
PHYSICAL REVIEW B 93, 205134 (2016)

Ab initio quantum Monte Carlo simulations of the uniform electron gas
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In a recent publication [S. Groth et al., Phys. Rev. B 93, 085102 (2016)], we have shown that the combination
of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo
[T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)] and permutation blocking path integral Monte Carlo
[T. Dornheim et al., New J. Phys. 17, 073017 (2015)], allows for the accurate computation of thermodynamic
properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without
the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which
requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent
restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013)] for different
energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better
agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially
deviate.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations of fermions
are of paramount importance to describe manifold aspects
of nature. In particular, recent experimental progress with
highly compressed matter [1–3] such as plasmas in laser fusion
experiments [4–9] and solids after laser irradiation [10], but
also the need for an appropriate description of compact stars
and planet cores [11–13], has lead to a high demand for
accurate simulations of electrons in the warm dense matter
(WDM) regime (i.e., density parameter rs = r/aB ∼ 1 and
degeneracy temperature θ = kBT/EF ∼ 1). Unfortunately, the
application of all QMC methods to fermions is severely
hampered by the fermion sign problem (FSP) [14,15]. A
popular approach to circumvent this issue is the restricted path
integral Monte Carlo (RPIMC) [16] method, which, however,
is afflicted with an uncontrollable error due the fixed node
approximation [17–20]. Therefore, until recently, the quality
of the only available QMC results for the uniform electron gas
(UEG) in the WDM regime [21] has remained unclear.

To address this issue, in a recent publication (pa-
per I, Ref. [22]) we have combined two complementary
approaches: our configuration path integral Monte Carlo
(CPIMC) method [23–25] excels at high to medium density
and arbitrary temperature, while our permutation blocking
path integral Monte Carlo (PB-PIMC) approach [26,27] sig-
nificantly extends standard fermionic PIMC [28,29] towards
lower temperature and higher density. Surprisingly, it has been
found that existing RPIMC results are inaccurate even at high
temperatures.

However, although the spin-polarized systems that have
been investigated in our previous works are of relevance for
the description of, e.g., ferromagnetic materials or strongly
magnetized systems, they constitute a rather special case,
since most naturally occurring plasmas are predominantly
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unpolarized. Therefore, in the present work we modify both
our implementations of PB-PIMC and CPIMC to simulate the
unpolarized UEG. So far only a single data set for a small
system (N = 14 electrons, one isotherm) could be obtained in
our previous work [25] because the paramagnetic case turns
out to be substantially more difficult than the ferromagnetic
one. Therefore, we have developed nontrivial enhancements
of our CPIMC algorithm that are discussed in detail. With
these improvements, we are able to present accurate results
for different energies for the commonly used case of N = 66
unpolarized electrons over a broad range of parameters.

Since many details of our approach have been presented
in our paper I [22], in the remainder of this paper we restrict
ourselves to a brief, but self-contained introduction to CPIMC
and PB-PIMC. We set the focus on the differences arising
from their application to the unpolarized UEG, compared to
the spin-polarized case and, therefore, the present investigation
complements our previous results [22,27] for the latter.
In Sec. II, we introduce the model Hamiltonian, both in
coordinate space (II A) and second quantization (II B) and,
subsequently, provide a brief introduction to the employed
QMC approaches (Sec. III), namely PB-PIMC (III A) and
CPIMC (III B). Finally, in Sec. IV, we present combined
results from both methods for the exchange correlation,
kinetic, and potential energy (IV A), as well as the pair
distribution function (IV B). Further, we compare our data
to those from RPIMC [21], where available. While we find
better agreement than for the spin-polarized case [22,27],
there nevertheless appear significant deviations towards lower
temperature.

II. HAMILTONIAN OF THE UNIFORM ELECTRON GAS

The uniform electron gas (“Jellium”) is a model system of
Coulomb interacting electrons in a neutralizing homogeneous
background. As such, it explicitly allows one to study effects
due to the correlation and exchange of the electrons, whereas
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those due to the positive ions are neglected. Furthermore, the
widespread density functional theory (DFT) crucially depends
on ab initio results for the exchange correlation energy of the
uniform electron gas (UEG), hitherto at zero temperature [30].
However, it is widely agreed that the appropriate treatment of
matter under extreme conditions requires one to go beyond
ground state DFT, which, in turn, needs accurate results for
the finite temperature UEG. While the electron gas itself is
defined as an infinite macroscopic system, QMC simulations
are possible only for a finite number of particles N . Hence we
always assume periodic boundary conditions and include the
interaction of the N electrons in the main simulation cell with
all their images via Ewald summation and defer any additional
finite-size corrections [31–33] to a future publication.

A. Coordinate representation of the Hamiltonian

Following Refs. [27,31], we express the Hamiltonian (we
measure energies in Rydberg and distances in units of the
Bohr radius a0) for N = N↑ + N↓ unpolarized electrons in
coordinate space as

Ĥ = −
N∑

i=1

∇2
i +

N∑
i=1

N∑
j �=i

e2�(ri ,rj ) + N e2ξ, (1)

with the well-known Madelung constant ξ and the periodic
Ewald pair interaction

�(r,s) = 1

V

∑
G �=0

e−π2G2/κ2
e2πiG(r−s)

πG2

− π

κ2V
+

∑
R

erfc(κ|r − s + R|)
|r − s + R| . (2)

Here R = n1L and G = n2/L denote the real and reciprocal
space lattice vectors, respectively, with the box length L, vol-
ume V = L3, and the usual Ewald parameter κ . Furthermore,
PB-PIMC simulations require the evaluation of all forces
within the system, where the force between two electrons i

and j is given by

Fij = 2

V

∑
G �=0

(
G
G2

sin[2πG(ri − rj )]e−π2G2/κ2

)

+
∑

R

ri − rj + R
α3

(
erfc(κα) + 2κα√

π
e−κ2α2

)
, (3)

with the definition α = |ri − rj + R|.

B. Hamiltonian in second quantization

In second quantization with respect to spin orbitals of plane
waves, 〈rσ |kiσi〉 = 1

L3/2 e
iki ·rδσ,σi

with ki = 2π
L

mi , mi ∈ Z3,
and σi ∈ {↑,↓}, the model Hamiltonian, Eq. (1), takes the
form

Ĥ =
∑

i

k2
i â

†
i âi + 2

∑
i < j,k < l

i �= k,j �= l

w−
ijkl â

†
i â

†
j âl âk + N e2ξ, (4)

with the antisymmetrized two-electron integrals, w−
ijkl =

wijkl − wijlk , where

wijkl = 4π e2

L3(ki − kk)2
δki+kj ,kk+kl

δσi ,σk
δσj ,σl

, (5)

and the Kronecker δ’s ensuring both momentum and spin
conservation. The first (second) term in the Hamiltonian Eq. (4)
describes the kinetic (interaction) energy. The operator â

†
i (âi)

creates (annihilates) a particle in the spin orbital |kiσi〉.

III. FERMIONIC QUANTUM MONTE CARLO
WITHOUT FIXED NODES

Throughout the entire work, we consider the canonical
ensemble, i.e., the volume V , particle number N , and inverse
temperature β = 1/kBT are fixed. In equilibrium statistical
mechanics, all thermodynamic quantities can be derived from
the partition function

Z = Trρ̂, (6)

which is of central importance for any QMC formulation and
defined as the trace over the canonical density operator

ρ̂ = e−βĤ . (7)

The expectation value of an arbitrary operator Â is given by

〈Â〉 = Tr(Âρ̂)

Trρ̂
= 1

Z
Tr(Âρ̂). (8)

However, for an appropriate description of fermions, Eqs. (6)
and (8) must be extended either by antisymmetrizing ρ̂ → ρ̂−
or the trace itself [23], Tr → Tr−. Therefore, it holds that

Z = Trρ̂− = Tr−ρ̂. (9)

While defining the trace in Eq. (9) as either expression does not
change the well-defined thermodynamic expectation values,
it does lead to rather different formulations of the same
problem. The combination of antisymmetrizing the density
matrix and evaluating the trace in coordinate space is the first
step towards both standard PIMC and PB-PIMC, cf. Sec. III A,
but also RPIMC. All these approaches share the fact that they
are efficient when fermionic quantum exchange does not yet
dominate a system, but they will become increasingly costly
towards low temperature and high density. Switching to second
quantization and carrying out the trace in antisymmetrized
Fock space, on the other hand, is the basic idea behind our
CPIMC method, cf. Sec. III B, and, in a different way, behind
the likewise density matrix QMC method [34]. The latter
approach has recently been applied to the case of N = 4
spin-polarized electrons [35], where complete agreement with
our CPIMC results [24] was reported. These QMC approaches
tend to excel at high density, i.e., weak nonideality, and become
eventually unfeasible towards stronger coupling strength.

Therefore, it is a natural strategy to combine different
representations at complementary parameter ranges as this
does effectively allow one to circumvent the numerical
shortcomings with which every single fermionic QMC method
is necessarily afflicted [22,27].
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A. Permutation blocking PIMC

1. Basic idea

In this section, we will briefly introduce our permutation
blocking PIMC approach. A more detailed description of the
method itself and its application to the spin-polarized UEG
can be found in Refs. [26,27].

The basic idea behind PB-PIMC is essentially equal to
standard PIMC in coordinate space, e.g., Ref. [29], but, in ad-
dition, combines two well-known concepts: (1) antisymmetric
imaginary time propagators, i.e., determinants [36–38], and
(2) a fourth-order factorization of the density matrix [39–
42]. Furthermore, since this leads to a significantly more
complicated configuration space without any fixed paths, one
of us has developed an efficient set of Metropolis Monte
Carlo [43] updates that utilize the temporary construction of
artificial trajectories [26]. As mentioned above, we evaluate the
trace within the canonical partition function for N = N↑ + N↓
unpolarized electrons in coordinate representation

Z = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgn(σ↑) sgn(σ↓)

×
∫

dR 〈R| e−βĤ |π̂σ↑ π̂σ↓R〉 , (10)

with π̂σ↑,↓ being the exchange operator that corresponds to
a particular element σ↑,↓ from the permutation group SN↑,↓
with associated sign sgn(σ↑,↓) and ↑ (↓) denoting spin-up
(spin-down) electrons. However, since the kinetic and potential
contributions to the Hamiltonian, K̂ and V̂ , do not commute,
the low-temperature matrix elements of ρ̂ are not known.
To overcome this issue, we use the common group property
ρ̂(β) = ∏P−1

α=0 ρ̂(ε) of the density matrix, with ε = β/P , and
approximate each of the P factors at a P times higher
temperature by the fourth-order factorization [40,41]

e−εĤ ≈ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

×e−t1εK̂e−v1εŴa1 e−2t0εK̂ . (11)

The Ŵ operators in Eq. (11) combine the usual potential energy
V̂ with double commutator terms of the form

[[V̂ ,K̂],V̂ ] = �
2

m

N∑
i=1

|Fi |2, Fi = −∇iV (R), (12)

and, therefore, require the evaluation of all forces [44] within
the system; cf. Eq. (3). The explicit expressions of these
modified potential terms are given by

Ŵa1 = V̂ + u0

v1
a1ε

2

(
�

2

m

N∑
i=1

|Fi |2
)

,

(13)

Ŵ1−2a1 = V̂ + u0

v2
(1 − 2a1)ε2

(
�

2

m

N∑
i=1

|Fi |2
)

.

Furthermore, we note that there are two free parameters in
Eq. (11) that can be used for optimization, namely 0 � a1 � 1
and 0 � t0 � (1 − 1/

√
3)/2. All other coefficients (u0, v1, v2,

and t1) are subsequently calculated from these choices; see
Refs. [26,41].

The final result for the PB-PIMC partition function is given
by

Z = 1

(N↑!N↓!)3P

∫
dX

×
P−1∏
α=0

(
e−εṼα e−ε3u0

�
2

m
F̃αDα,↑Dα,↓

)
, (14)

with Ṽα and F̃α containing all contributions of the potential
energy and the forces, respectively. For each propagator α,
there are N particle coordinates on the “main time slice,” Rα ,
and, in addition, on two “daughter slices,” RαA and RαB , with
the integration in Eq. (14) being carried out over all of them.
The exchange-diffusion functions are defined as

Dα,↑ = det(ρα,↑)det(ραA,↑)det(ραB,↑),
(15)

Dα,↓ = det(ρα,↓)det(ραA,↓)det(ραB,↓)

and contain the determinants of the diffusion matrices

ρα,↑(i,j ) = λ−3
t1ε

∑
n

e
− π

λ2
t1ε

(rα,↑,j −rαA,↑,i+nL)2

, (16)

with λt1ε =
√

2πεt1�2/m being the thermal wavelength of a
single “time slice.”

In contrast to standard PIMC, where each permutation cycle
has to be explicitly sampled, we combine both positively and
negatively signed configuration weights in the determinants
both for the spin-up and spin-down electrons. This leads to a
cancellation of many terms and, consequently, a significantly
increased average sign in our Monte Carlo simulations. Yet,
this “permutation blocking” is only effective when λt1ε is
comparable to the mean interparticle distance, i.e., when there
are both large diagonal and off-diagonal elements in the diffu-
sion matrices. With an increasing number of high-temperature
factors P , λt1ε decreases and, eventually, when there is only but
a single large element in each row of the ρα,↑, the average sign
converges towards that of standard PIMC. For this reason, it
is crucial to combine the determinants from the antisymmetric
propagators with an appropriate factorization of the density
matrix that allows for sufficient (though finite) accuracy with
as few as two or three propagators, thereby maximizing
the benefit of the blocking within the determinants. This
requirement is met by the factorization scheme Eq. (11) which,
in the limit of large P , leads to a convergence behavior with
1/P 4 as was shown in Ref. [41]. However, even though this
asymptotic limit is not reached (which is the case for all
simulations presented in this work), the empirical choice of the
two free parameters t0 and a1 allows for significantly improved
accuracy with only two or three propagators (compared to the
primitive factorization e−εĤ ≈ e−εK̂e−εV̂ ) [41].

Furthermore, we note that since electrons with different
spin projections do not exchange at all, PB-PIMC simulations
of the unpolarized UEG with N = N↑ + N↓ do suffer from
a significantly less severe sign problem than for N = 2N↑
spin-polarized electrons.

2. Application to the unpolarized UEG

The accuracy of our PB-PIMC simulations crucially de-
pends on the systematic factorization error for small P [26,27].
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FIG. 1. Influence of the relative interslice spacing t0 on the
convergence—the potential energy from PB-PIMC simulations of
N = 4 unpolarized electrons at θ = 0.5 and rs = 1 is plotted versus
t0 for the fixed choice a1 = 0.33.

Thus we begin the investigation of the unpolarized electron
gas with the analysis of the empirical optimization of the
two free parameters from Eq. (11), namely a1 (weighting
the contributions of the forces on different time slices) and
t0 (controlling the relative interslice spacing). In Fig. 1, we
fixed a1 = 0.33 fixed, which corresponds to equally weighted
forces on all slices, and plot the potential energy V for
P = 2,3,4 over the entire t0 range for a benchmark system of
N = 4 unpolarized electrons at rs = 1 and θ = 0.5. Evidently,
for all t0 values V approaches the exact result, which has
been obtained with CPIMC, monotonically from above. The
optimum value for t0 is located around t0 = 0.14, where all
three PB-PIMC values are within single error bars with the
black line. For completeness, we mention that this particular
set of the optimum free parameters for the energy is consistent
with the previous findings for different systems [26,27,41].
A detailed investigation of the convergence properties of the
employed fourth-order factorization including the asymptotic
behavior for large P is beyond the scope of this work and can
be found in Ref. [41].

A natural follow-up question is how the factorization error
for few propagators behaves as a function of the density
parameter rs in the WDM regime, θ = 1. In Fig. 2, we show
results for the relative error of the potential [�V/|V |, panel
(a)] and kinetic energy [�K/K , panel (b)], where the reference
values are again obtained from CPIMC (see Fig. 12 for a
similar plot for N = 66 electrons). The statistical uncertainty
is mainly due to PB-PIMC, except for rs = 4 where the CPIMC
error bar predominates. For the kinetic energy, even for P = 3
there are no clear systematic deviations from the exact result
over the entire rs range. Only with two propagators, our
results for K appear to be slightly too large for rs ∈ (0.5,1,2),
although this trend hardly exceeds �K/K = 5 × 10−4. For
the potential energy, the factorization error behaves quite
differently. For rs � 1, even with two propagators the accuracy
is better than 0.1%, while towards higher density (rs < 1),
the convergence significantly deteriorates. In particular, at
rs = 0.25 even with P = 5 there is a deviation of �V/|V | ≈

-0.001

 0

 0.001

 0.002

 0.003

 0.1  1  10

ΔV
/|V

|

rs

(a)  P=2
 P=3
P=4
P=5

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.1  1  10

ΔK
/K

rs

(b)

FIG. 2. Density dependence of the relative time step error from
PB-PIMC with a1 = 0.33 and t0 = 0.14—the relative differences
between PB-PIMC results with P = 2,3,4,5 and reference data from
CPIMC are plotted versus rs for the potential energy (a) and the
kinetic energy (b), with θ = 1.

0.1%. This observation is in striking contrast to our previous
investigation of the polarized UEG, where the relative error
in both K and V decreased towards rs → 0. The reason
for this trend lies in the presence of two different particle
species which do not exchange with each other, namely N↑
spin-up and N↓ spin-down electrons. Even at high density,
two electrons from the same species are effectively separated
by their overlapping kinetic density matrices that cancel in the
determinants, which is nothing else than the Pauli blocking.
Yet, a spin-up and a spin-down electron do not experience such
a repulsion and, at weak coupling (small rs), can be separated
by much smaller distances r from each other. With decreasing
r the force terms in Eq. (11) that scale as F (r) ∝ 1/r2 will
eventually exceed the Coulomb potential V (r) ∝ 1/r , i.e.,
the higher order correction predominates. This trend must
be compensated by an increasing number of propagators P .
Hence the fermionic nature of the electrons that manifests as
the Pauli blocking significantly enhances the performance of
our factorization scheme, which means that the simulation of
unpolarized systems is increasingly hampered towards high
density. In addition to the Monte Carlo inherent sign problem,
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this is a further reason to combine PB-PIMC with CPIMC,
since the latter excels just in this regime.

In our recent analysis of PB-PIMC for electrons in a
two-dimensional (2D) harmonic trap [26], it was found that,
while the combination a1 = 0.33 and t0 = 0.14 [parameter set
(a)] is favorable for a fast convergence of the energy, it does
not perform so well for other properties like, in that case,
the density profile. To address this issue, we again simulate
a benchmark system of N = 4 unpolarized electrons and
compute the pair distribution function g(r); see, e.g., Ref. [45]
for a comprehensive discussion. In Fig. 3, we show results for
the above combination of free parameters (a) and P = 2,3,4,5.
Panel (a) displays the data for the interspecies distribution
function g↑↓. We note that, for the infinite UEG, this quantity
approaches unity at large distances, but the small simulation
box for N = 4 restricts us to the depicted r range. All four
curves deviate from each other for r � 0.5, which indicates
that g↑↓ is not yet converged even for P = 5 at small distances,
and are equal otherwise. This is again a clear indication
of the shortcomings of our fourth-order factorization, which
overestimates the Coulomb repulsion at short ranges. The

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

g

r/rs

 P=2
 P=3
 P=4
 P=5

(a)

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

g

r/rs

(b)

FIG. 3. Convergence of the pair distribution function for N = 4
unpolarized electrons at θ = 1 and rs = 4—shown are PB-PIMC
results for the inter- [g↑↓, panel (a)] and intraspecies [g↑↑, panel (b)]
distribution function for different numbers of propagators P and the
fixed free parameters a1 = 0.33 and t0 = 0.14.

intraspecies distribution function g↑↑ = g↓↓, which is shown
in panel (b), does not exhibit such a clear trend since only the
green curve that corresponds to P = 2 can be distinguished
from the rest. This is, of course, expected and a consequence
of the Pauli blocking as explained above.

Evidently, our propagator with the employed choice of free
parameters (a) does not allow for an accurate description of
the Coulomb repulsion at short distances. To understand this
issue, we repeat the simulations with a different combination
a1 = 0 and t0 = 0.04 [parameter set (b)], which has already
proven to be superior to parameter set (a) for the radial density
in the 2D harmonic trap. The results are shown in Fig. 4 for
different numbers of propagators. The data with P = 2 are
nearly equal to the results from parameters (a) and P = 5. The
data for P = 4 and P = 5 almost coincide and are significantly
increased with respect to the other curves. The main reason
for the improved accuracy of parameter set (b) is the choice
a1 = 0, which means that the forces are only taken into account
on intermediate time slices. Due to the diagonality of the
pair distribution function in coordinate space, it is measured
exclusively on the main slices, for whose distribution the force

 0
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 0.75
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 0  0.2  0.4  0.6  0.8  1

g
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g
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FIG. 4. Convergence of the pair distribution function for N = 4
unpolarized electrons at θ = 1 and rs = 4—shown is the same
information as in Fig. 3, but for a different combination of free
parameters, i.e., a1 = 0 and t0 = 0.04.
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terms do not directly enter. For this reason, the interspecies pair
distribution function is not as drastically affected by the diver-
gence of the F (r) ∝ 1/r2 terms at small r and the convergence
of this quantity is significantly improved. For completeness, in
panel (b) we again show results for g↑↑, which, for parameter
set (b), are almost converged even for two propagators. It is
important to note that a relatively large factorization error in the
pair distribution function does not necessarily imply a similar
inaccuracy of the potential energy, since the latter is not directly
computed as the integral of the pair potential �(r,s) over g(r).
Instead, our estimator is derived as the derivative of Z, which
leads to the explicit inclusion of force terms [26,27]. Fur-
thermore, it should be understood that, while the description
of the Coulomb repulsion at very short ranges is particularly
challenging, this does not predominate in larger systems since
the average number of particles within distance r ∈ [r̃ ,r̃ + �r̃)
increases as N (r̃) ∝ r̃2. For N = 66 unpolarized electrons,
which is the standard system size within this work, these effects
are by far not as important and, for the same combination of rs

and θ as in Fig. 4, both the inter- and intraspecies distribution
function are of much higher quality; cf. Fig. 13.

Up to this point, only data for small benchmark systems
with N = 4 electrons have been presented. To obtain mean-
ingful results for the UEG, we simulate N = 66 unpolarized
electrons, which is a commonly used model system since
it corresponds to a closed momentum shell and, therefore,
is well suited as a starting point for an extrapolation to
the thermodynamic limit (finite size corrections). In Fig. 5,
the average sign, cf. Eq. (21), is plotted versus the density
parameter rs for five different temperatures. For θ = 2,4,8,
〈s〉′ is almost equal to unity for rs = 40 and decreases just
a trifle towards higher density, until it saturates at rs ∼ 0.5.
Consequently, simulations are possible over the entire density
range with relatively small computational effort. The slight
increase of 〈s〉′ around rs ∈ [1,10] is a nonideality effect:

 0.001

 0.01

 0.1

 1

 0.1  1  10

<
s>

'

rs

PIMC (θ=1)

 θ=0.75
 θ=1.0
 θ=2.0
 θ=4.0
 θ=8.0

FIG. 5. Average sign for PB-PIMC simulations of N = 66
unpolarized electrons at different temperatures—all PB-PIMC data
have been obtained for P = 2 with a1 = 0.33 and t0 = 0.14 and the
standard PIMC data (red curve) have been taken from Ref. [21].

at high density, the system is approximately ideal and the
Fermi temperature θF is an appropriate measure for quantum
degeneracy. With increasing rs , coupling effects become more
important, which leads to a stronger separation of the electrons.
Thus there is less overlap of the kinetic density matrices
and the determinants become exclusively positive. For θ = 1,
the average sign already significantly deviates from unity at
rs = 40 and exhibits a more severe decrease towards smaller
rs . Nevertheless, it attains a finite value 〈s〉′ ≈ 0.01 even
at high density rs = 0.1, which means that simulations are
more involved but still manageable over the entire coupling
range. This is in stark contrast to standard PIMC without
the permutation blocking (red circles), for which the sign
exhibits a sharp drop and simulations become unfeasible below
rs ≈ 5. Finally, the green curve corresponds to θ = 0.75,
where PB-PIMC is capable of providing accurate results for
rs � 3.

B. Configuration PIMC

1. Basic idea

In this section, the main aspects of our CPIMC approach
are explained. A detailed derivation of the CPIMC expansion
of the partition function and the utilized Monte Carlo steps for
the polarized UEG can be found in Refs. [22,24].

For CPIMC, instead of evaluating the trace of the partition
function Eq. (6) in coordinate representation, we switch to sec-
ond quantization and perform the trace with antisymmetrized
N -particle states (Slater determinants)

|{n}〉 = |n1,n2, . . . 〉, (17)

with ni being the fermionic occupation number (ni ∈ {0,1})
of the ith spin orbital |kiσi〉, where we choose the ordering
of orbitals such that even (odd) orbital numbers have spin-
up (spin-down) σ = ↑(↓). In this representation, fermionic
antisymmetry is automatically taken into account via the
anticommutation relations of the creation and annihilation
operators, and thus, an explicit antisymmetrization of the
density operator is not needed. The expansion of the partition
function is based on the concept of continuous time QMC, e.g.,
Refs. [46,47], where the Hamiltonian is split into a diagonal
and off-diagonal part Ĥ = D̂ + Ŷ with respect to the chosen
basis. Summing up the entire perturbation series of the density
operator e−βĤ in terms of Ŷ finally yields

Z =
∞∑

K=0,

K �=1

∑
{n}

∑
s1...sK−1

∫ β

0
dτ1

∫ β

τ1

dτ2 . . .

∫ β

τK−1

dτK

× (−1)Ke− ∑K
i=0 D{n(i)}(τi+1−τi )

K∏
i=1

Y{n(i)},{n(i−1)}(si), (18)

with the Fock space matrix elements of the diagonal and off-
diagonal operator

D{n(i)} =
∑

l

k2
l n

(i)
l +

∑
l<k

w−
lklkn

(i)
l n

(i)
k , (19)

Y{n(i)},{n(i−1)}(si) = w−
si

(−1)αsi . (20)

Here, si = (pqrs) defines the four occupation numbers in
which {n(i)} and {n(i−1)} differ, where it is p < q and r < s.
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FIG. 6. Typical closed path of N = 4 unpolarized particles in
Slater determinant (Fock) space. The state with four occupied orbitals
|k0↑〉,|k1↓〉,|k3↓〉,|k6↑〉 undergoes a two-particle excitation s1 at
time τ1 replacing the occupied orbitals |k0↑〉 ,|k3↓〉 by |k2↑〉,|k5↓〉.
Two further excitations occur at τ2 and τ3. The states at the “imaginary
times” τ = 0 and τ = β coincide. In addition, the total spin projection
is conserved at any time. All possible paths contribute to the partition
function Z, Eq. (18).

In this notation, the exponent of the fermionic phase factor is
given by

αsi
= α(i)

pqrs =
q−1∑
l=p

n
(i−1)
l +

s−1∑
l=r

n
(i)
l .

Due to the trace, each addend in Eq. (18) fulfills {n} = {n(0)} =
{n(K)} and hence can be interpreted as a β-periodic path in Fock
space. An example of such a path for the case of an unpolarized
UEG is depicted in Fig. 6. The starting determinant {n} at
τ = 0 undergoes K excitations of type si at time τi , which
we refer to as “kinks.” The weight of each path is computed
according to the second line of Eq. (18), which can be both
positive and negative. Since the Metropolis algorithm [43] can
only be applied to strictly positive weights, we have to take
the modulus of the weights in our MC procedure and compute
expectation values according to

〈O〉 = 〈Os〉′
〈s〉′ , (21)

where O is the corresponding Monte Carlo estimator of the
observable, 〈·〉′ denotes the expectation value with respect to
the modulus weights, and s measures the sign of each path.
Therefore, 〈s〉′ is the average sign of all sampled paths during
the MC simulation. It is straightforward to show that the
relative statistical error of observables computed according
to Eq. (21) is inversely proportional to the average sign. As
a consequence, in practice, reliable expectation values can be
obtained if the average sign is larger than about 10−4.

2. Application to the unpolarized UEG

The difference between CPIMC simulations of the polar-
ized and unpolarized UEG enters basically in two ways. First,
in addition to the particle number N , the total spin projection in
the summation over the starting determinant {n(0)} in Eq. (18)
has to be fixed, i.e., the number of spin-up N↑ and spin-down
electrons N↓. Thus, if a whole occupied orbital is excited

during the MC procedure (for details, see Ref. [24]), it can
only be excited to an orbital with the same spin projection. For
example, orbital 6 in Fig. 6 could only be excited to orbital 8
or some higher unoccupied orbital with spin up (not pictured).
Moreover, when adding a kink or changing two kinks via
some two-particle excitation, it is most effective to include
spin conservation in the choice of the four involved orbitals,
since all other proposed excitations would be rejected due to
a vanishing weight.

For the second aspect, we have to explicitly consider the
modulus weight of some kink si = (pqrs), which is given by
the modulus of Eq. (20)

|Y{n(i)},{n(i−1)}(si)|

=
∣∣∣∣ 1

(kp − kr )2
δσp,σr

δσq ,σs
− 1

(kp − ks)2
δσp,σs

δσq ,σr

∣∣∣∣
× 4πe2

L3
δkp+kq ,kr+ks

, (22)

where we have used the definition of the antisymmetrized
two-electron integrals from Sec. II B. If all of the involved spin
orbitals have the same spin projection, the Kronecker δ’s due to
the spin obviously equal one, and the two-electron integrals are
efficiently blocked, i.e., in most (momentum conserving) cases
it is |w−

pqrs | < |wpqrs | and |w−
pqrs | < |wpqsr |. However, if the

involved orbitals have different spin projections, one of the
two terms in Eq. (22) is always zero and |w−

pqrs | = |wpqsr | or
|w−

pqrs | = |wpqrs |. Hence, for otherwise fixed system param-
eters, the average weight of kinks in the unpolarized system
is significantly larger. Since the diagonal matrix elements, cf.
Eq. (19), are independent of the spin, there ought to be more
kinks in simulations of the unpolarized system, which in turn
results in a smaller sign, because each kink enters the partition
function with three possible sign changes.

We address this issue in Fig. 7, where we plot the average
sign (a) and the average number of kinks (b) for the polarized
(circles) and unpolarized (dots) UEG of N = 4,14, and 66
electrons at θ = 1. Coming from small values of rs , the average
number of kinks grows linearly with rs . Depending on the
particle number, at some critical value of rs , it starts growing
exponentially, until it eventually turns again into a linear
dependency. The onset of the exponential growth is connected
to a drop of the average sign due to the combinatorial growth
of potential sign changes in the sampled paths with increasing
number of kinks. This behavior becomes more extreme
the larger the particle number, both for the polarized and
unpolarized system, so that for N = 66 electrons (blue lines),
the average number of kinks suddenly increases from less than
about two to a couple of hundred, which corresponds to a drop
of the average sign from almost one to below 10−3. However,
for the unpolarized system, the critical value of rs at which the
average sign starts dropping drastically is approximately half
of that of the polarized system containing the same number
of electrons. In practice, this means that for N = 66 polarized
electrons at θ = 1 direct CPIMC calculations are feasible up
to rs ∼ 0.6, whereas for N = 66 unpolarizd electrons direct
CPIMC is applicable only up to rs ∼ 0.3.
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FIG. 7. Average sign (a) and average number of kinks (b) of
direct CPIMC, plotted versus the density parameter for three different
particle numbers N = 4,14,66 in NB = 2109,4169,5575 plane wave
basis functions, respectively, at θ = 1. Shown are the results from
the simulation of the polarized (circles) and unpolarized (dots) UEG,
where for the unpolarized case 2NB spin orbitals have been used.

3. Auxiliary kink potential

In Ref. [22], it has been shown that the use of an auxiliary
kink potential of the form

Vδ,κ (K) = 1

e−δ(κ−K+0.5) + 1
(23)

significantly extends the applicability range of our CPIMC
method towards larger values of rs . This is achieved by adding
the potential to the second line of the partition function
Eq. (18), i.e., multiplying the weight of each path with the
potential. Obviously, since Vδ,κ (K) → 1 in the limit κ → ∞,
performing CPIMC simulations for increasing values of κ at
fixed δ always converges to the exact result. Yet, to ensure a
monotonic convergence of the energy, it turned out that the
value of δ has to be sufficiently small. Both for the polarized
and unpolarized system, choosing δ = 1 is sufficient. In fact,
the potential is nothing but a smooth penalty for paths with a
larger number of kinks than κ .

In Fig. 8, we show the convergence of (a) the internal
energy (per particle), (b) the average sign, and (c) the average
number of kinks with respect to the kink potential parameter
κ of N = 66 unpolarized electrons at rs = 2 and θ = 4. We
have performed independent CPIMC simulations for different
κ , using integer values from 2 to 17. While the energy
almost remains constant for κ � 10 with a corresponding
average sign larger than 0.1, the average sign and number
of kinks themselves clearly are not converged. Further, the

FIG. 8. Convergence of (a) the internal energy, (b) the average
sign, and (c) the average number of kinks with respect to the kink
potential parameter κ of N = 66 unpolarized electrons at rs = 2 and
θ = 4 in NB = 88 946 spin orbitals. The potential parameter δ has
been fixed to one. The blue (green) line show a horizontal (linear) fit
to the last converged points. The asymptotic value (black point) in
the limit 1/κ → 0 is enclosed between the blue and green lines and,
within error bars, coincides with the PB-PIMC result (orange points).

direct CPIMC algorithm (without the kink potential) would
give a couple of thousand kinks with a practically vanishing
sign. However, for the convergence of observables like the
energy, apparently, a significantly smaller number of kinks is
sufficient. This can be explained by a near cancellation of all
additional contributions of the sampled paths with increasing
number of kinks. For a detailed analysis, see Ref. [22].

We generally observe an s-shaped convergence of observ-
ables with 1/κ , where the onset of the cancellation and near
convergence are clearly indicated by the change in curvature.
This allows for a robust extrapolation scheme to the asymptotic
limit 1/κ → ∞, which is explained in detail in Ref. [22]. An
upper (lower) bound of the asymptotic value is obtained by
a horizontal (linear) fit to the last points after the onset of
convergence. The extrapolated result is then computed as the
mean value of the lower and upper bounds with the uncertainty
estimated as their difference. In Fig. 8, both, the horizontal
(blue line) and linear fit (green line) almost coincide due to
the complete convergence (within statistical errors) of the last
points. The asymptotic CPIMC result (black dot) perfectly
agrees (within error bars) with the PB-PIMC result (orange
dot). This confirms the validity of using the kink potential also
for the unpolarized UEG.

4. Further enhancement of the kink potential

It turns out that, in case of the unpolarized UEG, even with
the use of a kink potential with δ = 1, the simulation may
approach paths with an extremely large number of kinks. This
is demonstrated by the turquoise data points in Fig. 9(c), where
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FIG. 9. Convergence of (a) the internal energy, (b) the average
sign, and (c) the average number of kinks with respect to the kink
potential parameter κ of N = 66 unpolarized electrons at rs = 0.8 and
θ = 1 in NB = 11 150 spin orbitals. The potential parameter δ has
been fixed to one. The three curves correspond to CPIMC calculations
where the kink potential has been cut off at different values Vc, i.e.,
V1,κ (K) [cf. Eq. (23)] is set to zero if it takes values smaller than
Vc. The blue (green) line shows a horizontal (linear) fit to the last
converged red points. The asymptotic value (black point) in the limit
1/κ → 0 is enclosed between the blue and green lines and, within
error bars, coincides with the PB-PIMC result (orange points).

the average number of kinks is shown for N = 66 unpolarized
electrons at θ = 1 and rs = 0.8. For example, at κ = 8, there
are on average about 30 kinks. However, increasing the penalty
for paths with a number of kinks larger than κ , by increasing
δ, is not a solution, since this would cause a nonmonotonic
convergence, oscillating with even and odd numbers of κ , as
has been demonstrated in Ref. [22]. Therefore, we choose a
different strategy which is justified by the fact that paths with
a very large number of kinks do not contribute to physical
observables; cf. Sec. III B 3 and Ref. [22]: we cut off the
potential once it has dropped below some critical value Vc,
thereby completely prohibiting paths where V1,κ (K) < Vc. If
the cutoff value is too large, we again recover an oscillating
convergence behavior of the energy with even and odd numbers
of κ rendering an extrapolation difficult. This is shown by the
purple data points in Fig. 9(a), where the simulations have
been performed with Vc = 0.03 so that paths with a number
of kinks larger than κ + 3 are prohibited. On the other hand,
if we set Vc = 10−9, so that paths with up to κ + 20 kinks are
allowed, the oscillations vanish (within statistical errors) and
we can again apply our extrapolation scheme. Indeed, even
with the additional cutoff the extrapolated value (black dot)
coincides with that of the PB-PIMC simulation (orange dot)
within error bars. In all simulations presented below we have
carefully verified that the cutoff value is sufficiently small to
guarantee converged results.

To summarize, as for the polarized UEG [22], the accessible
range of density parameters rs of our CPIMC method can be
extended by more than a factor two by the use of a suitable
kink potential, in simulations of the unpolarized UEG as well.
For example, at θ = 1 direct CPIMC simulations are feasible
up to rs ∼ 0.3, see Fig. 7, whereas the kink potential allows
us to obtain accurate energies up to rs = 0.8, as demonstrated
in Fig. 9. In addition to the extrapolation scheme that has been
introduced before for the spin-polarized case [22], we have
cut off the potential at a sufficiently small value to prevent the
simulation paths from approaching extremely large numbers
of kinks. We expect this enhancement of CPIMC to be useful
for arbitrary systems. In particular, it will allow us to further
extend our previous results for the polarized UEG to larger rs

values.

IV. COMBINED CPIMC AND PB-PIMC RESULTS

A. Exchange-correlation energy

The exchange-correlation energy per particle, Exc, of the
uniform electrons gas is of central importance for the construc-
tion of density functionals and, therefore, has been the subject
of numerous previous studies, e.g., Refs. [21,22,25,48–50]. It
is defined as the difference between the total energy of the
correlated system and the ideal energy U0,

Exc = E − U0 . (24)

In Fig. 10(a), we show results for this quantity for six different
temperatures in dependence on the density parameter rs .
All data are also available in Table I in the Appendix. In
order to fully exploit the complementary nature of our two
approaches, we always present the most accurate data from
either CPIMC (dots) or PB-PIMC (crosses). This allows us
to cover the entire density range for θ � 1, since here, the
two methods allow for an overlap with respect to rs . For
completeness, we mention that the apparently larger statistical
uncertainty for θ = 8 in comparison to lower temperature is
not a peculiar manifestation of the FSP, but, instead, an artifact
due to the definition (24). At high temperature, the system
becomes increasingly ideal and, therefore, the total energy E

approaches U0. To obtain Exc at θ = 8, a large part of E is
subtracted, which, obviously, means that the comparatively
small remainder is afflicted with a larger relative statistical
uncertainty.

To illustrate the overlap between PB-PIMC and CPIMC,
we show all available data points for θ = 1 for both methods
in panel (b). This is the lowest temperature for which this is
possible and, therefore, the most difficult example, because
the systematic propagator error from PB-PIMC at small rs is
most significant here. Evidently, both data sets are in excellent
agreement with each other and the deviations are well within
the error bars. Although we do expect that the increase of the
PB-PIMC factorization error for small rs , cf. Fig. 2, should
become less severe for larger systems, any systematic trend
is masked by the sign problem anyway and cannot clearly be
resolved for the given statistical uncertainty.

Let us now consider temperatures below θ = 1. For θ =
0.75, CPIMC is applicable only for rs � 0.7, while PB-PIMC
delivers accurate results for rs � 3. Thus the intermediate
regime remains, without further improvements, out of reach

205134-9



DORNHEIM, GROTH, SCHOOF, HANN, AND BONITZ PHYSICAL REVIEW B 93, 205134 (2016)

FIG. 10. Exchange-correlation energy Exc times rs of the unpolar-
ized N = 66 particle UEG over the density parameter rs for different
temperatures. In graphic (a), only the best results from CPIMC (dots)
or PB-PIMC (crosses) calculations are shown; cf. Table I in the
Appendix. In addition, RPIMC results by Brown et al. [21,51] are
plotted for comparison (lines with light colors and open circles).
Graphic (b) also shows PB-PIMC data for rs < 1 at θ = 1.

and, for θ = 0.5, PB-PIMC is not applicable for N = 66
unpolarized electrons in this density regime at all.

The comparison of our combined results to the RPIMC
data by Brown et al. [21], which are available for rs � 1,
reveals excellent agreement for the three highest temperatures,
θ = 2,4,8. For θ = 1, all results are still within single error
bars, but the RPIMC data appear to be systematically too low.
This observation is confirmed for θ = 0.5, where the fixed
node approximation seems to induce an even more significant
drop of Exc. For completeness, we mention that although a
similar trend has been found for the spin-polarized UEG as
well [22,25,27], the overall agreement between RPIMC and
our independent results is a little better for the unpolarized
case.

Finally, we consider the kinetic and potential contribution,
K and V , to the total energy separately. In Fig. 11(a), the kinetic
energy in units of the ideal energy U0 is plotted versus rs and we
again observe a smooth connection of the PB-PIMC (crosses)
and CPIMC (dots) data for all four shown temperatures.
The RPIMC data (circles), on the other hand, exhibit clear
deviations and are systematically too low even for rs = 10. In
panel (b), we show the same information for the potential
energy, but the large V range prevents us from resolving
any differences between the different data sets. For this
reason, in panel (c), we explicitly show the relative differences

FIG. 11. Kinetic (a) and potential (b) energy of the unpolarized
N = 66 particle UEG over the density parameter rs for different
temperatures. Panel (c) shows the relative difference between our
results and RPIMC data by Brown et al. [21,51].

between our results and those from RPIMC. Evidently, the
latter are systematically too high and the relative deviations
increase with density exceeding �V/V = 1%. Curiously,
�V/V attains its largest value for the highest temperature,
θ = 8, which contradicts the usual assumption that the nodal
error decreases with increasing θ . Yet, in case of the exchange
correlation energy, cf. Fig. 10, this trend seems to hold.

To explicitly demonstrate that the observed discrepancy
between our results and the RPIMC data is not due to the
systematic propagator error of PB-PIMC, in Fig. 12 we show
all available data from CPIMC and PB-PIMC over the entire
rs range for two representative temperatures, θ = 1 and θ = 4.
Evidently, the kinetic energy of our two methods is in excellent
agreement (i.e., within the statistical uncertainty) even at small
rs , where the propagator error is expected to be most pro-
nounced (cf. Fig. 2), whereas the RPIMC data clearly deviates.
In panel (c), we show the relative differences in the potential
energy between the PB-PIMC and CPIMC (dots) as well as
between the PB-PIMC and RPIMC results (circles). Again,
it can be seen that the PB-PIMC results agree with the exact
CPIMC results, where they are available, while the RPIMC
data are significantly too large for both θ = 1 and θ = 4.

We summarize that, while RPIMC exhibits significant
deviations for both K and V separately, these almost exactly
cancel and, therefore, the total energy (and Exc) is in rather
good agreement with our results. This trend is in agreement
with previous observations for the spin-polarized case [27].
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FIG. 12. Kinetic (a) and potential (b) energy of the unpolarized
N = 66 particle UEG over the density parameter rs for two different
temperatures. As a supplement to Fig. 11, we show all available data
points from CPIMC and PB-PIMC to illustrate their agreement where
both approaches are available. Panel (c) shows the relative difference
between the potential energy from PB-PIMC and CPIMC (filled dots)
as well as between PB-PIMC and RPIMC (empty dots).

B. Pair distribution function

Up to this point, we have compared RPIMC data for
various energies (Exc, V , K) to our independent results.
However, since only the total energy was in agreement while
V and K both deviated, it remains an open question how
other thermodynamic quantities are affected by the fixed node
approximation. To address this issue, in Fig. 13 we show
results for the pair distribution function (PDF) of the N = 66
unpolarized electrons at rs = 4 and θ = 1. This appears to be
the most convenient parameter combination for a comparison
since, on the one hand, there are significant differences for both
K and V while, on the other hand, simulations with PB-PIMC
are possible up to P = 4, which should allow for accurate
results of both g↑↑ and g↑↓. In panel (a), the interspecies PDF
g↑↓ is plotted versus r and shown are PB-PIMC results for
P = 3 (green crosses) and P = 4 (red squares) as well as
RPIMC data (blue circles) from Ref. [21]. All three curves
agree rather well and exhibit a distinct exchange correlation
hole for r � 1.5rs and a featureless approach to unity at larger
distances. The inset shows the short range part of the PDF,
which is the only segment where deviations are visible. The
PB-PIMC results for P = 3 and P = 4 are within each others’
error bars and, for the smallest resolved r , slightly below the
RPIMC data, although this trend hardly exceeds twice the error
bars as well. The results for the intraspecies PDF g↑↑ show
a similar picture, although short range configurations of two
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FIG. 13. Pair distribution function of N = 66 unpolarized elec-
trons at rs = 4 and θ = 1—the PB-PIMC results have been obtained
for t0 = 0.04 and a1 = 0, and the RPIMC data are taken from
Ref. [21].

particles are even more suppressed due to the Pauli blocking.
Again, there appears a slight difference between PB-PIMC and
RPIMC, which, however, cannot clearly be resolved within the
given statistical uncertainty. Therefore, we conclude that our
independent simulation data are in good agreement with the
fixed node approximation for both pair distribution functions
despite the observed deviations in K and V for these particular
system parameters.

V. DISCUSSION

In summary, we have successfully extended the com-
bination of PB-PIMC and CPIMC, presented in paper I,
to the unpolarized UEG and, thereby, presented different
independent ab initio results at finite temperature.

For the unpolarized UEG, CPIMC suffers from a signif-
icantly more severe FSP due to the increased configuration
weight of interspecies kinks. To overcome this problem, we
have developed an additional enhancement of our extrap-
olation scheme. The introduction of a (very small) cutoff
parameter Vc in the auxiliary kink potential prevents the
number of kinks from diverging and, thereby, significantly
extends the parameter range where simulations are feasible.
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Furthermore, we note that in the warm dense matter regime
with N = 66 the PB-PIMC approach, due to the FSP, is re-
stricted to only two or three propagators. Hence, the asymptotic
P −4-convergence behavior of the utilized factorization scheme
is not yet reached. Therefore, the presented PB-PIMC data are
afflicted with an in principle uncontrolled systematic factor-
ization error, which is particularly increased at high density
(rs < 1) compared to the spin-polarized case. However, the
empirical optimization of the two free parameters (t0 and a1)
still allows for accurate results, as we have demonstrated in
detail in Figs. 1 and 2 for N = 4, where a maximum systematic
factorization error (for P = 2) of �V/V � 3 × 10−3 was
observed. For larger systems, N = 66, CPIMC and PB-PIMC
are in good agreement, where both are available (see Fig. 12).
In particular, even at high density, where the factorization error
of PB-PIMC with P = 2 is expected to be most pronounced,
both agree within statistical uncertainty. This is a strong
indication that the combination of both methods allows for
accurate results over the entire density range, for θ � 1 and
N = 66 electrons.

Overall, the existing RPIMC data for the exchange cor-
relation energy are in better agreement with our results than
for the spin-polarized UEG, but there seems to be a similar
unphysical systematic drop around rs = 1 at low temperatures.
Interestingly, the separate kinetic and potential contributions
to the energy substantially deviate from our results by more
than one percent. This is illustrated in Fig. 12, where, at
θ = 4 and intermediate rs , CPIMC and PB-PIMC are within

error bars, whereas RPIMC significantly deviates from both.
Furthermore, we have presented a comparison of the pair
distribution functions g↑↑(r) and g↑↓(r), which are in good
agreement with RPIMC.

It remains an important issue of future work to perform an
extrapolation to the macroscopic limit, i.e., the development
of finite-size corrections, e.g., [31–33]. To this end simula-
tions with substantially larger particle numbers are required
which should be possible with the presented enhancements.
Furthermore, we expect that the presented combination of
the complementary CPIMC and PB-PIMC approaches can be
successfully applied to numerous other Fermi systems, such
as two-component plasmas [52–54] and atoms embedded in
jellium [55–57].
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APPENDIX

As a supplement to Figs. 10 and 11, we have listed all
combined simulation data from PB-PIMC and CPIMC in
Table I.

TABLE I. Energies per particle for N = 66 unpolarized electrons: ideal energy, U0, kinetic energy, T , potential energy, V , and exchange-
correlation energy Exc. While the unmarked results correspond to standard CPIMC simulations (without the auxiliary kink potential), the “a”
marks CPIMC results that have been obtained by the extrapolation as explained in Sec. III B 3 and Ref. [22]. For the latter values, the error
includes systematic effects. All other errors correspond to a 1σ standard deviation. A “b” marks results from PB-PIMC calculations. For
CPIMC results, the utilized number of basis functions NB is given in the last column and has been fixed for the same temperature. The ideal
energies have been computed using the same number of basis functions as for the interacting system. Energies in units of Ryd.

θ rs U0 T V Exc NB

0.50 0.1 374.8592(12) 373.463(6) −8.60129(19) −9.997(6) 11150
0.50 0.2 93.71481(30) 93.1294(25) −4.506(4) −5.0911(25) 11150
0.50 0.3 41.65102(13) 41.3226(28)a −3.1130(10)a −3.4421(9)a 11150
0.50 0.4 23.42870(8) 23.2220(29)a −2.409(4)a −2.618(6)a 11150
0.50 0.5 14.99437(5) 14.871(18)a −1.992(20)a −2.126(16)a 11150
0.50 0.6 10.412756(34) 10.327(15)a −1.702(33)a −1.791(19)a 11150
0.75 0.1 495.690(4) 494.119(16) −7.90080(19) −9.472(17) 11150
0.75 0.2 123.9225(10) 123.2322(29) −4.16057(12) −4.8508(31) 11150
0.75 0.3 55.0767(5) 54.672(4)a −2.89413(31)a −3.2999(14)a 11150
0.75 0.4 30.98062(26) 30.712(4)a −2.2506(18)a −2.5215(30)a 11150
0.75 0.5 19.82760(17) 19.637(4)a −1.858(5)a −2.054(8)a 11150
0.75 0.6 13.76916(12) 13.632(10)a −1.601(17)a −1.741(14)a 11150
0.75 0.7 10.11612(9) 10.018(18)a −1.400(23)a −1.511(18)a 11150
0.75 3.0 0.550767(5) 0.556(5)b −0.4098(8)b −0.405(5)b

0.75 4.0 0.3098060(26) 0.3173(18)b −0.3201(4)b −0.3127(18)b

0.75 6.0 0.1376920(12) 0.1469(6)b −0.22488(13)b −0.2157(5)b

0.75 8.0 0.0774520(7) 0.08610(19)b −0.17428(6)b −0.16563(19)b

0.75 10.0 0.0495690(4) 0.05687(9)b −0.142666(28)b −0.13536(9)b

1.00 0.1 623.230(6) 621.686(15) −7.37511(9) −8.918(17) 11150
1.00 0.2 155.8074(15) 155.1203(34) −3.89359(12) −4.581(4) 11150
1.00 0.3 69.2477(7) 68.8312(18) −2.71561(11) −3.1322(19) 11150
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TABLE I. (Continued.)

θ rs U0 T V Exc NB

1.00 0.4 38.9518(4) 38.6661(33)a −2.1165(8)a −2.4025(25)a 11150
1.00 0.5 24.92918(24) 24.7222(32)a −1.7508(17)a −1.961(4)a 11150
1.00 0.6 17.31193(17) 17.1543(34)a −1.503(4)a −1.663(4)a 11150
1.00 0.7 12.71897(12) 12.597(5)a −1.327(10)a −1.450(7)a 11150
1.00 0.8 9.73796(9) 9.644(8)a −1.192(16)a −1.290(13)a 11150
1.00 1.0 6.23230(6) 6.170(10)b −0.9844(10)b −1.046(10)b

1.00 2.0 1.558074(15) 1.5491(21)b −0.55777(28)b −0.5667(21)b

1.00 4.0 0.389518(4) 0.39370(21)b −0.31304(5)b −0.30886(21)b

1.00 6.0 0.1731190(17) 0.17863(15)b −0.22107(4)b −0.21556(15)b

1.00 8.0 0.0973800(9) 0.10313(6)b −0.171900(18)b −0.16615(6)b

1.00 10.0 0.0623230(6) 0.067639(31)b −0.141041(11)b −0.135725(31)b

2.00 0.1 1155.227(11) 1154.031(32) −6.22959(19) −7.425(33) 18342
2.00 0.2 288.8066(28) 288.258(7) −3.27971(9) −3.828(7) 18342
2.00 0.3 128.3585(12) 128.0151(35) −2.28648(6) −2.630(4) 18342
2.00 0.4 72.2017(7) 71.9583(17) −1.78368(6) −2.0270(18) 18342
2.00 0.5 46.2091(4) 46.0256(11) −1.47771(6) −1.6612(11) 18342
2.00 0.6 32.08963(31) 31.9444(29)a −1.27090(35)a −1.419(4)a 18342
2.00 0.8 18.05042(17) 17.9532(27)a −1.0069(11)a −1.108(4)a 18342
2.00 1.0 11.55227(11) 11.483(4)a −0.8440(32)a −0.916(5)a 18342
2.00 2.0 2.888066(28) 2.8661(11)b −0.48960(21)b −0.5115(11)b

2.00 4.0 0.722017(7) 0.71815(19)b −0.28421(6)b −0.28807(20)b

2.00 6.0 0.3208960(31) 0.32120(7)b −0.204649(24)b −0.20434(8)b

2.00 8.0 0.1805040(17) 0.18183(4)b −0.161212(15)b −0.15989(4)b

2.00 10.0 0.1155230(11) 0.117282(28)b −0.133507(13)b −0.131748(32)b

4.00 0.1 2245.508(30) 2244.80(9) −5.42045(19) −6.13(10) 88946
4.00 0.2 561.377(8) 561.050(26) −2.81969(9) −3.147(27) 88946
4.00 0.3 249.5008(34) 249.272(14) −1.94887(8) −2.177(15) 88946
4.00 0.4 140.3442(19) 140.173(8) −1.51066(7) −1.682(8) 88946
4.00 0.5 89.8203(12) 89.699(6) −1.24591(7) −1.367(6) 88946
4.00 0.6 62.3752(8) 62.275(4) −1.06761(6) −1.168(4) 88946
4.00 0.8 35.0861(5) 35.0182(19) −0.84205(6) −0.9099(19) 88946
4.00 1.0 22.45508(30) 22.4019(15) −0.70405(7) −0.7572(16) 88946
4.00 2.0 5.61377(8) 5.5953(15)a −0.41230(33)a −0.4317(4)a 88946
4.00 4.0 1.403442(19) 1.3981(4)b −0.24535(17)b −0.2507(4)b

4.00 6.0 0.623752(8) 0.62192(14)b −0.18022(7)b −0.18205(16)b

4.00 8.0 0.350861(5) 0.35047(9)b −0.14402(4)b −0.14441(11)b

4.00 10.0 0.2245510(30) 0.22466(5)b −0.120675(31)b −0.12056(7)b

8.00 0.1 4445.13(11) 4444.88(27) −4.93048(19) −5.18(29) 147050
8.00 0.2 1111.281(27) 1111.12(9) −2.52994(12) −2.69(10) 147050
8.00 0.3 493.903(12) 493.75(5) −1.72864(9) −1.88(5) 147050
8.00 0.4 277.820(7) 277.730(30) −1.32690(8) −1.417(31) 147050
8.00 0.5 177.805(4) 177.724(22) −1.08505(7) −1.166(22) 147050
8.00 0.6 123.4757(30) 123.431(15) −0.92338(6) −0.968(15) 147050
8.00 0.8 69.4551(17) 69.404(7) −0.71997(5) −0.771(8) 147050
8.00 1.0 44.4513(11) 44.415(6) −0.59679(5) −0.633(6) 147050
8.00 2.0 11.11281(27) 11.0997(16) −0.34329(5) −0.3564(16) 147050
8.00 3.0 4.93903(12) 4.9312(9)a −0.2532(5)a −0.2626(33)a 147050
8.00 4.0 2.77820(7) 2.7746(6)b −0.20502(29)b −0.2086(6)b

8.00 6.0 1.234757(30) 1.23274(28)b −0.15214(15)b −0.1542(4)b

8.00 8.0 0.694551(17) 0.69379(18)b −0.12321(10)b −0.12396(23)b

8.00 10.0 0.444513(11) 0.44399(11)b −0.10430(7)b −0.10482(13)b
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