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Phase diagram and collective excitations in an excitonic insulator from an orbital physics viewpoint
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An excitonic-insulating system is studied from a viewpoint of the orbital physics in strongly correlated
electron systems. An effective model Hamiltonian for low-energy electronic states is derived from the two-orbital
Hubbard model with a finite-energy difference corresponding to the crystalline-field splitting. The effective
model is represented by the spin operators and the pseudospin operators for the spin-state degrees of freedom.
The ground-state phase diagram is analyzed by the mean-field approximation. In addition to the low-spin state and
high-spin state phases, two kinds of the excitonic-insulating phases emerge as a consequence of the competition
between the crystalline-field effect and the Hund coupling. Transitions to the excitonic phases are classified to an
Ising-type transition resulted from a spontaneous breaking of the Z2 symmetry. Magnetic structures in the two
excitonic-insulating phases are different from each other: an antiferromagnetic order and a spin nematic order.
Collective excitations in each phase are examined using the generalized spin-wave approximation. Characteristics
in the Goldstone modes in the excitonic-insulating phases are studied through the calculations of the dynamical
correlation functions for the spins and pseudospin operators. Both the transverse and longitudinal spin excitation
modes are active in the two excitonic-insulating phases in contrast to the low-spin state and high-spin state phases.
Relationships of the present results to the perovskite cobalt oxides are discussed.
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I. INTRODUCTION

Excitonic condensation and excitonic-insulating (EI) state
have been studied for a long time since the theoretical proposal
in the 1960s [1–9]. When the exciton binding energy exceeds
the band-gap energy in semiconductors and semimetals, a
macroscopic number of excitons exhibit a condensation.
This phenomenon is regarded as a spontaneous quantum-
mechanical mixing of the conduction band and the valence
band, in which one-body electron hoppings are prohibited
due to the orbital and lattice symmetries. Because of the
spontaneous mixing between the electron and hole wave
functions, analog to the superconductivity and the charge
density wave (CDW) state have been examined. Although
many efforts have been devoted to search the EI materials, e.g.,
the group IV and V materials, the compound semiconductors,
the rare-earth compounds, and so on, clear evidence to prove
the EI phase has been hardly provided experimentally so far.
Recent intensive studies in the layered chalcogenide Ta2NiSe5

show that this material is a strong candidate for the EI phase
[10–13]. These studies trigger reinvestigations of the EI state
from the modern theoretical and experimental viewpoints
in several materials, for example, 1T − TiSe2 [14–16], iron
pnictides [17–20], and others.

The perovskite cobalt oxides are another candidate ma-
terials for the EI state. A series of the cobalt oxides are
the well-known system, in which the spin-state transition
in a cobalt ion is exhibited. Three spin states are possible
in a trivalent cobalt ion due to the competition between the
crystalline-field effect and the Hund coupling: the high-spin
(HS) state of the (eg)2(t2g)4 electron configuration with the spin
magnitude S = 2, the intermediate-spin (IS) state of (eg)1(t2g)5

with S = 1, and the low-spin (LS) state of (t2g)6 with S = 0.
The spin state changes from LS to HS or IS are supposed
to be realized in LaCoO3 with increasing temperature and

by the chemical hole doping and the photocarrier doping
[21]. A possibility of the EI phase is recently suggested in
Pr0.5Ca0.5CoO3 [22–24]. A phase transition occurs around
90 K below which the electrical resistivity increases and the
magnetization is reduced. No superlattice diffraction peaks
attributable to magnetic and charge orders have been observed
until now. It is expected that a nominal valence of the Co ions
is expected to be trivalent and the spin-state degree of freedom
remains [24]. The first-principle calculation combined with the
dynamical mean-field theory as well as the model calculations
based on the two-orbital Hubbard model suggest a possibility
of the EI phase in this material [25,26].

From a viewpoint of the strongly correlated electron
systems, this issue of the EI phase can be regarded as the
physics of the orbital degree of freedom and the electronic
multipoles. It is certain that a finite-energy gap opens between
the conduction and valence bands, and the orbital degeneracy
seems to be irrelevant in the EI systems. In spite of the
fact, the orbital physics provides an appropriate viewpoint to
capture the essence of the EI systems. The EI transition can
be identified as spontaneous off-diagonal orders between the
orbitals which compose the valence and conduction bands. The
orthorhombic-monoclinic structural phase transition and the
x-ray diffuse scattering observed in Ta2NiSe5 are interpreted
as a consequence of the orbital order accompanied by a
ferroelastic transition. The perovskite cobaltites are suitable
systems, to which the concept of the correlated electron orbitals
are applicable. There are a great number of studies in the orbital
degrees of freedom under strong electron correlation in 3d

transition-metal oxides [27]. Not only the characteristics in the
orbital orders and excitations [28–31], but also entanglements
with other degrees of freedom provide a rich variety of
electric, magnetic, and optical phenomena [32,33]. Now, the
EI phase and the EI phase transition should be reexamined in
a framework of the orbital physics.
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In this paper, we study the ground-state phase diagram and
the collective excitations in the EI system from the orbital
physics viewpoint under the strong electron correlation. We
analyze the effective model Hamiltonian derived from the
two-orbital Hubbard model with a finite-energy difference
between the orbitals. Instead of the three spin states in a
Co3+ ion with the five 3d orbitals, we reduce these orbitals
to the two orbitals with a finite-energy gap at each lattice
site. The two kinds of the spin states termed the LS and HS
states are realized as a result of the competition between the
Hund coupling and the energy difference between the orbitals.
The effective model Hamiltonian derived from the two-orbital
Hubbard model is represented by the spin operators and
the pseudospin (PS) operators which describe the spin-state
degrees of freedom. This model is appropriate to study the
symmetries in the ordered phases and the phase transitions,
and the low-energy excitations as well as the finite-temperature
electronic states. The phase diagram at zero temperature is
calculated by the mean-field (MF) approximation. Two kinds
of the EI phases appear between the LS and HS phases.
Magnetic structures are distinguished in the two EI phases:
an antiferromagnetic order and a spin nematic order. The
collective excitations in each phase are analyzed using the
generalized spin-wave theory. The Goldstone modes emerge
in the two EI phases. Not only the transverse magnetic modes
but also the longitudinal magnetic modes are active in the EI
phases. All numerical results are consistent with the symmetry
analyses.

In Sec. II, the effective model Hamiltonian is derived
from the two-orbital Hubbard model. In Sec. III, the MF
approximation and the generalized spin-wave theory are
presented. The numerical results for the ground-state phase
diagram and the excitation spectra are shown in Secs. IV and V,
respectively. Section VI is devoted to discussion and summary.

II. MODEL

We start from a tight-binding model, where two orbitals
with a finite-energy difference are located at each site. The
electron hopping integrals between the nearest-neighbor (NN)
sites are assumed to be finite between the same kinds of the
orbitals. The onsite electron-electron interactions are taken
into account. The two-orbital Hubbard model is defined
by

H = Ht + HU . (1)

The first term represents the electron transfer between the NN
sites given by

Ht = −
∑

〈ij〉ησ

tη(c†iησ cjησ + H.c.), (2)

where c
†
iησ (ciησ ) is the creation (annihilation) operator for

an electron with orbital η(= a,b) and spin σ (=↑,↓) at site
i, and tη is the transfer integral between the NN sites i and
j with the orbital η. The second term in Eq. (1) represents
the onsite energy and the electron-electron interactions given

by

HU = �
∑

i

nia + U
∑
iη

niη↑niη↓ + U ′ ∑
i

nianib

+ J
∑
iσσ ′

c
†
iaσ c

†
ibσ ′ciaσ ′cibσ + I

∑
iη �=η′

c
†
iη↑c

†
iη↓ciη′↓ciη′↑,

(3)

where we define the number operators as niησ = c
†
iησ ciησ

and niη = ∑
σ niησ . The first term in Eq. (3) represents a

difference between the energy levels for the orbitals a and
b, and � is set to be positive. The remaining terms are for
the onsite electron-electron interactions, where U , U ′, J , and
I are the intraorbital Coulomb interaction, the interorbital
Coulomb interaction, the Hund coupling, and the pair-hopping
interaction, respectively. The electron number per site is
two on average. In an isolated ion, there are the relations
U = U ′ + 2J and I = J . The electronic structures in the
two-orbital Hubbard model have been investigated so far from
several points of view [25,26,34–38].

In order to examine the low-energy electronic structures, we
derive an effective model Hamiltonian from the two-orbital
Hubbard model. The first and second terms in Eq. (1) are
treated as the perturbed and unperturbed terms, respectively,
and the electron number is fixed to be two at each site.
Among the 6[= (4

2

)
] eigenstates in HU , we adopt one of

double-occupied spin-singlet states and the spin-triplet states
as the basis states in the low-energy Hilbert space. These are
termed the LS and HS states, respectively, in the two-orbital
Hubbard model, from now on. This choice of the basis set for
the low-energy electronic structure is justified in the case where
the crystalline-electric field and the Hund coupling compete
with each other. The wave function for the spin-singlet state is
given by

|L〉 = (
f c

†
b↑c

†
b↓ − gc

†
a↑c

†
a↓

)|0〉, (4)

where |0〉 is the vacuum for electrons, and the factors are given
as f = 1/

√
1 + (�′ − �)2/I 2 and g =

√
1 − f 2. The energy

of this state is EL = U + � − �′ with �′ = √
�2 + I 2. When

I is zero, f = 1, g = 0, and EL = U . The wave functions for
the spin-triplet states are given by

|H+1〉 = c
†
a↑c

†
b↑|0〉, (5)

|H0〉 = 1√
2

(
c
†
a↑c

†
b↓ + c

†
a↓c

†
b↑

)|0〉, (6)

|H−1〉 = c
†
a↓c

†
b↓|0〉, (7)

with the energy EH = � + U ′ − J . The energy difference
between the spin-singlet and spin-triplet states is EH − EL =
�′ − J + U ′ − U , which is � − 3J in the case of I = 0.
Thus, the stability of the two spin states is mainly controlled
by � and J . The basis set of the wave functions is denoted
as {|H+1〉,|H0〉,|H−1〉,|L〉}. It is convenient to introduce the
equivalent set of the wave functions {|HX〉,|HY 〉,|HZ〉,|L〉},
where we define |HX〉 = (−|H+1〉 + |H−1〉)/

√
2, |HY 〉 =

−(|H+1〉 + |H−1〉)/(
√

2i), and |HZ〉 = |H0〉.
We present explicit representations of the local operators

in the basis set introduced above. The spin operators with
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the magnitude of S = 1 are represented in the basis set
{|HX〉,|HY 〉,|HZ〉,|L〉} as

Sx = 1√
2

⎛⎜⎝ −i

i

⎞⎟⎠, (8)

Sy = 1√
2

⎛⎜⎝ i

−i

⎞⎟⎠, (9)

Sz = 1√
2

⎛⎜⎝ −i

i

⎞⎟⎠. (10)

In order to describe the spin-state degree of freedom, we
introduce the PS operators τ

γ

� with subscripts γ (= x,y,z) and
�(= X,Y,Z). The X components of the PS operators τ

γ

X are
represented in the basis set {|HX〉,|HY 〉,|HZ〉,|L〉} as

τ x
X =

⎛⎜⎝ 1

1

⎞⎟⎠, (11)

τ
y

X =

⎛⎜⎝ −i

i

⎞⎟⎠, (12)

τ z
X =

⎛⎜⎝ 1

−1

⎞⎟⎠. (13)

The other components, τ
γ

Y and τ
γ

Z , are defined from τ
γ

X by the
cyclic permutations of {|HX〉,|HY 〉,|HZ〉}. It is worth to note
that τ z

� represents a difference between the weights in the LS
and HS states, and τ x

� and τ
y

� represent the mixing between
the LS and HS states with the real and complex coefficients,
respectively. Therefore, 〈τ x

� 〉 and 〈τ y

� 〉 are the order parameters
for the EI phase. The matrix elements expressed in the
basis set {|H+1〉,|H0〉,|H−1〉,|L〉} are obtained by the unitary
transformation with the matrix given by

U =

⎛⎜⎜⎝
−1√

2
i√
2

1
1√
2

i√
2

1

⎞⎟⎟⎠. (14)

The PS operators are also represented by the projection
operators as τ x

X = |L〉〈HX| + |HX〉〈L|, τ
y

X = i(|L〉〈HX| −
|HX〉〈L|), and τ z

X = |HX〉〈HX| − |L〉〈L|. We introduce the
projection operators defined by nH = ∑

� |H�〉〈H�| and nL =
|L〉〈L|. It is useful to introduce another set of the operators
d+1 = |L〉〈H+1|, d0 = |L〉〈H0|, and d−1 = |L〉〈H−1|, and
their combinations dX = (−d+1 + d−1)/

√
2), dY = (d+1 +

d−1)/
√

2i), and dZ = d0 [25]. When the electron-hole trans-
formations in the b band are performed by the operator
transformations hib↑ = c

†
ib↓ and hib↓ = −c

†
ib↑, and the pair

hopping interaction is neglected, d = (dX,dY ,dZ) corresponds
to the “d vector” in the triplet superconductivity.

In order to derive the effective model Hamiltonian in the
low-energy sector, we use the standard canonical transforma-
tion up to the second order of Ht given by

(Heff)αα′ = (HU )αα′

+ 1

2

∑
β

(
(Ht )αβ(Ht )βα′

Eα − Eβ

+ (Ht )αβ(Ht )βα′

Eα′ − Eβ

)
,

(15)

where α and α′ belong to {|H+1〉,|H0〉,|H−1〉,|L〉}, and β

belongs to the remaining higher-energy states. The low-energy
effective Hamiltonian for the two-orbital Hubbard model is
obtained as

Heff = E0 − hz

∑
i

τ z
i + Jz

∑
〈ij〉

τ z
i τ z

j + Js

∑
〈ij〉

Si · Sj

− Jx

∑
〈ij〉�

τ x
i�τ x

j� − Jy

∑
〈ij〉�

τ
y

i�τ
y

j�, (16)

where τ
γ

i = ∑
� τ

γ

i� . The energy parameters in this Hamilto-
nian are given by the parameters in the two-orbital Hubbard
model, and their explicit forms are presented in Appendix. We
note that Js is positive, and signs of Jx and Jy reflect a sign
of tb/ta . We choose tb/ta < 0 assuming a direct gap between
the conduction and valence bands, which leads to Jx > 0 and
Jy > 0. In the case of a bipartite lattice, signs of Jx and Jy are
changed by the transformations τ x

i → −τ x
i and τ

y

i → −τ
y

i on
one of the sublattices. There is a condition |Jx | � |Jy |. The
equivalent Hamiltonians were examined in Refs. [25,36,37].

We mention the symmetry and conservation quantities
in the effective Hamiltonian given by Eq. (16). The total
spin operators Stot(≡

∑
i Si) are conserved, reflecting the

SO(3) symmetry in the Hamiltonian. When I = 0, we have
Jx = Jy and τ z

tot(≡
∑

i τ
z
i ) is conserved. This implies the

U(1) symmetry on the τ x − τ y plane, corresponding to the
relative phase degree of freedom between the LS and HS
states. In the case of I �= 0, this U(1) symmetry is reduced
to the Z2 symmetry, and the Hamiltonian is invariant under
the simultaneous transformation of τ x

i → −τ x
i or τ

y

i → −τ
y

i

for all i. Therefore, the EI transition, where 〈τ x
i 〉 and/or

〈τ y

i 〉 are finite, is classified as the spontaneous breaking of
the Z2 symmetry. This symmetry corresponds to the relative
sign degree of freedom between the LS and HS states in the
wave function: C|L〉 + C ′|H 〉 and C|L〉 − C ′|H 〉, where |H 〉
belongs to {|H+1〉,|H0〉,|H−1〉}, and C and C ′ are complex
numbers.

III. METHOD

In this section, we present formulas for the MF approx-
imation and the generalized spin-wave approximation. The
Hamiltonian in Eq. (16) is represented by a unified form as

Heff =
∑
iξ

EξOiξ +
∑
〈ij〉

∑
ξ

JξOiξOjξ , (17)

where a subscript ξ classifies the interactions and Oiξ

represents the spin and PS operators at site i. We consider
a bipartite lattice and introduce the MF order parameters
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〈Oξ 〉A and 〈Oξ 〉B for sublattices A and B, respectively. The
Hamiltonian is divided into the MF term and the fluctuation
term as H = HMF + δH. We have a MF Hamiltonian given by

HMF =
∑
iξ

EξOiξ + z
∑
i∈A

∑
ξ

JξOiξ 〈Oξ 〉B

+ z
∑
j∈B

∑
ξ

Jξ 〈Oξ 〉AOjξ − zN

2

∑
ξ

Jξ 〈Oξ 〉A〈Oξ 〉B,

(18)

and a remaining term

δH =
∑

〈ij〉i∈Aj∈B

∑
ξ

Jξ δOiξ δOjξ , (19)

where z is a coordination number. We introduce δOiξ =
Oiξ − 〈Oξ 〉C where i belongs to the sublattice C. A set
of the MFs {〈Oξ 〉C} is obtained in HMF self-consistently
in the numerical calculations. The phase diagrams at zero
temperature are obtained by calculating the MFs and energies
in each phase. The MF energy per site is explicitly given by

EMF =
∑
iξ

Eξ

2
(〈Oξ 〉A + 〈Oξ 〉B) + z

2

∑
ξ

Jξ 〈Oξ 〉A〈Oξ 〉B,

(20)

where the self-consistently obtained MFs are inserted.
The collective excitations are calculated using the gen-

eralized spin-wave method proposed in Ref. [39], which is
equivalent to the methods in Refs. [40–45]. The fluctuation
parts of the local operators are expanded by the projection
operators, which are defined by the eigenstates of HMF. This
is given by

δOiξ =
∑
mm′

Xmm′
i 〈m; i|δOiξ |m′; i〉, (21)

where |m; i〉 (m = 0,1, . . . ) is the mth eigenstate of HMF at
site i, and the projection operators are defined as Xmm′

i =
|m; i〉〈m′; i|. Since the eigenenergy of |m; i〉 and the matrix
elements 〈m; i|δOiξ |m′; i〉 do not depend explicitly on i but
depend on the sublattice to which the site i belongs, we denote
them by EC

m and �OC
ξmm′ , respectively.

We apply the generalized Holstein-Primakoff (HP) trans-
formation to the projection operators as

Xm0
i = c

†
im

(
M −

N∑
n=1

c
†
incin

)1/2

, (22)

and X0m
i = (Xm0

i )† for m � 1,

Xmn
i = c

†
imcin, (23)

for m,n � 1, and

X00
i = M −

N∑
n=1

c
†
incin, (24)

where c
†
in (cin) is the creation (annihilation) operator of the

HP boson at site i, and cin takes ain and bin when the
site i belongs to the sublattices A and B, respectively. We
define N as the number of the excited states and M ≡

X00
i + ∑N

n=1 c
†
incin, where the constraint M = 1 is imposed

at each site. The projection operators satisfy the commutation
relations [Xmn

i ,Xm′n′
i ′ ] = δii ′ (Xmn′

i δm′n − Xm′n
i δmn′ ), which are

obtained by the commutation relations for the HP bosons.
By expanding the projection operators in terms of 1/M,

the Hamiltonian Heff is expressed by the HP boson operators
up to the quadratic order as

HSW =
∑
qn

(
�EA

n a†
qnaqn + �EB

n b†qnbqn

)
+

∑
qnm

zγq
(
JAB

nm a†
qnb

†
−qm + J̃ AB

nm a†
qnbqm + H.c.

)
.

(25)

We define �EC
n = EC

n − EC
0 and γq = z−1 ∑

ρ eiq·ρ , where ρ

is the vector connecting NN sites. The Fourier transforms of
the HP bosons are introduced as

cqn =
√

2

N

∑
i∈C

cine
−iq·r i , (26)

and the summations for q in Eq. (25) run over the first Brillouin
zone for a unit cell including two sites. The hopping integrals
of the HP bosons are given by

JAB
nm =

∑
ξ

Jξ�OA
ξn0�OB

ξm0, (27)

J̃ AB
nm =

∑
ξ

Jξ�OA
ξn0�OB∗

ξm0. (28)

Using the Bogoliubov transformation [46], Eq. (25) is diago-
nalized as

HSW =
∑
qμ

(
ωα

qμα†
qμαqμ + ωβ

qμβ†
qμβqμ

) + const, (29)

where ωα
qμ and ω

β
qμ are the energies for the bosons αqμ

and βqμ, respectively. The HP boson operators and the
quasiparticle operators introduced above are connected by
Bq = JqAq withA†

q = ({a†
qn},{b†qn},{a−qn},{b−qn}) andB†

q =
({α†

qμ},{β†
qμ},{α−qμ},{β−qμ}). The transformation matrix is

expressed as

J −1
q =

(
Uq Wq

Vq Xq

)
, (30)

where Uq , Vq , Wq , and Xq are 2N × 2N matrices, which
diagonalize the Hamiltonian in Eq. (25) [46].

Based on the generalized spin-wave method introduced
above, we formulate the spin and PS excitation spectra. The
dynamical susceptibilities at zero temperature are given as

χξξ ′ (q,ω) = i

∫ ∞

0
dt〈〈0|[δOqξ (t),δO−qξ ′]|0〉〉eiωt−εt

= −
∫ ∞

−∞
dE

Sξξ ′ (q,E)

ω − E + iε
, (31)
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where |0〉〉 is the vacuum for αqμ and βqμ, Sξξ ′ (q,E) is the
spectral function, ε is an infinitesimal constant, and δOqξ is
defined by

δOqξ =
√

1

N

∑
i

δOiξ e
−iq·r i . (32)

The spectral function is given by

Sξξ ′ (q,E) =
∑
q ′μγ

〈〈0|δOξq |μ; q ′,γ 〉〉〈〈μ; q ′,γ |δOξ ′−q |0〉〉

× δ
(
E − ω

γ

q ′μ
)
, (33)

where |μ; q,γ 〉〉 = γ
†
qμ|0〉〉 and γqμ = (αqμ,βqμ) for γ =

(α,β). The spectral functions are represented using the ma-
trices introduced in Eq. (30) as

Sξξ ′ (q,E) =
∑
μγ

Wγ

qξμW
γ ∗
qξ ′μδ

(
E − ωγ

qμ

)
, (34)

with

Wγ

qξμ =
∑
nC

(
�OC

ξn0[Vq](n,C)(μ,γ ) + �OC∗
ξn0[Uq](n,C)(μ,γ )

)
.

(35)

The spectral function is related to the dynamical structure
factor as

Sξξ ′ (q,ω) =
∫ ∞

−∞

dt

2π
〈〈0|δOqξ (t)δO−qξ ′ |0〉〉eiωt (36)

for ω > 0. The corresponding static susceptibilities are intro-
duced as

χξξ ′ = χξξ ′ (q,ω = 0)|q→0. (37)

We summarize a procedure to calculate the dynamical
correlation functions given in Eq. (36). The matrix elements
�OC

ξn0 are calculated using the MFs obtained self-consistently.
By applying the Bogoliubov transformation to the Hamiltonian
in Eq. (29), the dispersion relations ωα

qμ and ω
β
qμ, and the

transformation matrix J −1
q are obtained. Using �OC

ξn0, and
the submatrices Uq and Vq in J −1

q , we directly calculate Wγ

qξμ

in Eq. (35). Finally, the spectral functions are obtained as

Sξξ ′ (q,E) = − 1

π

∑
μγ

Wγ

qξμW
γ ∗
qξ ′μIm

(
1

E − ω
γ
qμ + iε̃

)
,

(38)

where ε̃ is an infinitesimal constant.

IV. GROUND-STATE PHASE DIAGRAM

A. MF phase diagram

In this section, we present the numerical results of the
ground-state phase diagrams obtained by the MF approx-
imation. All numerical calculations are performed in the
two-dimensional square lattice with the coordination number
z = 4. First, we show the phase diagram on the plane of �

and J for several values of tb/ta in Figs. 1(a)–1(c). The phase
boundaries are determined by calculating the spin and PS order
parameters. The spin states are identified by 〈nH〉C , which takes
0 and 1 in the case where the spin states at all sites are LS and

HS, respectively. The spin structure is examined by the square
of the magnetic order parameters defined as

SF(AF) = 1

4

∑
γ=x,y,z

(〈Sγ 〉A ± 〈Sγ 〉B)2, (39)

where + and − in the right-hand side imply the ferromagntic
and antiferromagnetic orders, respectively. The EI order is
identified by the x and y components of the PS operators
defined by

τ
γ

F(AF) = 1

4

∑
�=X,Y,Z

(〈
τ

γ

�

〉
A

± 〈
τ

γ

�

〉
B

)2
, (40)

where γ takes x and y.
Let us start from Fig. 1(a) for tb/ta = −0.1. The order

parameters as functions of J/ta are presented in Figs. 1(d),
1(g), 1(j), and 1(m) at �/ta = 6, which is plotted by a dotted
horizontal line in Fig. 1(a). The five phases appear at this
parameter. In the case of � � J , we have 〈nH〉A = 〈nH〉B = 0,
implying the LS phase. On the other side, in the case of � � J ,
〈nH〉A = 〈nH〉B = 1, implying the HS phase. The magnetic
order parameters shown in Fig. 1(g) indicate that the S = 1
spins are aligned antiferromagnetically. This phase is termed
AFM-HS phase from now on, and is mainly attributed to
the exchange interaction in the fourth term in Eq. (16). The
wave functions on the two sublattices in this phase are given
as

|ψHS〉A = |H+1〉, (41)

|ψHS〉B = |H−1〉. (42)

Between the LS and AFM-HS phases, we find a phase which
is characterized by 〈nH〉A = 0 and 〈nH〉B = 1. This is the
spin-state ordered phase denoted as LS/HS, where the HS
and LS sites are aligned alternately in the square lattice.
These three phases, the LS, AFM-HS, and LS/HS ordered
phases, in the two-orbital Hubbard model have been shown in
Refs. [36,37,47]. Note that the spin alignments in the LS/HS
ordered phase are not fixed in the present MF approximation,
and the long-range exchange interactions are necessary to
determine the spin structure.

We find two phases located between the LS and LS/HS
ordered phase, and between the AFM-HS and LS/HS ordered
phase as shown in Fig. 1(a). In both the two phases, 〈nH〉A and
〈nH〉B take values between 0 and 1, implying that the LS and
HS states are mixed quantum mechanically. Since there are
no direct hopping integrals between the a and b orbitals, this
mixing occurs spontaneously due to the interactions. This is
directly confirmed by the x and y components of the PS order
parameters shown in Figs. 1(j) and 1(m). Both the two phases
are identified as the EI phases.

We focus on the EI phase appearing between the LS and
LS/HS ordered phases. We term this phase EIQ. It is shown that
τ x

F is only finite among the several PS order parameters, imply-
ing that this is a uniform EI phase with the real wave function.
Any magnetic order parameters introduced in Eq. (39) do not
emerge as shown in Fig. 1(g), i.e., no conventional magnetic
long-range order. Without loss of generality, we set the order
parameters in this phase as 〈τ x

Z〉C �= 0 and 〈τ x
X〉C = 〈τ x

Y 〉C = 0,
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FIG. 1. Phase diagrams in the planes of J/ta and �/ta at (a) tb/ta = −0.1, (b) tb/ta = −0.4, and (c) tb/ta = −0.5. The parameter values
are chosen to be I = J , U = 6J , and U ′ = 4J . Black thick lines and red thin lines represent the phase boundaries, where the phase transitions
are of the first and second orders, respectively. The symbols LS, HS, LS/HS, EIQ, and EIM indicate the LS phase, AFM-HS phase, LS/HS
ordered phase, EIQ phase, and EIM phase, respectively. The HS density (〈nH〉A, 〈nH〉B ), the spin order parameters (SF, SAF), the x component
of the PS order parameters (τ x

F , τ x
AF), and the y component of the PS order parameters (τ y

F , τ
y

AF) are plotted in (d), (g), (i), (m) for tb/ta = −0.1,
(e), (h), (k), (n) for tb/ta = −0.4, and (f), (i), (l), (o) for tb/ta = −0.5. In (d)–(o), we choose �/ta = 6.0 indicated by the horizontal broken
lines in (a)–(c).

implying the wave function given by

|ψEIQ〉 = C1|L〉 + C2|HZ〉, (43)

with real numbers C1 and C2. This type of the uniform
EI order originates from the ferrotype exchange interac-
tions Jx > Jy > 0 in Eq. (16). In this wave function, we
have that 〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0 and 〈Q3z2−r2〉 �= 0 where
Q3z2−r2 ≡ 3(Sz)2 − S(S + 1) is one of the spin-quadrupole
operators. This phase is identified as a spin-nematic ordered
phase [48,49], and is termed the EIQ phase from now
on.

Next, we focus on the EI phase between the AFM-HS and
the LS/HS ordered phases. The finite PS moments shown in

Fig. 1(j) and 1(m) imply the quantum mixing of the LS and
HS states. The AFM order is realized as shown in Fig. 1(g), in
contrast to the EIQ phase. We term this phase EIM. From the
numerical results, we give explicit forms of the wave functions
as

|ψEIM〉A = D1|L〉 + D̃2e
−iθA |H+1〉 + D̃3e

iθA |H−1〉, (44)

|ψEIM〉B = D1|L〉 + D̃2e
iθB |H−1〉 + D̃3e

−iθB |H+1〉, (45)

where D1, D̃2, and D̃3 are real number. Without loss
of generality, the staggered magnetic moment is assumed
parallel to Sz, and θA and θB are phases corresponding
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to the spin rotation around Sz. These are also expressed
as

|ψEIM〉A = D1|L〉 + D2|HX〉 + D3|HY 〉, (46)

|ψEIM〉B = D1|L〉 + D∗
2 |HX〉 + D∗

3 |HY 〉, (47)

where D2 = (−D̃2e
−iθ + D̃3e

iθ )/
√

2 and D3 = −i(D̃2e
−iθ +

D̃3e
iθ )/

√
2, and θA = θ and θB = θ + π are imposed. Then,

we have 〈τ x
Y 〉A/〈τ x

X〉A = −〈τ y

X〉A/〈τ y

Y 〉A = tan θ , 〈τ x
� 〉A =

〈τ x
� 〉B , and 〈τ y

� 〉A = −〈τ y

� 〉B for � = X,Y , and 〈τ γ

Z 〉A =
〈τ γ

Z 〉B = 0 for γ = x,y. These relations imply the canted PS
order associated with the AFM order, which is consistent with
the results in Figs. 1(j) and 1(m).

We show that a difference between the widths of the
two bands controls stabilities of the EI phases. In Figs. 1(b)
and 1(c), the phase diagrams for tb/ta = −0.4 and −0.5 are
presented, respectively. The detailed order parameters are
presented in Fig. 1. With increasing |tb/ta| [Fig. 1(b)], the
LS/HS ordered phase disappears and the two EI phases touch
directly with each other, and the EIQ phase rather than the EIM
phase expands. The order parameters change continuously at
the boundary between the two EI phases, implying the second-
order phase transition. Detailed discussion for characters of
the phase transitions will be presented in Sec. IV B. With
further increasing |tb/ta| [Fig. 1(c)], the EIM phase disappears
and the EIQ phase fills a parameter region between the
AFM-HS and LS phases. The calculated results for the order
parameters indicate that the phase transition between the
EIQ and LS (AFM-HS) phases are of the second (first)
order.

In order to clarify roles of the interaction terms in the
effective Hamiltonian in Eq. (16), we show the phase diagrams
on a plane of the parameters in the effective Hamiltonian.
Among the five energy parameters, Js is chosen to be a unit
of energy and Jx/Js is fixed to be 0.5. We show the phase
diagrams on a plane of hz/Js and Jz/Js for several values of
Jy/Jx in Fig. 2. Note that hz reflects the energy difference
between the a and b orbitals and Jz provides the attractive
interaction between the NN LS and HS states. The spin-
quantization axis is chosen to be Sz, and the conditions 〈τ x

X〉 =
〈τ x

Y 〉, 〈τ y

X〉 = −〈τ y

Y 〉, and 〈τ x
Z〉 = 〈τ y

Z〉 = 0 are imposed. It is
shown that positive and negative hz stabilize the AFM-HS
and LS phases, respectively, and the LS/HS ordered phase
is realized with increasing Jz. Between these three phases,
the two EI phases appear. With increasing Jy/Jx from zero,
the EIM phase is shrunken, and vanishes at Jy/Jx = 1. As
mentioned in Sec. II, |Jy/Jx | � 1 is satisfied, and the U(1)
symmetry exists in the effective Hamiltonian at Jy/Jx = 1,
which corresponds to I = 0. This implies that the loss of the
U(1) symmetry in the case of I �= 0 is necessary to realize
the EIM phase. Detailed hz/Js dependencies of the order
parameters are presented in Fig. 3 along the broken line in
Fig. 2(a). All order parameters are changed continuously,
implying that all phase transitions in this case are of the second
order. The orders of the phase transitions are represented by
thin and bold lines in Fig. 2.
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EIM

EIQ
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(a)

Jy/Jx=0.5(b)

Jy/Jx=1.0(c)

FIG. 2. Phase diagrams in the planes of Jz/Js and hz/Js for (a)
Jy/Jx = 0, (b) Jy/Jx = 0.5, and (c) Jy/Jx = 1. The other parameter
value is chosen to be Jx/Js = 0.5. The black thick lines and red
thin lines represent the phase boundaries, where the phase transitions
are of the first and second orders, respectively. The symbols LS,
HS, LS/HS, EIQ, and EIM indicate the LS phase, AFM-HS phase,
LS/HS ordered phase, EIQ phase, and EIM phase, respectively. The
broken line in (a) represents the parameter region, where the quantities
presented in Fig. 3 are calculated.

B. Symmetry analysis

We analyze the order of the phase transition from the sym-
metry viewpoint. In Table I, the symmetries in the five phases in
the ground state are summarized. Each phase is characterized
by the following four kinds of the symmetries: the SO(3)
symmetry for the spin rotation, the time-reversal symmetry,
the translational symmetry, and the Z2 symmetry in terms
of the PS inversion in the τ x − τ y plane given as τ x → −τ x

and τ y → −τ y . The generators of the time-reversal symmetry,
the translational symmetry, and the PS-reversal symmetry
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FIG. 3. (a) High-spin density (〈nH〉A, 〈nH〉B ), (b) spin order
parameters (〈Sz〉A, 〈Sz〉B ), (c) the x component of the PS order
parameters (〈τ x〉A, 〈τ x〉B ), and (d) the y component of the PS order
parameters (〈τ y〉A, 〈τ y〉B ). The other parameter values are chosen to
be Jz/Js = 0.1, Jx/Js = 0.5, and Jy = 0. Corresponding parameter
region is denoted by the broken line in Fig. 2(a).

are denoted by �, T , and G ≡ exp[iπ
∑

i(n
H
i − nL

i )/2],
respectively. We have the relations �C|L〉 = C∗|L〉,GC|L〉 =
C|L〉, �C|H�〉 = −C∗|H�〉, and GC|H�〉 = −C|H�〉, where

TABLE I. Symmetries of the phases which appear in the ground-
state phase diagram. The symbols LS, HS, LS/HS, EIQ, and EIM
indicate the LS phase, the AFM-HS phase, the LS/HS ordered phase,
the EIQ phase, and the EIM phase, respectively. The symbols T ,
G, and � are the generators for the translational symmetry, the Z2

symmetry for PS, and time-reversal symmetry, respectively. “Yes”
and “No” imply that the phase is invariant and is not invariant under
the corresponding operation. Any magnetic orders are not assumed
in the LS/HS ordered phase.

� T G �T �G T G �T G

LS Yes Yes Yes Yes Yes Yes Yes
EIQ No Yes No No Yes No Yes
EIM No No No No No No Yes
HS No No Yes Yes No No Yes
LS/HS Yes No Yes No Yes No No

C is a complex number. It is clear that the LS phase
retains all symmetries, and the AFM-HS state is invariant
under the operations G and �T . The LS/HS ordered phase
breaks the translational symmetry. For the EI phases, we
have �G|ψEIQ〉 = |ψEIQ〉 and �G|ψEIM〉A = |ψEIM〉B , where
|ψEIQ〉, |ψEIM〉A, and |ψEIM〉B are defined in Eqs. (43), (46),
and (47), respectively. Hence, the EIQ phase is invariant under
the operations of �G and T , and the EIM is invariant under
�T G.

Through the symmetry analyses listed in Table I, the phase
boundaries are classified by the Landau’s criteria for the
second-order phase transition. Since there are the inclusion
relations between the symmetries in the LS and EIQ phases,
those between the EIQ and EIM phases, and between the
EIM and AFM-HS phases, the phase transitions are possible
to be of the second order. On the other hand, since there
are not inclusion relations between the symmetries in the
EIQ and AFM-HS phases, and between the LS/HS ordered
phase and the other phases except for the LS phase, the phase
transitions between these phases should be of the first order.
The symmetry considerations shown above are consistent with
the numerical results presented in Fig. 1. There are possibilities
at finite temperatures that the LS phase directly borders the
LS/HS ordered phase as well as the AFM-HS phase across the
boundaries with the second-order phase transition.

V. COLLECTIVE EXCITATIONS

A. Dispersion relation and excitation spectra

In this section, we present the numerical results of the
collective excitations. First, we present the dispersion rela-
tions of the collective excitations obtained by the spin-wave
approximation in Fig. 4, where hz is changed along a dotted
line in Fig. 2(a). Other parameter values are the same with
those in Fig. 3. The six excitation modes are attributed to the
three excitations per site in the two sublattices, i.e., the spin
excitation, orbital excitation, and simultaneous spin-orbital
excitation.

The results in the LS phase (hz/Js = −2.5) are presented
in Fig. 4(a). In an isolated LS state, the excited states are the
triply degenerate HS states. The dispersions are caused by
the interactions Jx

∑
〈ij〉� τ x

i�τ x
j� and Jy

∑
〈ij〉� τ

y

i�τ
y

j� in the
effective Hamiltonian. The center of the excitation bands is
located around 2|hz| which is the energy gap between the LS
and HS states in the case without the intersite interactions.
At the phase boundary between the LS and EIQ phases
(hz/Js = −2.2), one of the two bands touches the zero energy
at the Brillouin-zone center as shown in Fig. 4(b). On the other
side, in the AFM-HS phase shown in Fig. 4(h), the doubly
degenerate Goldstone modes are identified as the spin waves
in the AFM ordered state.

The results in the EIQ phase are shown in Figs. 4(c) and
4(d). The triply degenerate lower-energy bands shown in the
LS phase split into the doubly degenerate Goldstone modes and
the nondegenerate gapful mode. The former are the spin-wave
excitations in the spin-nematic phase [48,49]. The latter
corresponds to the excitation which changes a relative weight
of the LS and HS states in the wave function, as discussed
later in more detail [see Figs. 5(a) and 5(b) and 6(a) and 6(b)].
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FIG. 4. Dispersion relations of the collective modes at (a) hz/Js = −2.5, (b) hz/Js = −2.2, (c) hz/Js = −2.1, (d) hz/Js = −1.5,
(e) hz/Js = −1.0, (f) hz/Js = −0.5, (g) hz/Js = −0.1, and (h) hz/Js = 0. The other parameter values are chosen to be Jz/Js = 0.1,
Jx/Js = 0.5, and Jy = 0. The number of the degeneracy is indicated by types of the lines. The symbols LS, HS, LS/HS, EIQ, and EIM,
respectively, indicate the LS phase, the AFM-HS phase, the LS/HS ordered phase, the EIQ phase, and the EIM phase, respectively. The
horizontal axes are unified in (a)–(h), although the volume of the magnetic unit cell in (f)–(h) is twice of that in (a)–(e). Dispersion relations are
plotted in the first Brillouin zone for a unit cell, where the bond lengths connecting the NN sites are taken as a lattice constant. The so-called
reduced and periodic zone pictures are adopted in (a)–(e) and (f)–(h), respectively. The � and M points are equivalent with each other in (f)–(h).

At the boundary between the EIQ and EIM phases (hz/Js =
−1.0) shown in Fig. 4(e), the Goldstone modes are doubly
degenerate. In the EIM phase, the two kinds of the Goldstone
modes appear: the doubly degenerate modes with higher
velocity and the nondegenerate mode with lower velocity. As
shown later in more detail [see Figs. 5(c) and 5(d) and 6(c)
and 6(d)], the former and latter correspond to the transverse-
and longitudinal-magnetic excitations, respectively.

Characteristics in the collective modes are examined by
calculating the dynamical correlation functions for the spin
and PS operators introduced in Eq. (36). The numerical
results are presented in Figs. 5 and 6. The results in the
EIQ, EIM, and AFM-HS phases are calculated by changing
hz/Js , and other parameter values are the same with those
in Fig. 3. For simplicity, we introduce a notation Sγγ (q,ω)
(γ = x,y,z) as the dynamical spin correlation function, i.e.,
Sξξ (q,ω) introduced in Eq. (36) with Eq. (33), where δOqξ

is taken to be S
γ
q − 〈Sγ

q 〉. In the same way, we introduce
a notation T

γγ

� (q,ω) as the dynamical PS correlation func-
tions for the operator τ

γ

q� − 〈τ γ

q�〉. We have the follow-
ing relations: Sxx(q,ω) = Syy(q,ω), T xx(q,ω) ≡ T xx

X (q,ω) =
T xx

Y (q,ω), and T yy(q,ω) ≡ T
yy

X (q,ω) = T
yy

Y (q,ω), when Sz is
taken to be the quantization axis. The relations 〈τ x

X〉 = 〈τ x
Y 〉,

〈τ y

X〉 = −〈τ y

Y 〉, and 〈τ x
Z〉 = 〈τ y

Z〉 = 0 are imposed.
First, we focus on the dynamical spin correlation functions

Sxx(q,ω) and Szz(q,ω), which correspond to the transverse and
longitudinal excitations, respectively, shown in Fig. 5. In the
EIQ phase [Figs. 5(a) and 5(b)], the doubly degenerate lower-
energy collective modes contribute to both the transverse and

longitudinal excitation spectra. This fact permits us to identify
experimentally the EIQ phase where conventional magnetic
orders do not emerge. The intensity vanishes around the �

point because of no long-range orders in the spin sectors [48].
In the EIM phase [Figs 5(c) and 5(d)], as mentioned

previously, there appear the two kinds of the Goldstone modes,
i.e., the doubly degenerate modes with a higher velocity and
the nondegenerate mode with a lower velocity. The former are
identified as the transverse excitations, which originate from
the spin-wave excitations in the AFM order. The latter is the
longitudinal component attributed to change in magnitude of
the spin moment. This implies a change in a relative weight of
the LS and HS states in the wave function. In contrast to the re-
sults in the two EI phases, the spin excitation spectra in the HS
phase shown in Figs. 5(e) and 5(f) have only the transverse
components originating from the spin-wave excitations in the
AFM order. As shown in Figs. 5(c) and 5(e), the intensities
in Sxx are remarkable around the M point in the EIM and HS
phases, owing to the AFM order.

The dynamical PS correlation functions are shown in Fig. 6.
In the EIQ phase [Figs. 6(a) and 6(b)], both the optical modes
located around ω/Js = 4 and the Goldstone modes show finite
spectral intensities. Since the former do not contribute to the
dynamical spin correlation functions as shown in Figs. 5(a)
and 5(b), these are the pure orbital excitations. The Goldstone
mode is observed in T xx because of the τ x

F order. In the
EIM phase shown in Figs. 6(c) and 6(d), the optical modes
located around ω/Js = 6, and the Goldstone modes provide
finite weights in the spectra. Intensities in T xx (T yy) are
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FIG. 5. Contour maps of the dynamical spin correlation func-
tions. The x components Sxx and the z components Szz are shown in
(a), (c), (e) and (b), (d), (f), respectively. The parameter value of hz/Js

is taken to be (a) −1.5 (the EIQ phase), (b) −0.5 (the EIM phase),
and (c) 0 (the AFM-HS phase). The horizontal axes are taken in the
same manner as Fig. 4. A value of the constant in the denominator
in Eq. (38) is chosen to be ε̃/Js = 0.2. The other parameter values
are the same with those in Fig. 3. The dotted red lines represent the
dispersion relations of the collective modes [see Figs. 4(d), 4(f), and
4(h)]. Intensities of Szz vanish in (f).

remarkable around the � (M) point due to the τ x
F (τ y

AF)
order in this phase. The results in the AFM-HS phase are
shown in Figs. 6(e) and 6(f). The spectral intensities for the
optical modes located around ω/Js = 8 are zero since these
excitations are accompanied by changing Sz by ±1, i.e., the
spin-nematic excitations. Large spectral intensity are seen at
the optical modes ω/Js = 1–2, identified as the pure orbital
excitations from the HS to LS states.

At the end of this section, we show the magnetic suscepti-
bilities, which are derived from the dynamical spin correlation
function given in Eq. (37). The transverse and longitudinal
components of the susceptibilities χxx and χzz are shown
in Fig. 7. Vanishing of the susceptibilities in the LS phase
originates from the spin gap. In the AFM-HS phase, χzz = 0
and χxx �= 0 are attributed to the AFM order, in which the
staggered moment is assumed to be along the Sz axis. In the
two EI phases, both χxx and χzz are finite. The finite magnetic
susceptibilities are shown in the EIQ phase, corresponding to
the Van Vleck components. The results are available to identify
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FIG. 6. Contour maps of the dynamical PS correlation functions.
The x components T xx and the y components T yy are shown in (a),
(c), (e) and (b), (d), (f), respectively. The parameter value of hz/Js

is taken to be (a) −1.5 (the EIQ phase), (b) −0.5 (the EIM phase),
and (c) 0 (the AFM-HS phase). The horizontal axes are taken in the
same manner as Fig. 4. A value of the constant in the denominator
in Eq. (38) is chosen to be ε̃/Js = 0.2. The other parameter values
are the same with those in Fig. 3. The dotted red lines represent the
dispersion relations of the collective modes [see Figs. 4(d), 4(f), and
4(h)].

experimentally the EIQ phase in which the conventional
magnetic orders do not emerge. Even in the AFM ordered
state, χzz is finite in the EIM phase in contrast to the AFM-HS
phase since the longitudinal responses occur by changing a
relative weight of the LS and HS states.

B. Goldstone modes

In this section, we discuss the number of the Goldstone
modes in each phase. By following the results in Refs. [50,51],
the number of the Goldstone modes termed nNG are governed
by the number of the broken symmetries termed nBS. The
equation nNG = nBS is satisfied in the case that 〈[Oξ ,Oξ ′ ]〉 = 0
for all pairs of ξ and ξ ′. The SO(3) symmetry for the spin
rotation is only the continuous symmetry in the present
effective Hamiltonian, and the generators are Sx

tot, S
y
tot, and

Sz
tot, all of which commute with the Hamiltonian given in

Eq. (16). The conditions 〈[Sα
tot,S

β
tot]〉 ∝ iεαβγ 〈Sγ

tot〉 = 0, where
εαβγ is the Levi-Civita antisymmetric tensor, are satisfied in
all ordered phases appearing in the MF phase diagrams shown
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FIG. 7. Transverse and longitudinal components of the static
magnetic susceptibilities. The parameter values are chosen to be
Jz/Js = 0.1, Jx/Js = 0.5, and Jy = 0. The symbols HS, EIQ, and
EIM indicate the AFM-HS phase, the EIQ phase, and the EIM phase,
respectively.

in Fig. 1. Thus, the criteria derived in Ref. [51] are available
in the present phases. It is also shown in this case that the
dispersion relation in the long-wavelength limit is linear, unless
the parameter set is artificially fine tuned [51].

It is trivial that there are not any Goldstone modes in
the LS phase in which the SO(3) symmetry is not broken.
There are also no Goldstone modes in the LS/HS ordered
phase, where magnetic orders are not assumed in the present
MF calculations. In the EIQ phase, the two of the three
generators change the ordered state. For example, the wave
function |ψEIQ〉 = C1|L〉 + C2|HZ〉 with real numbers C1 and
C2 is not invariant by the operations of Sx

tot and/or S
y
tot, that

is, nNG = 2. In the EIM phase with the AFM order, all
of the generators change the ordered state. It is explicitly
shown that the wave functions for the A and B sublat-
tices are given by |ψEIM〉A = D1|L〉 + D2|HX〉 + D3|HY 〉 and
|ψEIM〉B = D1|L〉 + D∗

2 |HX〉 + D∗
3 |HY 〉 with a real number

D1 and complex numbers D2 and D3 [see Eqs. (46) and
(47)] are not invariant under the operations of Sx

tot, S
y
tot, and

Sz
tot. Therefore, nNG = 3. Finally, in the AFM-HS phase, the

number of the broken symmetry is two, for example, Sx
tot and

S
y
tot in the case that the staggered moments are parallel to the Sz

axis. Thus, nNG = 2. The above discussion is consistent with
the numerical results shown in Fig. 4. In all phases, the linear
dispersion relations around the � point are predicted from the
results in Ref. [51] except for the case with fine tuning of
the parameter sets. This is also confirmed by the numerical
calculations shown in Sec. V A.

The present analyses are extended to the case without
the pair hopping, in which the U(1) symmetry exists. The
z component of the PS operator τ z

tot(≡
∑

i τ
z
i ) commutes with

the Hamiltonian. We find that nNG = 3 and 4 in the EIQ and
AFM-EIM phases, respectively, and nNG in other phases are
the same with those in the case of I �= 0.

VI. DISCUSSION AND SUMMARY

We discuss the relationships to the previous theoretical
studies in the EI phases. The two-orbital Hubbard model

with the finite-energy difference was studied by using the
variational cluster approximation [38]. Note that the condition
ta/tb > 0 in Ref. [38] is transformed into ta/tb < 0 by chang-
ing signs of Jx and Jy in the present effective Hamiltonian.
The EI phase stabilized by the Hund coupling, which is termed
the excitonic spin density wave (SDW) phase, was found
in-between the LS phase and the AFM-HS phase. This EI
phase may correspond to the EIQ phase in this study, in
which the local magnetic moment does not appear but the
time-reversal symmetry is broken. The symmetry analyses
given in this study are applicable to the original two-orbital
Hubbard model as follows. It is trivial that the time-reversal
and translational symmetries are retained. The Z2 symmetry
for the PS operators proposed in this study corresponds to
the transformations c

†
iaσ → −c

†
iaσ and ciaσ → −ciaσ for all

i and σ in the two-orbital Hubbard model. The first-order
phase transition between the excitonic SDW and AFM-HS
phases and the second-order transition between the excitonic
SDW and the LS phases shown in [38] are understood in
the symmetry relations clarified in this study. No phases
corresponding to the EIM phase associated with the AFM order
as well as the LS/HS ordered phase in this study were shown in
Ref. [38]. It is shown in Fig. 1 that the difference between the
bandwidths is necessary to realize these two phases. Another
EI phase, in which the time-reversal symmetry is not broken,
termed the excitonic CDW phase, was studied in Refs. [3,13].
This phase is understood in the present framework as a phase
where the LS and a spin-singlet state given by

|S〉 = 1√
2

(c†a↑c
†
b↓ − c

†
a↓c

†
b↑)|0〉 (48)

are mixed in the wave function. Since the energy of this singlet
state is much higher than |L〉 and |H�〉 introduced in Eq. (7) at
vicinity of the LS-HS phase boundary, this state is irrelevant
to the low-energy electronic structure in the present model.
This is reasonable that the EI phases with the time-reversal
symmetry breaking are favored in the case that the Hund
coupling is comparable to the crystalline-field splitting [13].
On the other hand, the excitonic CDW phase may be stabilized
by the Jahn-Teller–type electron-lattice interaction, which is
not included in the present theory.

From the orbital physics viewpoint, the excitonic phases are
characterized in terms of the multipole order. Let us consider
some examples where the explicit symmetries of the a and
b orbitals are assumed. First, we consider the case where the
a and b orbitals are the dx2−y2 and dxy orbitals, respectively,
which have the same parity in the wave functions. The charge
and spin distributions in the EIQ phase are shown in Fig. 8(a),
where the wave function is given by 1√

2
(|L〉 + |HZ〉) with

|L〉 ∼ c
†
b↑c

†
b↓|0〉. In this figure, the radius and color represent

the charge distribution and the spin distribution for the Sz

component, respectively. The charge distribution shows a
similar symmetry to the dxy orbital. On the other hand, there are
eight nodes in the spin distribution, indicating that the magnetic
triakontadipole (25-pole) moment as a manifestation of the
time-reversal symmetry breaking. In Fig. 8(b), we present the
charge and spin distributions in the case where the a and
b orbitals are chosen as the pz and s orbitals, respectively,
which have the odd and even parities. The EIQ phase given by

205136-11



NASU, WATANABE, NAKA, AND ISHIHARA PHYSICAL REVIEW B 93, 205136 (2016)
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FIG. 8. Charge and spin distributions at a single site in the EI
phases. In (a) and (b), the wave functions are given as 1√

2
(|L〉 + |HZ〉),

where the a and b orbitals are taken to be (a) the dx2−y2 and dxy orbitals,
and (b) the pz and s orbitals, respectively. In (c), the wave function
is given as 1√

2
(|L〉 + |S〉), where the a and b orbitals are taken to the

pz and s orbitals, respectively. Radius and color represent the charge
and spin distributions, respectively. Red and blue regions represent
positive and negative Sz, respectively.

1√
2
(|L〉 + |HZ〉) is considered. There appears a finite magnetic

dipole moment, but no electric dipole moment. Characteristics
in the charge distribution are different in the EIQ phase where
the spin singlet state introduced in Eq. (48) is included. In
Fig. 8(c), we present the charge and spin distributions in the
EI phase where the a and b orbitals are chosen to be the pz

and s orbitals, respectively, and the wave function is given by
1√
2
(|L〉 + |S〉), which might correspond to the excitonic CDW

phase. The spin dipole moment does not appear but the electric
dipole moment does. This might correspond to the ferroelectric
state discussed in the Falicov-Kimball model in Ref. [5].

The present theoretical studies for the EI phases have direct
implications of the candidate materials of the EI state. The
most relevant material is a series of the perovskite cobalt oxides
R1−xAxCoO3 and their family, in which the localized orbital
picture works well. The low-temperature insulating phase in
Pr0.5Ca0.5CoO3, where any experimental indications for the
magnetic and charge orders are not observed until now, is one
of the possible candidates of EI phases [23–26]. A possibility
of the EI phase should be also reexamined in LaCoO3. The
ground state is confirmed experimentally as a nonmagnetic
LS band insulator. We expect that LaCoO3 is located near the
phase boundary between the LS and EIQ phases in Fig. 1. This
is because the NN Co-O bond length, which gives an indication
of the spin-state character, is almost the same value with that
in Pr0.5Ca0.5CoO3, a candidate material of EI [22]. This fact
implies that the LS state in LaCoO3 is possibly changed into
the EIQ phase by changing an energy balance between the
Hund coupling and the crystalline field splitting. Applying
the magnetic field and/or expanding the lattice constant by
chemical substitution or by utilizing the thin-film technique on
a substrate are the plausible routes. Recently, a new phase is
found under the strong high-magnetic field in LaCoO3 [52,53].
One possible scenario of this phase is a magnetic-field-induced
EI phase, in which the Zeeman energy is gained due to
the HS component mixed with the LS state. On the other
hand, there are some limitations in this study based on the
two-orbital Hubbard model, where the realistic five orbitals
are simplified to the two orbitals. Detailed comparison with
theoretical calculations are necessary to confirm the above
scenario.

The present orbital physics viewpoints for the EI system
are applicable not only to cobaltites [25,26,54], but also
to other candidate materials, such as layered chalcogenides
[10–16], iron-based superconductors [17–20], dimer-type or-
ganic compounds [55–59], and others. In some of these mate-
rials, the valence and conduction bands originate from atomic
orbitals in different lattice sites. The charge and spin multipoles
in this case are represented by generalization of the PS
operators introduced in Sec. II, where the electronic operators
are replaced by c

†
ia and c

†
jb with different sites i and j together

with a structure factor. The electronic ferroelectriciy proposed
in the dimer-type organic salts is understood from the orbital
physics concept for the EI system. In low-dimensional organic
molecular salts, such as series of tetramethyl-tetrathiafulvalene
(TMTTF) [60–63] and bis(ethylenedithio)tetrathiafulvalene
(BEDT-TTF) compounds [55–57], the molecular dimer units
builds a framework of a crystal lattice. One electron per dimer
occupies a bonding molecular orbital in each dimer unit. Since
the Coulomb interaction between electrons inside a dimer unit
is larger than the bandwidth, the system is classified as a Mott
insulator, which is termed a dimer-Mott insulator. Recently, the
experimentally observed dielectric anomalies are considered
to be attributable to the electric dipole moment insider of the
dimer units, in which the electronic charge distributions are
polarized cooperatively [58,59,64,65]. From the viewpoint of
the EI phase, this ferroelectric phase is realized by a sponta-
neous mixing of the bonding and antibonding orbital bands.
The collective excitation modes and the superconductivity due
to the charge fluctuation studied so far [66–68] should be
reexamined as an EI system.

This study provides ways to identify the EI phases. The
experimental observations of the EI order parameters, i.e., the
electric and/or magnetic multipoles, using the resonant x-ray
scattering method, are the direct evidence of the EI phase,
although the detailed polarization analyses are necessary. The
EI transition is classified as the Ising-type transition due to
the breaking of the Z2 symmetry. Thus, above the transition
temperature, the dominant excitations are the diffusive modes
which may appear in the quasielastic component in the
inelastic x-ray scattering measurements. The soft-excitation
modes above the transition temperature are possible to appear
through the coupling between the electronic orbital and the
lattice distortion. This is similar to the PS-phonon coupled
system in the order-disorder–type ferroelectricity [69].

The observations of the collective excitations and their
responses by the external stimuli also distinguish the EI phase
from the conventional band and Mott insulators. Whereas the
conventional magnetic order does not appear in EIQ phase, the
magnetic gapless modes exist. These modes contribute to the
magnetic susceptibility and some thermodynamic quantities,
and are directly detected by the inelastic neutron/magnetic
x-ray scatterings. One remarkable difference from the con-
ventional magnetic ordered phase is seen in the longitudinal-
magnetic excitation modes; these modes are active in the EI
modes, in contrast to the AFM-HS phase as shown in Fig. 5.
The longitudinal modes are attributable to changes of the
relative weights of the LS and HS states in the wave function.

In summary, we have investigated the ground-state phase
diagram and the collective excitations in the EI system
from the orbital physics viewpoint in strongly correlated
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electron system. The effective Hamiltonian for the low-energy
electronic structure is derived from the two-orbital Hubbard
model with the finite-energy difference between the orbitals.
This is represented by the spin operators of S = 1 and the
PS operators for the spin-state degrees of freedom. The two
kinds of the EI phases, termed the EIQ and EIM phases, are
realized as a consequence of the competition between the
crystalline-field effect and the Hund coupling, in addition to
the LS band insulating phase, the AFM-HS Mott insulating
phase, and the LS/HS ordered phases. The EI phase transition
is identified as an Ising-type transition due to the spontaneous
breaking of the Z2 symmetry. The magnetic structures are
distinguished in the two EI phases: the AFM order in the
EIM phase and the spin-nematic order in the EIQ phase. The
Van Vleck component in the magnetic susceptibility appears
in the EI phases. The longitudinal magnetic modes as well
as the transverse modes are active in the two EI phases, in
contrast to the LS and AFM-HS phases. These characteristics
are available to identify the EI phases using the inelastic
neutron and magnetic x-ray scatterings. The orbital physics
viewpoints proposed in this paper are applicable to a wide
class of the candidate materials of the EI systems.
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APPENDIX: EXCHANGE CONSTANTS IN THE
EFFECTIVE HAMILTONIAN

In this appendix, we present the explicit forms of the
exchange constants in the effective Hamiltonian in Eq. (16).
This Hamiltonian is derived by the second-order perturbation
processes in terms of Ht in Eq. (1). The LS and HS
states given by Eqs. (4)–(7) are the bases of the effective
Hamiltonian. The energies of the LS and HS states are denoted
by EL(= U + � − �′) and EH (= � + U ′ − J ), respectively.
The four electron configurations termed |ψn〉 (n = 1 − 4)
shown in Fig. 9 are adopted as the intermediate states of the
perturbation processes. The corresponding energies of the in-
termediate states are denoted as E1 = E2 = 2� + 2U ′ + U −
J , E3 = � + 2U ′ + U − J , and E4 = 3� + 2U ′ + U − J .
Then, the exchange constants in the effective Hamiltonian are

(a) (b) (c) (d)
a orbital

b orbital

FIG. 9. Schematic spin and orbital configurations in the inter-
mediate states in the perturbation processes for (a) |ψ1〉, (b) |ψ2〉,
(c) |ψ3〉, and (d) |ψ4〉. Arrows represents directions of the electronic
spins.

given by

E0 = N (EL + EH )

2
+ zN (2δELH − 9δELL − 9Js)

32
, (A1)

hz = EL − EH

4
− z(2δELH + δELL − 3Js)

16
, (A2)

Jz = 2δELH − δELL − Js

16
, (A3)

Js = t2
a + t2

b

U + J
, (A4)

Jx = −J ′ + J ′′

2
, (A5)

Jy = J ′ − J ′′

2
. (A6)

Here, we define

δELL = 4f 2g2
(
t2
a + t2

b

)
2U ′ − U − J + 2�′ , (A7)

δELH = (
t2
a + t2

b

)[ f 2

−� + U ′ + �′ + g2

� + U ′ + �′

]
,

(A8)

J ′ = 2tatbfg

[
1

U + J
+ 1

2U ′ − U − J + 2�′

]
, (A9)

J ′′ = tatb

[
f 2

−� + U ′ + �′ + g2

� + U ′ + �′

]
. (A10)

Constants f and g are introduced in Eq. (4). We note that J ′ and
J ′′ given in Eqs. (A9) and (A10), respectively, are proportional
to tatb and have the same sign with each other, i.e., J ′J ′′ > 0.
As a consequence, we have a relation |Jx | � |Jy |. The equal
sign Jx = Jy is satisfied in the case of I = 0 which leads to
g = 0 and J ′ = 0.

We introduce the physical meanings of the energy constants
given in Eqs. (A7)–(A10). In the MF approximation introduced
in Sec. III, the energies in the LS, AFM-HS, and LS/HS ordered
phases are given by

EMF
L = NEL − zNδELL

2
, (A11)

EMF
H = NEH − JszN, (A12)

EMF
LH = N

2
(EH + EL) − zNδELH

2
, (A13)

respectively. Therefore, δELL and δELH represent corrections
from the MF energies in the LS and LS/HS ordered phases due
to the second-order perturbational processes.

The last two terms in the effective Hamiltonian in Eq. (15)
are also represented by using the projection operators d† =
(d†

X,d
†
Y ,d

†
Z) introduced in Sec. II as

J ′ ∑
〈ij〉

(d†
i · d†

j + H.c.) + J ′′ ∑
〈ij〉

(d†
i dj + H.c.). (A14)

The first term represents changes in the spin states in the NN
sites, where the LS states are changed into the HS states in both
the i and j sites and vice versa. The second term represents
the exchange of the LS and HS states between the NN sites.
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