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Magnetic properties of Fe1−xNix alloy from CPA+DMFT perspectives
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We use a combination of the coherent potential approximation and dynamical mean field theory to study
magnetic properties of the Fe1−xNix alloy from first principles. Calculated uniform magnetic susceptibilities
have a Curie-Weiss-like behavior, and extracted effective temperatures are in agreement with the experimental
results. The individual squared magnetic moments obtained as a function of nickel concentration follow the
same trends as experimental data. An analysis of the ionic and spin weights shows a possibility of high-spin to
intermediate- and low-spin state transitions at high temperatures.
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I. INTRODUCTION

Materials with transition metal elements are of great interest
due to a large variety of physical properties: high-temperature
superconductivity in copper and iron based compounds [1],
giant magnetoresistance [2], metal-to-insulator transition [3],
and many others. This diversity comes mainly from the fact that
(i) the local Coulomb interaction of the 3d ions is comparable
with its bandwidth and (ii) the d orbitals are partially filled.
These compounds with competing kinetic and interacting
energies can hardly be described by the conventional density
functional theory (DFT) and are known as strongly correlated.

The elemental 3d metals with partially occupied shell are
not exceptions. The famous 6 eV satellite in nickel [4] is
of many body nature and cannot be described by a band
structure theory [5]. An application of the state of the art
DFT+DMFT method [6], that combines material specific
aspects of the DFT and dynamical mean field theory [7]
(DMFT) to treat correlated electrons, allowed to Lichtenstein
et al. [8] describes properly electronic and magnetic properties
of iron and nickel in ferro- and paramagnetic phases. Grechnev
et al. [9], Di Marco et al. [10], Kolorenč et al. [11], and
Minár et al. [12] studied spectral properties of Ni and found
that correlation effects play an important role in forming
satellite structure and renormalizing the exchange splitting.
Benea et al. [13] calculated magnetic Compton profiles of Ni
and Fe in DFT+DMFT approach and found that an inclusion
of electronic correlations improves significantly an agreement
between the theoretical and experimental results. Leonov et al.,
in a series of papers [14–16], investigated a paramagnetic iron
at ambient pressure as a function of temperature and found
that a complete picture of phase transformations can be done
when correlation effects are taken into account. Pourovskii
et al. [17–19] studied magnetic and thermodynamic properties
of iron at high pressure and concluded that correlations are
important for phase stability.

In this view, an account for strong electron-electron interac-
tion is required to investigate physical properties of Fe1−xNix
alloy, which was intensively studied due to the Invar effect
discovered more than a hundred years ago [20]. One should
note that a chemical disorder present in alloy complicates
additionally a problem of a first principles description of
materials. Nevertheless, different techniques to treat alloying
effects are well developed in the framework of DFT. In one
of the most used methods, a large supercell with randomly

distributed atoms of different types is constructed, and then
required properties can be evaluated from calculations for
ordered structures. In a coherent potential approximation
(CPA), a real crystal with randomly distributed ions is replaced
by an effective medium with an energy-dependent self energy
that has to be determined self-consistently (for recent reviews
see [21] or [22] and references therein).

Magnetic properties of Fe1−xNix alloy as a function of
composition and volume were studied by several groups using
both above mentioned approaches in the DFT framework.
A rather complete review of these works can be found in a
paper of Abrikosov et al. [23] who also found that a family of
magnetic states are close to each other in energy and concluded
that inclusion of strong electron-electron correlations is highly
desired to reveal the physics of this alloy. Albeit the pure iron
and nickel are successfully studied by means of DFT+DMFT
method, there are only a few papers devoted to Fe1−xNix .
Minár et al. [24,25] combined a Korringa-Kohn-Rostoker mul-
tiple scattering theory with the dynamical mean field theory
and coherent potential approximation to treat substitutional
disorder. For a solution of the effective impurity problem in
DMFT they used fluctuation exchange approximation [26] in
conjunction with T -matrix theory [27]. The authors found
that a band broadening due to correlation effects and disorder
is comparable in face centered cubic structure (fcc) of
Fe1−xNix below Curie temperature. Total magnetic moment
is decreased as a function of Ni concentration. The individual
magnetic moments for iron (nickel) are slightly overestimated
(underestimated) [25] with respect to experimental values that
can be connected to the perturbation nature of the impurity
solver in DMFT. Vekilova et al. [28] investigated different
phases of ordered Fe0.75Ni0.25 alloy at high pressure using
DFT+DMFT method with continuous time quantum Monte
Carlo as the impurity solver [29]. For a body centered cubic
structure, a uniform magnetic susceptibility has a Curie-Weiss-
like behavior, which changes to a Pauli type in a hexagonal
close packed structure. They found that a strength of electronic
correlations on the Fe 3d orbitals is sensitive to the phase and
local environment.

In this paper, we study the magnetic properties of iron-
rich fcc Fe1−xNix binary alloy as a function of composition
and temperature. To this aim, we utilize a combination of the
coherent potential approximation with the dynamical mean
field theory, which is described in the next section.
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II. CPA+DMFT METHOD

The Hamiltonian of a crystal with a chemical type of
disorder can be written as:

Ĥ =
∑
i �=j

∑
m,m′,σ

tσim,jm′ ĉ
+
imσ ĉjm′σ+

∑
i,m,σ

(
εi
mσ−μ

)
n̂i

mσ+Ĥint, (1)

where ĉ+
imσ (ĉimσ ) is a creation (annihilation) operator of an

electron on site i with orbital m and spin σ . n̂i
mσ = ĉ+

imσ ĉimσ .
μ is a chemical potential, tσim,jm′ are hopping amplitudes,
εi
mσ is on-site energy. The last term in the Hamiltonian (1)

corresponds to the on-site Coulomb interaction:

Ĥint = 1

2

∑
i,{m}

∑
σσ ′

Ui
m′

1m
′
2m1m2

ĉ+
m′

1σ
ĉ+
m′

2σ
′ ĉm1σ ′ ĉm2σ

, (2)

where Ui
m′

1m
′
2m1m2

are elements of the Coulomb interaction
matrix. For the case of a substitutional disorder the on-site
potential, εi

mσ , and the Coulomb matrix, Ui
m′

1m
′
2m1m2

, depend on
site index i, and they are different for different atomic species
εA
m (UA

m′
1m

′
2m1m2

) or εB
m (UB

m′
1m

′
2m1m2

), depending on the atom
remaining on site i with the probability xA or xB , xA + xB = 1.
The hopping amplitudes are assumed to be site independent.
This approximation seems reasonable for constituents with
similar electronic structures, when the on-site local potentials
are close in energy relative to their bandwidth [30–32].

The above Hubbard-type Hamiltonian (1) cannot be solved
directly due to a simultaneous presence of the disorder and
interaction. At the same time, the solutions of limiting cases,
though approximate, are known. In the noninteracting limit, a
coherent potential approximation [33] is utilized to describe
the chemically disordered crystals. In the CPA, an electron
propagation through the substitutionally disordered material
is replaced by its propagation through an effective medium
defined self-consistently. Another limiting case—absence of
disorder (one type of atoms)—is known as the Hubbard model.
One of the best single site approximations for its solution is
the dynamical mean field theory [7,34]. In this theory the
lattice problem is replaced by an effective impurity embedded
in an energy dependent effective medium. The last has to be
found self-consistently. Hence, both limiting cases at the hand
share the effective medium or mean field interpretation of the
problem.

To deal with the Hamiltonian (1) we will use the same
effective medium ideology. Let us assume for the moment
that the hybridization �(iωn) of the embedded atom with the
effective medium is known. Then, the local Green’s functions
are defined as

Gi =
∫ β

0 ĉ ĉ+e−SiDĉDĉ+∫ β

0 e−SiDĉDĉ+
, (3)

where ĉ and ĉ+ are Grassman variables and an action is given
as:

Si = −
∑
nmσ

ĉ+
mσ (iωn)

[
μ+iωn−εi

mσ−�(iωn)
]
ĉmσ (iωn)

+ 1

2

∫ β

0
dτ

∑
{m}

∑
σσ ′

Ui
m′

1m
′
2m1m2

ĉ+
m′

1σ
(τ )ĉ+

m′
2σ

′(τ )

× ĉm1σ ′(τ )ĉm2σ
(τ ), (4)

where ωn = (2n + 1)π/β are the fermionic Matsubara fre-
quencies, β = 1/kBT is an inverse temperature, and τ is an
imaginary time. Self-consistency conditions require that the
local Green’s function should be equal to a weighted sum of
impurity Green’s functions:

G(iωn) = xAGA(iωn) + xBGB(iωn). (5)

Then, the local G(iωn) from Eq. (5) can be used to compute a
self energy from the Dyson’s equation:

	(iωn) = iωn − �(iωn) − G−1(iωn). (6)

One should emphasize that the obtained self energy contains
effects from the disorder and correlations simultaneously. This
self energy is utilized to calculate the local Green’s function
of effective medium

G(iωn) = 1

VBZ

∫
BZ

dk
(μ + iωn)I − H (k) − 	(iωn)

, (7)

where H (k) is the Fourier transform of the first term of the
Hamiltonian (1) and an integration is performed over the
first Brillouin zone with volume VBZ. The new hybridization
function is then written as:

�(iωn) = iωn − 	(iωn) − G−1(iωn). (8)

The above set of equations are iteratively solved until a
convergence with respect to the self energy or hybridiza-
tion is achieved. One should note that the above described
CPA+DMFT scheme behaves correctly in the different limits.
Namely, if there is one type of atomic species all equations
reduce to the conventional DMFT set. Another limit is
noninteracting (UA=UB=0) and the equations become of
classical CPA.

The generalization for a case of first principles calculations
is straightforward. The DFT+DMFT Hamiltonian reads as

ĤDFT+DMFT = ĤDFT + Ĥint −
∑
imσ

εi
dcn̂

i
mσ , (9)

where ĤDFT is the Hamiltonian in a localized basis set obtained
within density functional theory framework. The second term
is the interaction and it is described by Eq. (2). The density
functional theory treats the Coulomb interaction in an averaged
way, and therefore, one needs to subtract the so-called double
counting term. The double counting is on-site quantity, and we
use the fully localized limit in our calculations with the next
definition for potential

εi
dc = Ū i

(
Ni

d − 1

2

)
, (10)

where Ū i is a mean Coulomb interaction and Ni
d = ∑

mσ ni
mσ

is a total number of d electrons in DFT calculations.
The DFT+DMFT Hamiltonian (9) can be easily mapped

to the disordered Hamiltonian (1). In such a case a matrix of
hopping integrals in Eq. (1) become hoppings calculated in
DFT, t = t(DFT), and the on-site energy is replaced as

εi
mσ = εi

mσ (DFT) − εi
dc, (11)

where the right-hand part of the equation can be completely
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defined within conventional band structure calculations.

III. RESULTS

For a first principles calculations, the Hamiltonian and
related parameters [see Eq. (9)] were obtained using a full-
potential linearized augmented-plane wave method imple-
mented in the Exciting-plus code (a fork of ELK code [35]).
The exchange-correlation potential was chosen in the Perdew-
Burke-Ernzerhof form [36] of the generalized gradient ap-
proximation. The non-spin-polarized Hamiltonian H (k) for
fcc iron was constructed in a basis of well-localized Wannier
functions [37] containing s, p, and d states. A reciprocal
space was divided on the 18 × 18 × 18 k-points mesh in
the full Brillouin zone. We utilized an experimental lattice
constant [38], afcc = 3.5906 Å, that corresponds to Invar alloy
with the nickel concentration 35 at.%. To obtain on-site
energies εi

mσ , a supercell containing 15 Fe atoms and 1
Ni atom was constructed. The Hamiltonian of the supercell
is then written in the Wannier function basis set, and the
difference between iron and nickel on-site energies is defined
as a difference between centers of gravity of corresponding d

states, εFe
d − εNi

d = ∫
(ρFe

d (ε) − ρNi
d (ε)) ε dε, and it is equal to

0.88 eV [39]. This calculation was carried out for the nickel
impurity in the iron host, hence, it is obvious that εFe

d =0 eV
and εNi

d = −0.88 eV.
The CPA+DMFT calculations were performed with the

AMULET code [40]. To solve an auxiliary impurity problem
[Eq. (3)] arising in DMFT a segment version of the continuous
time quantum Monte-Carlo (CT-QMC) method [29] was
employed. This implementation of CT-QMC algorithm does
not have a sign problem and it is faster than other quantum
Monte-Carlo methods (for more details see review [41] and
Ph.D. Thesis of E. Gull [42]). At the same time, it treats
density-density terms of the Coulomb interaction in Eq. (2),
neglecting spin-flips and pair-hopping contributions.

We used next values for the screened Coulomb interactions
and Hund’s exchange parameters, UFe=4 eV, UNi=6 eV,
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FIG. 1. Inverse of the uniform magnetic susceptibility, χ−1(T ),
as a function of temperature for various values of nickel concentration
in Fe1−xNix(see color coding in figure). Inset shows scaled up region
around the Curie-Weiss temperature TCW .

and J Fe=J Ni=0.9 eV. These values are in good agreement
with results of constrained local density approximation cal-
culations [43] and used in earlier DFT+DMFT papers for
elemental iron [28,44]. Since the Coulomb interaction was
already included in the density functional formalism, and thus
in the Hamiltonian H (k), we evaluate the double counting
term according to Eq. (10). We used DFT values for the total
number of d electrons, NFe

d =6.89 and NNi
d =8.77, that leads to

a fixed values of double counting.
Inverse of uniform magnetic susceptibilities for various

values of nickel concentrations are presented in Fig. 1. Keeping
in mind a smaller value of Coulomb interaction and lattice con-
stant in the paper of Vekilova et al. [28], the obtained results are
in good qualitative agreement with the supercell DFT+DMFT
data for Fe0.75Ni0.25. The uniform magnetic susceptibility was
calculated in a linear response manner by applying a small
external magnetic field B and evaluating magnetization of
the compound m(T ) at a given temperature, χ (T ) = m(T )/B.
One can clearly see that for all Ni concentrations χ−1 has
a linear behavior at high temperatures that allows one to
extract Curie-Weiss temperatures TCW and effective magnetic
moments μ2

eff defined by the Curie-Weiss law,

χCW (T ) = μ2
eff

3(T − TCW )
.

The CPA+DMFT Curie-Weiss temperatures together with
the experimental data [45–47] are shown in Fig. 2. The
extracted TCW follow very well its experimental counterparts.
TCW is risen with increasing of nickel concentrations, then
it has a maximum around 65 at.% of Ni, and finally de-
creases at higher Ni percentage. In general, the theoretical
Curie-Weiss temperatures are overestimated with respect to
experimental values by factor, T Theor

CW /T
Exp
CW ≈ 1.4 (except for

endpoints). This overestimation of the Curie-Weiss temper-
ature is known in the DFT+DMFT calculations for various
compounds [8,14,19,48] and it comes from two sources. The
first source is a local nature of the DMFT approximation which
leads to a k-independent self-energy, and thus, neglecting
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1000
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T
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W
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K
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CPA+DMFT
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FIG. 2. CPA+DMFT and experimental values of Curie-Weiss
temperature as a function of Ni concentration. Experimental data
are from Chechernikov [45] and Peschard [46].
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FIG. 3. Calculated at T =2900 K local squared magnetic mo-
ments, 〈m2

z〉, for Fe, Ni and Fe1−xNix alloy as a function of Ni
concentration (for color coding see figure). Experimental effective
magnetic moments extracted from paramagnetic susceptibility [45]
are shown by green triangles. Inset shows a temperature dependence
of alloys 〈m2

z〉 for various nickel concentrations (color coding is the
same as in Fig. 1).

spacial correlation effects that are important in a vicinity of
the magnetic transition. Since the lattice is fixed the effect of
neglecting spacial long range correlations on the uniform sus-
ceptibility is approximately the same for various alloy concen-
trations. The second reason of overestimation originates from
a density-density form of the Coulomb interaction in a segment
version of CT-QMC algorithm [49,50]. The better agreement
for the Curie temperature at high nickel content is attributed
with lesser importance of spin-flip and pair hopping terms in an
almost filled d shell [51]. Therefore, keeping in mind the above
mentioned arguments, the theoretical CPA+DMFT Curie-
Weiss temperatures agree very well with the experimental data
and, what is more important, they are changed with nickel
content in exactly the same way as in experiment.

Local squared magnetic moments for iron, nickel, and their
weighted sum are presented in Fig. 3. The local squared
magnetic moment is defined as

〈
m2

z

〉i =
〈∑

mm′

(
n̂i

m↑ − n̂i
m↓

)(
n̂i

m′↑ − n̂i
m′↓

)〉
,

where i=(Fe,Ni) and the corresponding quantity for the alloy
is 〈m2

z〉 = (1 − x)〈m2
z〉Fe + x〈m2

z〉Ni. Local squared magnetic
moment of nickel is slowly decreasing with Ni concentration
from 1.15 to 1.07 while iron’s function is almost linearly
increasing with values from 5.39 to 6.27. The resulting alloy’s
〈m2

z〉 is quadratically decreasing and it follows the experimen-
tal effective magnetic moments extracted from paramagnetic
susceptibility [45]. The large discrepancy is observed at nickel
concentrations below 30 at.%, and it is attributed to the
experimentally observed coexistence of face centered cubic
and body centered cubic phase [52] not presented in the cal-
culations. In spite of the fact that the local magnetic moments
were calculated in paramagnetic phase, their concentration
behavior corresponds to the atomically resolved experimental
data [53–55] obtained for the magnetically ordered alloys and
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FIG. 4. Probabilities of different ionic configurations and spin
states for Fe and Ni in Fe0.75Ni0.25 alloys as function of temperature.
Weight of the ionic configuration (total) is shown by magenta
diamonds, while high- (HS), intermediate- (IS) and low- (LS) spin
states are presented by black triangles, red squares and blue circles,
respectively.

to the earlier DFT+DMFT results [24]. Inset of Fig. 3 shows a
temperature dependence of the local squared magnetic moment
of Fe1−xNix alloy in the concentration range x=[0.25...0.85].
For all studied concentrations it is decreased with temperature
as in a pure fcc-Fe [19].

To analyze in more details a temperature and concentration
dependence of the magnetic properties of constituents in
Fe1−xNix we present distributions of ionic weights and
corresponding spin configurations in Figs. 4–7. In the right
panel of these figures the d8, d9, and d10 ionic configurations
of nickel are shown by magenta diamonds. For all temperature
and concentration ranges the high-spin (d5↑d4↓) state of d9

ionic configuration has the largest weight like in the pure
nickel [11]. The weight of d8 contribution is much smaller
and it is equally distributed between high-spin (d5↑d3↓) and
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FIG. 5. Probabilities of different ionic configurations and spin
states for Fe and Ni in Fe0.65Ni0.35 alloys as function of temperature.
Color-coding as in Fig. 4.
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FIG. 6. Probabilities of different ionic configurations and spin
states for Fe and Ni in Fe0.35Ni0.65 alloys as function of temperature.
Color coding as in Fig. 4.

low-spin (d4↑d4↓) states. The d8 and d9 contributions are
monotonically increasing with temperature. The low-spin state
of d10 configuration is even smaller and it is decreasing with
temperature. All these states are almost independent of nickel
percentage in Fe1−xNix and sum of the d8 and d10 total weights
is about two times smaller than weight of d9 ionic state.
At the same time, the occupation of d manifold in nickel
is almost independent of temperature and concentration in all
CPA+DMFT calculations and it equals to 8.9 ± 0.07 electrons,
which is comparable with the DFT value of 8.77.

The situation with the states of iron presented in the left
panel of Figs. 4–7 is more interesting. The major contribution
is formed by the d7 ionic state but now satellite’s total weights
are comparable and the sum of d6 and d8 ionic weights is
approximately of d7 weight. For the d8 ionic configuration
the weight of the low-spin (d4↑d4↓) state is smaller than
the weight of high-spin (d5↑d3↓). The later is decreasing
with temperature while the former is increasing but they are
not crossed in the temperature range of investigation. This
qualitative behavior of low- and high-spin states is kept for all
nickel concentrations. In the case of d7 ionic configuration the
weight of the high-spin (d5↑d2↓) state is increasing with the
temperature, while the low-spin (d4↑d3↓) state is decreasing
and these spin configurations are intersecting around 6000 K
with a shift to higher temperatures at nickel-rich alloy.

The situation with the d6 ionic configuration is even
more complicated because an intermediate-spin (d4↑d2↓) state
can be realized besides the high- (d5↑d1↓) and low-spin
(d3↑d3↓). Exactly this intermediate-spin state dominates at
high temperatures for all nickel concentrations and it let the
high-spin state be major at ≈ 50 at.% and low temperatures.
Thus, in the iron-rich Fe1−xNix(see Figs. 4 and 5) the high-spin
state has more weight for T < 2900 K. In fact, in the d6 ionic
state there are two points of spin state alternations. At high
temperatures the intermediate-spin is a major, the high-spin is
a minor and the low-spin state is in between. At T ≈ 7300 K
the high-spin and the low-spin states are switched and then
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FIG. 7. Probabilities of different ionic configurations and spin
states for Fe and Ni in Fe0.25Ni0.75 alloys as function of temperature.
Color-coding as in Fig. 4.

at T ≈ 2900 K and for nickel concentrations x > 0.45 the
high-spin and the intermediate-spin states are interchanged.
The 3d Fe occupation is almost independent of temperature
and concentration (like for nickel) and it equals to 6.93 ± 0.06
electrons, which is a bit higher than the DFT value of 6.89.

Albeit these spin state transitions in iron occur at the
temperatures much above the experimental Curie-Weiss one
(keeping in mind that T Theor

CW = 1.4T
Exp
CW ), a high temperature

local atomic physics of paramagnetic system can be traced
back to the magnetically ordered phase. Thus these transitions
can be regarded as a realization of two possible electronic
states in γ -Fe with the ferromagnetic high volume and the
antiferromagnetic low volume states proposed by Weiss [56].
One can also think of this rich local physics as of a variety
of magnetically ordered phases at low temperatures found in
the conventional DFT calculations as function of volume (see
Ref. [23] and references therein).

IV. CONCLUSION

We formulated and implemented in computer codes the
CPA+DMFT method which combines a coherent potential
approximation and dynamical mean field theory in one
technique and treats a substitutional disorder and strong
electron-electron correlations on equal footing. Then this
CPA+DMFT method were applied to study the magnetic
properties of Fe1−xNix alloy above the Curie temperature.
The calculated inverse of the uniform magnetic susceptibilities
show a linear behavior at high temperatures and extracted
Curie-Weiss temperatures follow the experimental values as
function of nickel concentration. The individual local squared
magnetic moments for iron and nickel are in good agreement
with experimental data. The analysis of the contributions to
the ionic and spin configurations shows the alternating of
the high-spin state and, intermediate- and low-spin states, as
function of temperature that is in agreement with the two state
theory of Weiss [56]. These transitions can be regarded as a
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high temperature precursor of a multiple magnetic orders at
low temperatures found in the density functional calculations.
Since they are strongly overestimated the further CPA+DMFT
studies for different volumes and interaction parameters are of
great interests.
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