the Hj,o becomes

Hpy >~ —ghb—+ Z <_+n0gbb)(bj]bq+biqbq)

+ noghh > @' bbby
970

= b_

€ 8bbNo q
-gbb—+ Yol ( ¢ s )( )
q;ﬁO 8bb1o &q b(|1

1 Z _
_z Eq’

where N, = No + 3, bib, is the number operator of the
boson; ng = Ny/V the density of the condensed bosons, and
&g = &4 + gppNo-

The matrix term in the last line of (A1) is diagonalized with
the quasiparticle annihilation/creation operators C,C, qT, which
is defined by the Bogoliubov transformation:

Cy _(uq vq> b—q
C; Vg Uy b;; 7

where u} = 1a+ qu) and v = -1+ 2—‘;) are the quasi-

particle dlstrlbutlon functions, and E; = ,/g,(g4 + 2gppn0)

the quasiparticle energy of the Bogoliubov phonon. Then, we
obtain the quasiparticle representation of Hp. in (Al):

(AD)

(A2)

1 N1
Hyo == > gy~ + 3 Z(Eq — &)+ Z E,Clc,,

(A3)
2 v 970 970

Next, we evaluate the boson-fermion interaction term
included in (1):

1 .
Hu= ooy [W10w0) Y7 0 blp,
r q.p

1

1 i 1 1
ngfNo/%ﬁ'(f”)lﬁ(r)Jr ngfNo2 /W(V)W(V)

X Z(e_i""bg + ei""bq)
q#0

(A4)

where the boson-zero-momentum terms have been extracted.
Using the inverse Bogoliubov transformation for (A2):

b _<uk _vk) Ci
i) =G e )

we obtain the quasiparticle representation of the boson-
fermion interaction term:

Hiy = —gbf / Y)Y e bib,

q.pP

1 . 1 1 )
~ & No / VW) + 86 No / Yiwr)

(A5)

X Z(e_i""bl + ei""bq)
q#0
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1
= 78 NoNy + / IALGYA()

X Y ggle™ICT 4+ €1C,), (A6)
970

where the effective Yukawa coupling constant g, is
defined by

1 1 1 1 [e
8¢ = ngfNoz (g —vg) = ngfNoz /E—q- (AT)
q

Equations (A3) and (A6) provide the Frohlich-type Hamilto-
nian (5) with the Yukawa coupling constant (6) that corre-
sponds to (A7).

APPENDIX B: CALCULATIONS ON THE
PARAMETER s

In this appendix, we derive the explicit formula (20) for
the parameter s. Substituting (16) into the self-consistency
condition (17), we obtain

N q* —2q-(P— Pph)}‘zl

2 2
nP = ghfn()/qq(uq —vg) I:Eq 2m;

(BI)

Taking the leading-order term of the momentum P in the
right-hand-side integral, we obtain the equation of n for the
small value of P:

2201 =n)(g - P)

2
= n U, — 0,
n gbf O/q( q q) I’Hsz

17
E, +—— P?).
x[ q+2mfi| + O(P?)

(B2)
|
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In solving it by 1, we represent the drag parameter n as n =
s/(1 + s), where
-3
|

2
_ 28y 1 / " dgq’ / a4 [ O
Q)2 Jo 1 2myE, |7 2m

1
_32(1+ R) apyn;

3 3
App

my

(B3)

00 Z2
x/ dz )
0 V22 +16m(RVZ2 + 167 + 2)3

and we have used normalized variables in terms of g, =
Admwapy/my,8py = 2mayy /myy with the reduced mass myr =
mbmf/(mb + mf), R = mf/mb, and z = g /./appno.

APPENDIX C: INTERACTION ENERGY FOR
TWO PROBE FERMIONS

We present the interaction energy between two heavy
fermions placed at ; and r, for the Frohlich-type Hamilto-
nian (5). The interaction part of the Hamiltonian for the two
probe fermions is described by

Hy(r1) + Hi(r2)
= f gq[e_ir"qC; + " IC, ] + (r1 — r2), (C1)
q7#0

and the second order perturbation theory gives the interaction
energy between them:
0|H H 0
EQ(r1ry) = Zz( [Hi(r1)lq){q|Hi(r2)|0)
Eo— E,

. (C2)
q#0

where [0) (lg) = CJ;|O)) is the Fock space for zero (sin-
gle) phonon, and we have ignored the contribution of
E® (r12),71(2)) that corresponds to the second order self energy.
Substituting (C1) into (C2), we obtain

(O][e™1C) 4 €14C,1CH0)(0|C, e Ch + ¢4 C,]10)

No
E®(ri,ry) = _2ngW Z(”q —vy)’
970

2
Ug — U .
= —Zgifno E —( 4q E q) e’(”l*’z)'q J——

q#0 4
g}%fnomb e—lfl—rz\«/%*]

b2 |ry — 12|

where & = 1/4/8mngay is the coherence length.

APPENDIX D: LDB TRANSFORMATION WITH
ANISOTROPIC PARAMETERS

We present the result of the LDB transformation U = e~

with § = — fr ir(r)Q(r), but, different from the original
LDB, the momentum anisotropy exists in the momentum
amplitude f,:

fo# foq. and Y qf, #0.

q#0

DD

E,

2
gbfnomb /\OO dq q e[|r]7r2‘q
il —rlr?* J o " g*+2677 7

(€3)

1. Transformation of field operators

With U = e~5, the fermion field operator v (x) transforms

as
U_ll/f(x)U = eQ(x)eW(X)w(x)’
Uﬁll//T(x)U — WT(X)EW*(X)g’Q(X)’ D2)

where

Wx) = z[0(x),—S5]

N =

1 .
= z/ A(r) / e fy P =1 f-gP). (D3)
r q

205144-14



BEC-POLARON GAS IN A BOSON-FERMION MIXTURE: A ...

We explain the derivation very shortly. First, using the
commutation relations,

Y(=S8)" = {[S,¥] — SY}=)"" = (0 - S)ys"!

=(Q - 8"y, (D4)
0 = [Y(x),0(xN] = [Q(x),[S, ("] = [S,[S, Q011
(D5)

the U~ (x)U is transformed as U '/ (x)U = eSyr(x)e™5 =
e35e2@=Sys(x). Then, using the Campbell-Baker-Hausdorff

J

U~'Vy(x)U = VU 'y (x)U)

- engWw{v +VO() —i / alfy + VW(x)}Wx),
q

U~'vy U = vio 'y (0)U)

= w*(x){VL — Vo) +i / alf, P + vw*<x>}eW*<x>e—Q<x>,
q
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Y

formula eXe' = ¢# with the operator Z:

Z=X+Y+3[XY]+ 5X - VXY +...,

for the e5e2®W=S  we obtain U ly(x)U =

QW e3lS:0Wly (x). Direct calculation of the commutation
relation [Q(x),—S] proves Egs. (D2) and (D3).

From Eq. (D2), we obtain the transformations of the
derivatives of the fermion fields:

(D6)

(D7)

where the V; denote left derivative: ¥ (x)V, = Vyf(x). In the derivation of (D6) and (D7), we have used the commutation

relations:
[VW(x), W) = [VO(x), W(x)] =0, (D8)
and
Ved®) = (0w (VQ(x) - ifqlfq|2). (D9)
q
The derivative formula of 2™ is proved from the next commutation relations:
[VOX), Q)] = =2i Y _qlf, I, (D10)
970
[VO(x),Q"(x)] = —iZnQ”_l(x)/q|fq|2. (D11)
q
The transformations of the phonon annihilation/creation operators are the same as the original LDB transformation:
U'CU = Ci + fi /ﬁf(r)e*"‘k, (D12)
vTlclu =cl + fr /ﬁf(r)e""‘. (D13)
2. Transformation of Hamiltonian
With the anisotropic LDB transformation, the Frohlich-type Hamiltonian (5) transforms as
U'AU =U"H;,U + U HyyU + U™ Hy_ U, (D14)

where

A

2m

U_alhU = ‘/‘Ek{cg—i_fk*\/ﬁf(r)e”'k}{Ck‘}‘fk/‘ﬁf(r)e_ir.k}
k r ”

1 ,
UT'H,U = o, f [wkx)—ww{vg(x)—i f q|fq|2—vw*(x>}][w<x>+ {vgm—iq / |fq|2+vvv<x)}w<x>],
X q q

(D15)

(D16)
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A 1 . . A
U™ Hp_pnU = guyng fﬁf(r)/(uq - vq){e”'ch +eC + (f) + fq)/ﬁf(x)} + gbrnoNy.
q X

r
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(D17)

Taking the normal ordering for the phonon operators, we classify the terms of the Hamiltonian (D14) by the order of fermion

fields:

U_IFAIU = H(Z) +H(4) + H(6) +H(no)’

where the second-order term H® is

2
1= [viof - govie o ([anr) + [ (2+
r J q q

Z/a;aPEpol(P)y
P

where Ep,i(P) is defined as

2 2
E(P)—P+1 flfl2 +/E+
P iy T 2 \J, 1Y g\

The fourth-order and sixth-order terms are given by

2

Tf - m_>|fq|2 + gvrng /q(uq —v)(fZ, + [ (D20)

(D18)

q2 iq ) Vr

o >|fq|2 + 8brng /q(“q —v)(f2, + fq)}W(’)

(D19)

q-P
f

HY — _ / / wT(X)I//T(y)I/I(x)I//(y)/ei(x_y)'q{Eq|fq|2 + gbfné (g — Uq)(qu + fq)}
xJy q

1 ,
- Z—{f W OVW() - (v i / qlfq|2>1ﬁ(x) + Hc}
m g x q
HO = L / YIE(VW@ - VW @) g ).
me X

(D21)

(D22)

The last one H®*) in (D18) consists of the terms that include normal-ordered phonon fields such as C; Cy,C,Cy, and C; Cg.

APPENDIX E: TRANSFORMATION OF
THE EXTENDED LLP

In this appendix, we present the transformations of boson
and fermion field operators under the proposed unitary trans-
formation U = e given in (46). The fermion field transforms
according to the similarity transformation formula

U ' x)U = ¢(x) + [=S, 9 ()]
1
+ o =S =Syl +.... (B

where the commutators are given by
(=S, v ()] = alx, ¥ (y), (E2)

[=S.[=S, ¥ ()]] = wx, )Y () + alx,y)a(y,2)¥(2),
(E3)

—[S,[S,[S,'(//(x)]]] = _[S,w(x7Y)]¢(y) + 2w(X7)’)05()’aZ)
X Y(z) + alx, y)w(y,z)¥(z)
+oa(x,y)a(y,2a(z,u)y(u),

(E4)

where the abbreviation is used that the same arguments
of space coordinates are integrated with, e.g., fy in (E2),
and the operators «(x,y) and w(x,y) defined in Egs. (49)
and (50) include only phonon and fermion field operators,
respectively. Now we approximate that [S,w(x,y)] ~ 0 and

(

a(x,y)w(y,z) = w(x,y)a(y,z) in the integral, since both of
them generate higher order many-body interactions among
fermions and phonons with anisotropic factors such as
| fi.r|*> — | f._p|?, which contribute less in the dilute limit
of our interest. Then within these approximations the nth
commutation relation is given by

[=S, .. [=S,¥)]... 1= &I X, »)¥(»),  (B5)

where the operator X,, in the bracket notation satisfies
X, = (wi + a>f(n1 = <wi + a>nf(o,
do do
with Xy = 1. (E6)
Using this, we obtain

1
U 'y (0)U = YH=S Y@+ 3 (=S, [=S ¥ @I+ ...
<1 .
~ ) &) (E7)

d
= (x|exp (wd— + a) IV ()
(0%

1
= (x|exp (Ol + Ew)b’)l/f(y), (E8)
where the Baker-Campbell-Hausdorff formula e4*+2
¢4=214.B1B hag been used in the last line. Finally we obtain
Eq. (51) in the bracket notation.

205144-16



BEC-POLARON GAS IN A BOSON-FERMION MIXTURE: A ...

Next, using the transformations laws of boson and fermion
field operators Egs. (51)—(55), we derive the transformation
of the Hamiltonian Eq. (57) as follows: The transformation of
the fermion part Hy, is given by

1
Hp = U HpU = o— Y U'PalU - U PapU
f

1
2
i P00

[

V_2/ aLe‘iQ”(y|ﬁTe_A|x)
R

xeip(x’x/)(x’|eAﬁ|y/)e"Q’yaQ,

1 o AN oy
= — V71/ az)ef’Q)(y|D]LefAeAD|y)e’anQr
2mf 0,0 .y
1 o o
= — V_I/ aTQe_’Q-‘D(x,y)TD(x,y)e‘Q"aQ/,
2mf 0,0 X,y

(E9)
where the operator D and its representation are defined by
(xle? Dly) = —Vi(xlety) (E10)
and

D(x,y) = (x|D|y)

= V71 ZeiQ(Xy)(Q - MQ - ZeijXk’Q)
0 k
(E11)

with up =V~ kfl,.
k

and  Xp o=V / e (@i Oy A(x,y). (E12)

X,y

Similarly the phonon part transforms as

Hy=U""HyU =) EU'ClUUT'CU
k

= Z Ey (CZ + Z fk;Pa;aP—k)
k P
X (Ck + Z fk’ipa;_kap>,
P

and the interaction part as, in the momentum space,

(E13)

H =U"'"HU

=Y gU'Clah_yapU + U™'a}, ,apCil)
k,P

~Y @ (C,ﬁ +3° fk;PaLaP_k)aLkap +Hec., (E14)

k,P P

where we have used the approximation U 7161;71{61[)(] ~

a;_ka p in the same manner for the fermion field operator.
Finally, the sum of Eqs (E9), (E13), and (E14) gives (57).
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APPENDIX F: TRANSFORMATION OF TOTAL
MOMENTUM OPERATOR

The total momentum operator P of the system consists of
the phonon and the fermion parts:

13 = ﬁp—i‘pg = ZPCZ;GP +ZC]C2CQ.
p q

The momentum is conserved in each terms in the unitary
transformation (46), so that the momentum operator P is
commutable with the transformation U: [P,U] =0, from
which we find that the total momentum operator P is invariant
for the U transformation:

U~'PU = P. (F1)

Now, we calculate the U transforms of the phonon and
fermion parts, Pr and Pg. Using the transformation of C, and

C; in (54) and (55), we obtain

UT'PsU =) quT'CluuT'cU
q

= ZQ{C,}L + Z fq;Pa;aP—k}
q P
X{Cq + qu;Pa;_qup}.
P

Simple operator calculation gives the result:

U™ PsU =3 qCiCq+ ) avepapar

q q.P

+ Z qfq;pfq;pblap_anQ_kaQ, (F2)
q.P.0

where
Voo = fg:0C" = foriokCoi.

Let’s turn to the calculation of the fermion momentum
operator Pr. Though direct calculation is difficult using the
explicit form of the transformation U in (46), we can obtain
the exact result from the invariant relation (F1):

U'PrU=U"(P—-Py)U=P—-U""PyU.
Using (F2), we obtain

U™ PrU = ab(P —uplap
P

d, po +
—an;,k Vq;P"'Z q’z’QalQaQ—k ap,
q.P Q
(F3)

where up =y ksz;P and dg.p.o0 = fq:pfq:0 —

f—q;P—qf—q:Q—q-
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It should be noted that the result (F3) can also be approximation (51). It supports the use of (51) in the present
obtained from the direct calculation of U~!PrU using the  calculations of eLLP.

|
APPENDIX G: NORMALIZATION OF INTERACTION ENERGIES

1. Binding energy in LLP

We define the normalized form of the binding energy of the single polaron, which is defined by Ep(0) = — Epin(= Eine) in
Eq. (18). The same renormalization procedure as the LDB method leads to the normalized binding energy:

_ 47(R + 1 2 o0 2(R+1
—Epin = L) - f de o -1t
Nur R TN Jo R(x% 4 167 /n) + /x2(x2 + 167 /133)

where E is the boson zero-point energy.

2. Interaction energy in LDB

The interaction energy is defined as Ej = E — NyEyy,, where E is the renormalized ground-state energy in (45). The
normalized energy Ej,, which is scaled with the boson zero-point energy Eq and the fermion number N, is represented by

Eint Eint 47(R+1) 2 o0 S2(x)x>(R+1)
= = 1— dx — 1y, (G1)
Ny EoNy Npr R TNy Jo RS(x)(x2 + 167 /1) + /x2(x2 + 167 /1)

where Y =no/nyg,x = q/n(l)/s, and

x/ Y\ [3 X2/ Y \} 672\°  «x X 672\ 3
S(X)=§(@> {§—§<@> }0|:<7> —§j|+9|:§—<7) :| (G2)

3. Interaction energy in eLLP

The interaction energy in eLLP is defined in the same way as in LDB; it is obtained from (72) as Ej = E — EyjyNy.

The interaction energy Ej, consists of three parts: Ejy = E,r + El(r:t) + Efft) , The E (lt and Elﬁ) are the contributions from
0 < g < 2gr and g > 2qp, respectively:

El(llt) 2rapy > no (ug —vy)?
_ _< ) o /q’P 027~ lqDoGar ~ 1PDOP gl — gr)—— o=

N m n
s bf i ot 2 o
14+ R’YE, (¥ dx 1 C+x
—#/ (C+XF)————(C2—X%~)1D —
271277be 0 1—77 2 X C+xp—x
C _ 3
+(x—2C)ln< +xr x)} a , (G3)
C—x/2 VX2 4+ 167 /0
and
EZ) 2raps \* n (g — vy)*
= = —( bf) — f 6(lq| = 241)6(qr — | P)———5—"
Ny Mpf nf Jg.p E, + T my
2
_( nabf) no f / dyy? / dz|: i|
myp ) ny Q) Jy, ,/xz + 16n/nbb A—BPz
14+ RPYEy [ dxx?/(1 — -Cc? (C
S ALYl R [Cx L ln< +XF)}, (G4
T Ube 2xp X2+ 163‘[/7};,;, 2 C—XF
where x = g/ n(l)/ ¥ and (ug — vy)> = ——=——.In the integration of the momentum P, we have used the cylindrical coordinates

N

(Pr,¢,P;) where q || P,. For 0 < g < 2qr, the integration of the radial coordinate Py has been done first using the formula:

—4r+q N ai—P? —ar 4 —P?
ar. | |

&P 9<qp—|P|>9<|P—q|—qF>=—2nf dPTPT—an ap P, Pr
/ q/2 ) JaE—(q—P.)? —qr+q : 0
—4qF —qr+q —qF
= n/ dP,P} — 7'[/ dP,(qg — P,)* — mh%/ dp,. (G5)
q/2 q/2 q—qr
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Finally, the integral of the momentum P for 0 < g <

1
- / E PO — IPDOIP — gl — qr)

= }ﬂ+A P
- 2B :

A — BP,
—qrF

Al A—BP
-l-En( )>j|

A A\?
[ln(A BP)I%, + [<2q+B>PZ+—+(q+ )1n<A—BPZ)}
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2¢qr becomes

q—9qrF

q/2
q (A ¢ 1 _A+Bgr \ 4 24\, (A+Bar—q)
= 5(5+e) 3555 axBar-o) B\U" B )"\ TaTBe2
qr — q) B A—Bq/2
1/3
mysn 2 CH+xp CH+xp—x
= —13(C ————C -2C0)In( —— G6
- {( + xr) ( (C+ pp—- >+( )Il< C_x2 ) (G6)
where
2 1-— A R 2416
A=E, + q BZCI( T))’ A X+ ”/Uhh+xn1/3 Cn(l)/3.
2m f my B 2(1—7])

In the case of g >

2qr, we make the replacement 6(| P — g| — gr) — 1 in the integral, and the integrand of the momentum P

integral becomes spherically symmetric. It should be noted that we apply the renormalization procedure to the divergence of E,(m)

in the same manner as in the LLP and the LDB.
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