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As opposed to ordinary metals, whose Fermi surfaces are two dimensional, topological (semi)metals can exhibit
protected one-dimensional Fermi lines or zero-dimensional Fermi points, which arise due to an intricate interplay
between symmetry and topology of the electronic wave functions. Here, we study how reflection symmetry,
time-reversal symmetry, SU(2) spin-rotation symmetry, and inversion symmetry lead to the topological protection
of line nodes in three-dimensional semimetals. We obtain the crystalline invariants that guarantee the stability of
the line nodes in the bulk and show that a quantized Berry phase leads to the appearance of protected surfaces
states, which take the shape of a drumhead. By deriving a relation between the crystalline invariants and the Berry
phase, we establish a direct connection between the stability of the line nodes and the drumhead surface states.
Furthermore, we show that the dispersion minimum of the drumhead state leads to a Van Hove singularity in the
surface density of states, which can serve as an experimental fingerprint of the topological surface state. As a
representative example of a topological semimetal, we consider Ca3P2, which has a line of Dirac nodes near the
Fermi energy. The topological properties of Ca3P2 are discussed in terms of a low-energy effective theory and a
tight-binding model, derived from ab initio DFT calculations. Our microscopic model for Ca3P2 shows that the
drumhead surface states have a rather weak dispersion, which implies that correlation effects are enhanced at the
surface of Ca3P2.
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I. INTRODUCTION

The study of band structure topology of insulating and
semimetallic materials has become an increasingly important
topic in modern condensed matter physics [1–5]. The discov-
ery of spin-orbit induced topological insulators has revealed
that a nontrivial momentum-space topology of the electronic
bands can give rise to new states of matter with exotic surface
states [6–11] and highly unusual magnetotransport properties
[12–14]. Recently, due to the experimental detection of arc
surface states in Weyl semimetals [15], considerable attention
has focused on the investigation of topological semimetals
[16–30]. While in ordinary three-dimensional metals filled and
empty states are separated by two-dimensional Fermi sheets,
topological semimetals can exhibit zero-dimensional Fermi
points or one-dimensional Fermi lines.

Classic examples of topological semimetals are the Weyl
and Dirac semimetals which exhibit twofold and fourfold
degenerate Fermi points, respectively. Weyl points can occur
in the absence of any symmetry besides translation, whereas
Dirac points are topologically stable only in the presence
of time-reversal symmetry together with a crystal lattice
symmetry, such as rotation or reflection. For example in
the Dirac materials Cd3As2 [31–36] and Na3Bi [37–41], the
gapless property of the Dirac points is protected by a C4 and
C3 crystal rotation symmetry, respectively. Correspondingly,
the stability of Weyl points is guaranteed by a Chern number,
while Dirac points are protected by a crystalline invariant, e.g.,
a mirror number [3]. Due to their topological characteristics
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these point-node semimetals display a number of exotic
transport phenomena, such as negative magnetoresistance and
chiral magnetic effect [24,42–45].

Probably even more interesting than semimetals with point
nodes are topological materials with line nodes, since they
support weakly dispersing surface states that could provide
an interesting platform for exotic correlation physics [46–48].
Moreover, these semimetals are expected to exhibit long-range
Coulomb interaction [49] and graphene-like Landau levels
[50]. In nodal line semimetals the valence and conduction
bands cross along one-dimensional lines in momentum space
forming a ring-shaped nodal line. In general, this nodal line is
not pinned at the Fermi energy, but passes through the Fermi
energy at discrete points. As a consequence, the Fermi surface
takes the shape of a thin tube with changing radius, possibly
with constrictions. However, as we will see, for the case of
Ca3P2 the band crossing occurs within ±10 meV of the Fermi
energy, leading to an approximate “Fermi line.”

From the general classification of gapless topological
materials [3] it follows that line nodes in semimetals are
stable against gap opening only in the presence of a lattice
symmetry, such as reflection [18–20]. That is, the two bands
that cross at (or near) the Fermi level of a nodal line semimetal
have opposite crystal symmetry eigenvalues, which prevents
hybridization. For example, in noncentrosymmetric PbTaSe2

[51,52] and TlTaSe2 [53] the reflection about the Ta atomic
planes protects the topological nodal lines. Similarly, the
band crossings in Cu3PdN [54], ZrSiS [55], Ca3P2 [56], and
hyperhoneycomb structures [57,58] are protected by point
group symmetries. Since the latter systems are symmetric
under both inversion and time reversal, their nodal rings
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are fourfold degenerate, i.e., of “Dirac type.” In contrast,
PbTaSe2 and TlTaSe2 lack inversion symmetry and hence
exhibit “Weyl rings,” which are only twofold degenerate.
Among the aforementioned compounds only Ca3P2 has line
nodes that are at the Fermi energy. Therefore, Ca3P2 is an ideal
system to study unconventional transport properties of nodal
line semimetals, since it is not necessary to tune the Fermi
energy to the Dirac line by gating or doping.

In this paper, we discuss the stability of topological nodal
lines in terms of crystalline topological invariants that take
on nonzero quantized values. These topological numbers
measure the global phase structure of the electronic wave
functions in the presence of symmetry constraints. We derive
and compute the Z- and Z2-type crystalline invariants for
systems with reflection symmetry and/or inversion symmetry.
It follows from our analysis that fourfold degenerate Dirac
rings are protected against gap opening by SU(2) spin-rotation
symmetry and reflection symmetry or the product of time-
reversal with inversion symmetry. These Dirac rings can be
split into two twofold degenerate Weyl rings by spin-rotation
symmetry breaking perturbations.

Unlike in crystalline topological insulators [59–63], the
Z-type crystalline invariants for nodal line semimetals are
not directly linked with the appearance of surface states.
Nevertheless, as we show in Sec. II C there appear topological
in-gap states at the surface of nodal line semimetals, which
arise from a quantized Berry phase (i.e., a Z2-type invariant),
rather than the Z-type crystalline invariant. Since the Berry
phase is equal to π for any closed path that interlinks with
the nodal line, surface states occur within two-dimensional
regions of the surface Brillouin zone. These surface states take
the form of a drumhead that is bounded by the projected nodal
lines (Fig. 3). We derive in Sec. II D an important relation
[Eq. (2.11)] between the Z-type mirror invariant and the
Berry phase, which establishes a direct connection between the
appearance of the drumhead surface state and the topological
stability of the bulk nodal line. It follows from this relation that
drumhead boundary states are a generic feature of topological
nodal line semimetals, occurring in both Weyl and Dirac ring
systems (cf. Figs. 3, 5, and 6). We find that the drumhead
surface state exhibits in general a Van Hove singularity in its
dispersion, which gives rise to a kink in the surface density of
states. The latter can be used as an experimental fingerprint of
drumhead surface states [cf. Fig. 3(c)].

To illustrate the aforementioned properties of topological
nodal line semimetals, we consider Ca3P2 as a representative
example. We construct a tight-binding and low-energy contin-
uum description of Ca3P2 and use these low-energy theories
to compute the Z- and Z2-type crystalline invariants of this
material. It is shown that the drumhead surface state of Ca3P2

has a surprisingly weak dispersion, with an effective mass of
about four times the bare electron mass. The latter implies
that correlation effects are enhanced, which may lead to exotic
symmetry-broken states at the surface of Ca3P2. The low-
energy descriptions of Ca3P2, which we derive in Secs. II and
III, will be of use for future theoretical studies on the electric-
and magneto-transport properties of line node semimetals.

In the presence of disorder or interactions the surface states
of nodal line semimetals can scatter and interact with quasi-
particles in the bulk, since there is no full gap in the system.

Hence, impurity scattering or electron-electron correlations
might potentially destroy the boundary modes. For the nearly
flat surface states of Ca3P2 the effects of interactions are
particularly strong, since their large density of states enhances
correlation effects. Hence, even relatively weak interactions
may lead to exotic symmetry broken states at the surface, such
as surface magnetism or surface superconductivity. Regarding
the effects of disorder, we find that bulk impurities do not
destroy the surface states as long as (i) the disorder strength is
considerably smaller than the energy gap separating valence
from conduction bands and (ii) the disorder respects reflection
symmetry on average (Sec. IV).

The remainder of this paper is organized as follows. In
Sec. II we discuss the topological features of nodal line
semimetals in terms of a tight-binding model. We start in
Sec. II A by deriving a twelve-band tight-binding Hamiltonian
for Ca3P2 using maximally localized Wannier functions. This
is followed by a discussion of the topological stability of
the Dirac ring in Sec. II B. We show in Sec. II C that a
nonzero quantized Berry phase leads to the appearance of
nearly flat surface states. The relation between the Berry
phase and the crystalline topological invariant is derived in
Sec. II D. Section II E is devoted to the study of time-reversal
and inversion breaking perturbations, which split the Dirac
ring into two Weyl rings. To show that the topological features
discussed in Sec. II are generic to any nodal line semimetal, we
discuss in Sec. III an effective continuum model that describes
the low-energy physics near a general topological nodal line.
We evaluate the crystalline invariant for this continuum model
in Sec. III A. In Sec. III B we study how time-reversal and
inversion breaking terms split the nodal line. Finally, in Sec. IV
we conclude the paper and give an outlook on future research.
Section IV also contains a brief discussion of the effects of
disorder on the topological surface states. Some technical
details have been relegated to four Appendices.

II. TIGHT-BINDING CALCULATIONS

In this section, we examine the band structure topology of
Ca3P2 in terms of a tight-binding model with twelve bands.
Although the analysis below is performed specifically for
Ca3P2, the principles discussed in this section are valid more
generally and can be applied to any material with the same
symmetries as Ca3P2.

A. Tight-binding model for Ca3P2

Recently, a new polymorph of Ca3P2 has been synthesized
which crystallizes in a hexagonal lattice structure with space
group P 63/mcm [56]. Figures 1(a) and 1(b) display the
crystal structure of this polymorph of Ca3P2, which contains
two layers with three Ca and three P atoms separated by
four interstitial Ca atoms. High-resolution x-ray diffraction
measurements [56] show that the Ca site is only partially
occupied, yielding a Ca2+-P3− charge-balanced compound.

To determine the electronic band structure we perform first-
principles calculations with the WIEN2k code [64] using as an
input the experimental crystal structure of Ref. [56]. For the
exchange-correlation functional we choose the generalized-
gradient approximation of Perdew-Burke-Ernzerhof type [65].

205132-2



Ca3P2 AND OTHER TOPOLOGICAL SEMIMETALS . . . PHYSICAL REVIEW B 93, 205132 (2016)

(a)

(b)

(c) (d)

FIG. 1. Crystal structure and electronic bands of Ca3P2.
(a) Crystal structure of Ca3P2, which contains two planes with three
Ca atoms (blue) and three P atoms (red) that are separated by inter-
stitial Ca atoms (black). The gray dashed lines indicate the unit cell.
(b) Top and side view of the crystal structure. The P-px and Ca-dz2

orbitals included in the tight-binding model are shown schematically.
(c) Calculated electronic band structure of Ca3P2. The weights of
the P-px and Ca-dz2 orbitals that are located within the layers are
indicated by the width of the corresponding band. The weight of the
Ca-dz2 orbital is multiplied by 2 to make it more visible on the scale
of the plot. (d) Fermi ring of Ca3P2 as obtained from the tight-binding
model, Eq. (2.2). The bulk and surface Brillouin zones are outlined
by the green and black lines, respectively.

The full Brillouin zone is sampled by 21×21×22 k points and
the plane-wave cutoff is set to RKmax = 7. We take the partial
occupancy of the Ca sites into account by using the virtual
crystal approximation [66]. Within this approximation the
partial occupancy is included in an effective way, by lowering
the valence of Ca atoms and adjusting the core charges
accordingly. This approximation allows us to circumvent the
use of large supercells, which would be computationally too
costly. Figure 1(c) shows the calculated band structure of
Ca3P2 within an energy range of ±3 eV around the Fermi
energy EF. To obtain the orbital character of the bands we
introduce a local coordinate system for each Ca and P site,
whose definition is illustrated in Fig. 1(b). In each coordinate
frame the x axis is oriented along the c direction, whereas the z

axis lies with the ab plane, pointing towards the lower left edge
of the unit cell. With these definitions, we find that the bands

close to the Fermi energy mainly originate from the Ca-dz2 and
P-px orbitals that are located within the layers [Fig. 1(c)]. The
other orbitals of the in-plane atoms (Ca-dxy , Ca-dxz, Ca-dyz,
Ca-dx2−y2 , P-py , and P-pz), as well as all the orbitals of the Ca
interstitials, contribute insignificantly to the low-energy bands
and can be neglected for the construction of the tight-binding
model.

Guided by these observations, we use the six Ca-dz2 and
the six P-px orbitals that are located within the two layers
as a basis set for the low-energy tight-binding model. Hence,
the tight-binding Hamiltonian is defined in terms of a twelve-
component Bloch spinor

∣∣ψα
k

〉 = 1√
N

∑
R

eik·(R+sα )
∣∣φα

R

〉
, (2.1)

where α is the orbital index, R denotes the lattice vectors, and
sα represents the position vectors of the six Ca (α = 1, . . . ,6)
and the six P sites (α = 7, . . . ,12), as specified in Figs. 1(a) and
1(b). For completeness, the numerical values of the position
vectors sα are given in Table I of Appendix A. At this stage
of the discussion, we ignore the spin degree of freedom of
the Bloch spinor, since spin-orbit coupling is negligibly small
for the light elements Ca and P. Using the spinor (2.1), we
construct the matrix elements of the Bloch Hamiltonian as

Hαβ(k) = 〈
ψα

k

∣∣H ∣∣ψβ

k

〉 =
∑

R

eik·(R+sα−sβ )t
αβ

R , (2.2)

where t
αβ

R is the hopping amplitude from orbital α in the unit
cell at the origin to orbital β in the unit cell at position R.
To simplify the form of the matrix elements (2.2) and to
obtain a single-valued Hamiltonian, we absorb a momentum-
dependent phase factor in the definition of the basis orbitals;
i.e., we let |ψα

k 〉 → eik·sα |ψα
k 〉. We observe that Hamiltonian

(2.2) has a nested block structure

H (k) =
(

HCaCa HCaP

HPCa HPP

)
, Hij =

(
hll

ij hlu
ij

hul
ij huu

ij

)
, (2.3)

where the subblocks hmn
ij with fixed i,j ∈ {Ca,P} and fixed

m,n ∈ {l,u} are 3 × 3 matrices. The outer blocks Hij represent
hopping processes among and between the Ca and P orbitals,
whereas the inner blocks (huu

ij ,hll
ij ) and (hlu

ij ,h
ul
ij ) describe

intralyer and interlayer hoppings, respectively. The detailed
form of the matrix elements hmn

ij is specified in Appendix A 1,
where we also describe how the hopping parameter values
are determined from a maximally localized Wannier function
(MLWF) method [67,68].

In Fig. 1(d) we plot the energy isosurface of Hamiltonian
(2.2) at E = EF ± 20 meV, which shows that the tight-binding
model correctly captures the fourfold degenerate Dirac ring
of Ca3P2. Comparing the first-principles band structure of
Fig. 1(c) with the tight-binding bands displayed in Fig. 2, we
find that the tight-binding model closely reproduces the bands
with dominant Ca-dz2 and P-px orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well with
the first-principles results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry play
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FIG. 2. Band structure of the tight-binding model. Panels (a) and
(b) show the energy bands of Hamiltonian (2.2) along high-symmetry
lines within the mirror planes kz = 0 and kz = π/c, respectively [cf.
Fig. 1(d)]. The reflection eigenvalues of the bands are indicated by
color, with blue and red corresponding to R = +1 and R = −1,
respectively.

a crucial role for the protection of the Dirac ring. Let us
therefore discuss how these symmetries act on the tight-
binding Hamiltonian.

First of all, since we did not include the spin degree of
freedom in Eq. (2.2), the tight-binding model is fully SU(2)
spin-rotation invariant. That is, our model is diagonal in spin
space with Hamiltonian (2.2) representing the diagonal ele-
ment. As a consequence, the time-reversal operator is simply
given by the identity matrix times the complex conjugation
operator K, i.e., T = 1K, which acts on the Hamiltonian as

T −1H (−k)T = H (k). (2.4)

Hence, Hamiltonian (2.2) belongs to symmetry class AI, since
T 2 = +1. According to the classification of Ref. [3] Fermi
rings in this symmetry class are unstable in the absence
of lattice symmetries. However, as we will discuss below,
reflection symmetry or a combination of inversion with time-
reversal symmetry can produce a topological protection of the
Dirac ring.

The two layers of the crystal structure of Ca3P2, indicated in
green and brown in Fig. 1(a), are reflection planes. For brevity,
we only discuss the lower reflection plane [colored in green
in Fig. 1(a)], but the following analysis also holds, mutatis
mutandis, for the upper plane. The invariance of the tight-
binding Hamiltonian (2.2) under reflection about the lower
plane implies

R−1(kz)H (kx,ky, − kz)R(kz) = H (kx,ky,kz), (2.5a)

with the kz-dependent reflection operator

R(kz) = τz ⊗ ei
kz
2 (ρz−ρ0)c ⊗ 13×3

= τz ⊗
(

1 0
0 e+ikzc

)
⊗ 13×3, (2.5b)

where c is the length of the lattice vector along the (001)
direction. Here, the two sets of Pauli matrices τα and ρα

describe the orbital (Ca-dz2 , P-px) and the layer (l,u) degrees
of freedom, respectively. The form of the reflection operator
R(kz) follows from the observations that (i) the P-px orbitals
are odd under reflection, while the Ca-dz2 orbitals are even; and
(ii) the mirror symmetry maps the orbitals in the upper layer
to the next unit cell, which gives rise to the phase factor e+ikzc.
Finally, we find that the tight-binding model is also inversion

symmetric. That is, Hamiltonian (2.2) satisfies

I−1H (−k)I = H (k), (2.6)

with the spatial inversion operator I = τ0 ⊗ ρx ⊗ 13×3.

B. Topological protection of the Fermi ring

Let us now discuss how reflection symmetry (2.5) leads
to the topological protection of the Dirac ring. First, we
observe that for k within the reflection plane kz = 0,π the
mirror operator R(kz) commutes with Hamiltonian (2.2),
i.e., [R(kz),H (kx,ky,kz)] = 0 for kz = 0,π . Therefore, it is
possible to block-diagonalize H (k) within the mirror planes
with respect to R. In this block-diagonal basis each eigenstate
of H (k) has either mirror eigenvalue R = +1 or R = −1.
As we can see from Fig. 2(a), the two bands that cross
at the Dirac point have opposite mirror eigenvalues, which
prevent hybridization between them. In other words, any term
that couples the two bands breaks reflection symmetry. The
stability of the band crossing is guaranteed by a mirror invariant
of type MZ [18]. This mirror index is given by the difference
of occupied states with eigenvalue R = +1 on either side of
the Dirac ring, i.e.,

N0
MZ = n+,0

occ (|k‖| > k0) − n+,0
occ (|k‖| < k0), (2.7)

where k‖ = (kx,ky) is the in-plane momentum and n+,0
occ (k‖)

denotes the number of occupied states at (k‖,0) in the mirror
eigenspace R = +1. For the discussed nodal line semimetal
we find that

n+,0
occ (k‖) =

{
1, |k‖| < k0 (inside the ring),
0, |k‖| > k0 (outside the ring). (2.8)

For a topological nodal line semimetal the mirror index N0
MZ

evaluates always to −1. For a nontopological semimetal,
however, this index is zero.

In passing, we note that Hamiltonian (2.2) is a member of
symmetry class AI with R+ in the terminology of Ref. [18],
since T 2 = +1 and R commutes with T . However, nodal lines
with codimension p = 2 in class AI with R+ are unstable,
since for this class there does not exist any zero-dimensional
invariant defined at time-reversal invariant momenta within
the mirror plane. Nevertheless, the Dirac band crossing is
protected, since the Hamiltonian can also be viewed as a
member of class A with R. The mirror invariant for the
latter class [i.e., Eq. (2.8)], which is defined for any in-plane
momentum k‖, can be nonzero even in the presence of time-
reversal symmetry. Besides reflection symmetry, the product
of inversion and time-reversal symmetry IT also protects the
Dirac line. This will be discussed at the end of Sec. II C and in
Sec. III B 1 in terms of a low-energy continuum model.

C. Surface states and Berry phase

In this section, we present the surface spectrum of Ca3P2

as obtained from the tight-binding model (2.2) and show that,
due to a nonzero Berry phase, there appear nearly flat ingap
states at the surface. Figure 3(a) displays the surface band
structure for the (001) surface in a three-dimensional slab
geometry with 60 unit cells. The surface momentum is varied
along a high-symmetry path, which is drawn in red in the
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FIG. 3. Drumhead surface states and Berry phase. (a) Surface
band structure of Ca3P2 as obtained from the tight-binding model (2.2)
for the (001) surface in slab geometry with 60 unit cells. The surface
state is highlighted in green. (b) Momentum-resolved surface density
of states of Hamiltonian (2.2) for the (001) surface. White and dark red
correspond to high and low density, respectively. (c) Energy-resolved
surface density of states. The dispersion minimum of the drumhead
state gives rise to a Van Hove singularity, i.e., a kink at E = −0.06 eV.
The inset shows the variation of the Berry phase (2.9) of Hamiltonian
(2.2) along high-symmetry lines of the (001) surface Brillouin zone
[see Fig. 1(d)]. (d) Surface spectrum of the low-energy effective
model (3.1) for the (001) face as a function of surface momenta kx

and ky . The bulk states at kz = 0 with reflection eigenvalues R = +1
and R = −1 are colored in blue and red, respectively. The drumhead
surface state is indicated by the green area.

surface Brillouin zone of Fig. 1(d). Using an iterative Green’s
function method [69] we compute the momentum-resolved
surface density of states for a semi-infinite (001) slab, which
is shown in Fig. 3(b). As indicated by the green area in Fig. 3(d)
and by the green and yellow lines in Figs. 3(a) and 3(b),
respectively, the surface state is nearly dispersionless, taking
the shape of a drumhead that is bounded by the projected
Dirac ring. The dispersion minimum of this drumhead state
gives rise to a Van Hove singularity at E = −0.06 eV, which
leads to kink in the surface density of states. This is visible in
Fig. 3(c) as a jump in the surface density of states as the Fermi
energy is approached from below. The existence of a drumhead
surface state with a Van Hove singularity is not limited to
Ca3P2, but is valid more generally, for any topological nodal
line semimetal with reflection symmetry or inversion plus
time-reversal symmetry. We note that nearly or completely
flat surface states have recently also been studied in pho-
tonic crystals [70], in noncentrosymmetric superconductors
[71–74], in bernal graphite [75], and in topological crystalline
insulator heterostructures [47].

In contrast to crystalline topological insulators the surface
states of the semimetal (2.2) are not directly related to
the mirror invariant (2.7), but are connected to a nonzero
Berry phase. To make this connection explicit, we decompose
the (001) slab considered in Fig. 3 into a family of one-
dimensional systems parametrized by the in-plane momentum

k‖ = (kx,ky). For fixed k‖, the Berry phase is defined as

P(k‖) = −i
∑

Ej <EF

∫ π

−π

〈uj (k)|∂kz
|uj (k)〉dkz, (2.9)

where the sum is over filled Bloch eigenstates |uj (k)〉 of
Hamiltonian (2.2). As was shown by King-Smith and Van-
derbilt [76], the Berry phase P(k‖) is related to the charge qend

at the end of the one-dimensional system with fixed in-plane
momentum k‖, i.e.,

qend = e

2π
P(k‖) mod e. (2.10)

Hence, when P(k‖) 	= 0 an in-gap state appears at k‖ in the
surface Brillouin zone. For the tight-binding Hamiltonian (2.2)
we find that there are two different symmetries which each
quantize the Berry phase (2.9) to 0 or π , namely, the reflection
symmetry (2.5) and the product of time-reversal and inversion
symmetry IT ; see Appendix B. In the inset of Fig. 3(c)
we numerically compute P(k‖) using the tight-binding wave
functions of Hamiltonian (2.2). We obtain that the Berry phase
equals π for k‖ inside the projected Dirac ring, while it is zero
for k‖ outside the ring. This indicates that surface states occur
within the projected Dirac ring, which is in agreement with
the surface spectrum of Figs. 3(a) and 3(b). The Berry phase is
defined modulo 2π , since large gauge transformations of the
wave functions change it by 2π . As a result, P protects only
single, but not multiple, surface states at a given k‖.

Remarkably due to the IT symmetry, the Berry phase P
along any closed loop in the three-dimensional Brillouin zone
is quantized (see Appendix B). This allows us to interpret the
Berry phase as a topological invariant which guarantees the
stability of the Dirac line in the presence of the IT symmetry.
That is, for a loop interlinking with the Dirac ring, we find that
P = ±π which shows that the Dirac band crossing is protected
by the product of inversion with time-reversal symmetry. The
Berry phase represents a Z2-type invariant, since it is defined
only up to multiples of 2π . In contrast, the mirror number (2.7)
is a Z-type invariant, which can take on any integer number.
Therefore, only the mirror invariant NMZ can give rise to the
stability of multiple Dirac lines at the same location in the
Brillouin zone.

D. Relation between Berry phase and mirror invariant

The analysis of the previous section suggests that the
topological stability of the Dirac ring is closely related to the
appearance of surface states. In order to put this connection on
a firmer footing, we present here a relation between the mirror
invariant and the Berry phase P(k‖). Namely, we find that

(−1)n
+,0
occ (k‖)+n+,π

occ (k‖)ei∂R = eiP(k‖) (2.11a)

for all in-plane momenta k‖ = (kx,ky), where

∂R = i
∑

Ej <EF

∫ π

0
〈uj (k)|R†(kz)[∂kz

R(kz)]|uj (k)〉dkz (2.11b)

denotes the change in phase of the reflection operator R(kz)
along the reflection direction kz. The invariants n+,0

occ (k‖) and
n+,π

occ (k‖) correspond to the number of occupied states at (k‖,0)
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and (k‖,π ), respectively, with mirror eigenvalue R = +1.
Formula (2.11), whose proof is derived in Appendix B, is
one of the main results of this paper. For concreteness we
have assumed in (2.11) that reflection symmetry R(kz) maps z

to −z. But relation (2.11) is valid more generally, i.e., for any
reflection-symmetric semimetal, in particular also for line node
materials with strong spin-orbit coupling, such as PbTaSe2

[51,52].
We observe that in general the reflection operator only

depends on the momentum along the reflection direction [i.e.,
on kz in the case of Eq. (2.5)], but is independent of the in-plane
momenta k‖. Hence, we infer from Eq. (2.11) that when the
mirror invariant n+,0

occ (k‖) [or n+,π
occ (k‖)] changes by 1 as the

in-plane momentum k‖ is moved across the topological Dirac
line, the Berry phase increases by π , since ∂R does not depend
on k‖. As a consequence, a drumhead surface state appears
either inside or outside the projected Dirac ring. This proofs
the direct connection between the stability of the Dirac ring and
the existence of drumhead surface states. For the tight-binding
model of Ca3P2, Eq. (2.2), we find that the phase change ∂R

of the reflection operator (2.5) evaluates to 3π independent
of k‖. Figure 2(b) shows that the number of occupied states
with momentum (k‖,π ) and mirror eigenvalue R = +1 is
n+,π

occ (k‖) = 3 for all k‖. Using relation (2.11) together with
Eq. (2.8), it follows that the Berry phase P equals π inside
and 0 outside the Dirac ring, which agrees with the explicit
calculation of P; see inset of Fig. 3(c).

In closing this section, we note that for certain highly
symmetric lattice models [61,77] the reflection operator R

is completely momentum independent, in which case formula
(2.11) simplifies to[

n+,0
occ (k‖) + n+,π

occ (k‖)
]
π = P(k‖) (mod 2π ), (2.12)

for all k‖ [78]. Hence, in this case the Berry phase, and
therefore the location of the surface states, is fully determined
by the mirror invariant (2.8). This is useful, since the mirror
number (2.8) is easier to compute than the Berry phase, for
which one needs to determine the momentum dependence of
the tight-binding wave functions.

E. Symmetry-breaking perturbations

We have seen that the stability of the Dirac ring of
Ca3P2 is protected by SU(2) spin-rotation symmetry, reflection
symmetry, and the product of inversion and time-reversal
symmetry IT . In this section, we study how the breaking
of these symmetries modifies the bulk and surface spectrum of
Ca3P2.

1. Reflection and time-reversal symmetry breaking

First, we consider a reflection and time-reversal breaking
perturbation with the following nonzero matrix elements:

〈
ψ1

k

∣∣H ∣∣ψ9
k

〉 = +0.2 sin(k · r0) (2.13a)

and 〈
ψ4

k

∣∣H ∣∣ψ12
k

〉 = −0.2 sin(k · r0), (2.13b)

where r0 = (0.5,0.5,0) is a vector within the reflection plane
along the diagonal direction. This term is odd in momentum k
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FIG. 4. Arc surface state and spin Chern number. (a) ky de-
pendence of the spin Chern number (2.14) of Hamiltonian (2.2)
in the presence of the mirror and time-reversal symmetry breaking
perturbation (2.13). (b) Surface and bulk spectra of the low-energy
model (3.1) perturbed by the mass term (3.2) with d = 0.9 eVÅ and
θ0 = −π/4, which breaks reflection and time-reversal symmetry. The
bulk states and the arc state at the (001) surface are indicated in gray
and green, respectively.

and couples the dz2 orbitals at the Ca1 and Ca4 sites with the px

orbitals at the P3 and P6 sites [cf. Figs. 1(a) and 1(b)]. It follows
from Eqs. (2.5) and (2.6) that perturbation (2.13) breaks
reflection and time-reversal symmetry, but respects inversion
symmetry. Therefore, Eq. (2.13) gaps out the Dirac ring except
for two points along the diagonal direction (1,−1, 0), where
it vanishes [see Fig. 4(b)]. These two gap closing points are
Dirac nodes (or Weyl nodes, if one disregards the spin degree
of freedom), whose stability is guaranteed by the spin Chern
number [79]

Cs(ky) = 1

2πi

∑
Ej <EF

∫
T 2

[
∂kx

A(j )
z − ∂kz

A(j )
x

]
dkxdkz, (2.14)

where A
(j )
μ = 〈uj |∂kμ

|uj 〉 is the Berry connection. We find
that Cs(ky) evaluates to +1 for kxkz planes in between the
two Dirac points, while it is zero otherwise [Fig. 4(a)]. By
the bulk-boundary correspondence, the nonzero spin Chern
number (2.14) implies the appearance of an arc state in the
surface Brillouin zone connecting the projections of the two
Dirac nodes [green area in Fig. 4(b)]. As perturbation (2.13)
is turned to zero, the arc state transforms into the drumhead
surface state of Fig. 3.

2. Spin-rotation symmetry breaking

Second, we study the effects of SU(2) spin-rotation sym-
metry breaking induced, for example, by spin-orbit coupling.
For Ca3P2 the spin-orbit interactions are negligible due to
the small atomic number of Ca and P. However, there are a
number of topological semimetals with heavy elements, such
as PbTaSe2 and TlTaSe2, for which spin-orbit coupling is
strong. Spin-orbit interactions can modify the energy spectrum
of nodal line semimetals in two different ways: either they open
up a full gap in the spectrum, or they split the Dirac ring into
two Weyl rings. Here, we study the latter possibility. In order to
do so, we need to explicitly include the spin degree of freedom
in Hamiltonian (2.3); i.e., we consider

Ĥ (k) = H (k) ⊗ σ0 + Ĥsb(k), (2.15)

where σ0 operates in spin space and Ĥsb represents a spin-
rotation symmetry breaking term, which we specify below.
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Time-reversal symmetry acts on Ĥ according to Eq. (2.4), but
with the modified time-reversal operator T̂ = T ⊗ iσy . Simi-
larly, the reflection operator and the spatial inversion operator
are changed to R̂ = R ⊗ σz and Î = I ⊗ σ0, respectively. To
split the fourfold degenerate Dirac ring of Eq. (2.15) into two
twofold degenerate Weyl rings, it is necessary to also break
time-reversal or inversion symmetry, besides spin-rotation
symmetry.

(a) Time-reversal breaking perturbation. The staggered
Zeeman field

Ĥsb(k) = hz τz ⊗ ρ0 ⊗ 13×3 ⊗ σz (2.16)

breaks both time-reversal and spin-rotation symmetry, but
satisfies inversion and reflection symmetry. It describes an
external staggered magnetic field with opposite signs on the
Ca and P sites. According to the terminology of Ref. [18],
Hamiltonian (2.15) perturbed by Eq. (2.16) is a member
of class A with R, which exhibits an integer number of
equivalence classes distinguished by a mirror invariant. In
Figs. 5(a) and 5(c) we present the bulk energy bands of
Hamiltonian (2.15) with an applied staggered Zeeman field
of strength hz = 0.1 eV. The bulk spectrum displays two Weyl
rings, whose stability is guaranteed by the mirror number (2.7).
Figures 5(b) and 5(d) show the surface energy spectrum at the
(001) face. We find that there are two drumhead surface states
which are bounded by the projections of the two Weyl rings.
In accordance with the discussion of Secs. II C and II D [cf.
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FIG. 5. Bulk bands and drumhead surface states of a spinful
time-reversal breaking line node semimetal. Panels (a) and (b) show
the bulk bands and the surface density of states of Hamiltonian
(2.15) in the presence of the staggered Zeeman term (2.16) with
hz = 0.1 eV. The momentum in panel (a) is varied within the mirror
plane kz = 0 along high-symmetry lines of the Brillouin zone. (c)
Energy isosurfaces of Hamiltonian (2.15) with hz = 0.1 eV at EF ± 5
meV and kz = 0. (d) Surface and bulk spectra of the low-energy
effective model (3.3) perturbed by the time-reversal breaking term
(3.4) with ν‖hz

eff = 0.07 eV. The drumhead states at the (001) surface
are colored in green. The reflection eigenvalues of the bulk bands at
kz = 0 in panels (a), (c), and (d) are indicated by color, with blue and
red corresponding to R = +1 and R = −1, respectively.

Eq. (2.11)] the single surface state that appears between the
projections of the outer and inner Weyl rings is protected by the
Berry phase (2.9), which takes on the nonzero quantized value
P = ±π . The two surface states that exist inside the projection
of the inner Weyl ring, on the other hand, are topologically
unstable.

(b) Inversion-breaking perturbation. To break inversion and
spin-rotation symmetry we consider a perturbation with the
following nonzero matrix elements:

〈
ψ1

kσ

∣∣Ĥ ∣∣ψ6
kσ

〉 = +0.6i sgn(σ )eik·(s6−s1)[1 + eik·êz ] (2.17a)

and〈
ψ7

kσ

∣∣Ĥ ∣∣ψ12
kσ

〉 = −0.3i sgn(σ )eik·(s12−s7+R110)[1 + eik·êz ],

(2.17b)

where |ψα
kσ 〉 denotes the Bloch spinor with orbital index α and

spin index σ = ±. The vectors sα are the position vectors of the
atoms in the unit cell and are given in Table I of Appendix A.
Perturbation (2.17) couples the orbitals at the Ca1 and P1
sites with the orbitals at the Ca6 and P6 sites, respectively.
Using Eqs. (2.4), (2.5), and (2.6) one can check that the
term (2.17) satisfies reflection and time-reversal symmetry, but
breaks inversion symmetry. Since T̂ 2 = −1 and {T̂ ,R̂} = 0,
Hamiltonian (2.15) perturbed by Eq. (2.17) is a member of
class AII with R− of Ref. [18], for which a mirror invariant
can be defined. The bulk bands at kz = 0 of Hamiltonian
(2.15) in the presence of the inversion-breaking term (2.17)
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FIG. 6. Bulk bands and drumhead surface states of a spinful
inversion-breaking line node semimetal. Panels (a) and (b) display
the bulk bands and the surface density of states of tight-binding
model (2.15) in the presence of the inversion-breaking term (2.17).
The momentum in panel (a) is varied within the mirror plane
kz = 0 along high-symmetry lines. (c) Energy isosurfaces of Hamil-
tonian (2.15) perturbed by Eq. (2.17) at EF ± 5 meV and kz = 0.
(d) Surface and bulk spectra of the low-energy effective model (3.3)
perturbed by the inversion-breaking term (3.6) with δ = 0.025 eVÅ.
The drumhead states at the (001) surface are indicated in green. The
mirror eigenvalues of the bulk bands at kz = 0 in panels (a), (c),
and (d) are represented by color, with blue and red corresponding to
R = +1 and R = −1, respectively.
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are presented in Figs. 6(a) and 6(b). We observe that the
Dirac ring is split into two Weyl rings, which intersect on the
(
√

3,−1,0) axis. As in the previous cases, the Weyl nodal lines
are protected by the nonzero mirror number (2.7). Figures 6(b)
and 6(d) show the surface spectrum at the (001) surface,
which exhibits two drumhead surface states. As before, we
find that only the single surface state which occurs between
the projections of the inner and outer rings is protected by the
Berry phase (2.9).

III. LOW-ENERGY CONTINUUM THEORY
OF NODAL LINE SEMIMETALS

In this section we present a low-energy effective theory for
a general topological nodal line semimetal with time-reversal,
reflection, and inversion symmetry. The form of this low-
energy description is universal, since it is entirely dictated
by symmetry. We start by discussing Dirac rings, which arise
in semimetals with conserved SU(2) spin-rotation symmetry.
Spin-rotation breaking semimetals with Weyl nodal lines will
be discussed in Sec. III B 2.

Consider the following low-energy Hamiltonian with spin-
rotation symmetry

Heff(k) = ν‖
(
k2
‖ − k2

0

)
τz + νzkzτy + f (k)τ0, (3.1)

which describes a Dirac ring within the kz = 0 plane, located
at k2

‖ := k2
x + k2

y = k2
0. In Eq. (3.1) we suppress the spin degree

of freedom, since any spin-dependent terms are forbidden by
symmetry. The Pauli matrices τi operate in orbital space and
the function f (k) is restricted by symmetry to be even in
k. We assume that f (k) = ν0(k2

‖ − k2
0) + V0, neglecting any

terms of higher order in k. To make a connection with the
previous section, we fit the parameters ν0,ν‖,νz,k0, and V0

to the low-energy band structure of the DFT calculations of
Sec. II A [see Fig. 1(c)]. We find that the momentum parameter

k0 equals k0 = 0.206 Å
−1

, the chemical potential is V0 =
0.095 eV, and the velocities are given by ν0 = −0.993 eV Å

2
,

ν‖ = 4.34 eV Å
2
, and νz = 2.50 eV Å. Employing Eqs. (2.4),

(2.5), and (2.6), one can show that the low-energy Hamiltonian
Heff satisfies time-reversal, reflection, and inversion symmetry,
with the symmetry operators Teff = τ0K,Reff = τz, and Ieff =
τz, respectively. Before we discuss in the next section the
topological stability of the Dirac line (3.1), let us remark that
Heff(k) can be converted in a straightforward manner to a lattice
model; see Appendix C. In Figs. 3(d), 4(b), 5(d), and 6(d) we
use the lattice version of Eq. (3.1) to plot the surface states.
Observe that there are some minor differences in the shape of
the surface states between the tight-binding model (2.2) and
the effective theory (3.1) [compare Fig. 3(b) with Fig. 3(d)].
We attribute this difference to the omission of longer range
hopping terms in Eq. (3.1).

A. Topological protection of the Fermi ring

As mentioned in Sec. II B, Dirac nodal lines are protected
by either reflection symmetry R or the product of inversion
with time-reversal symmetry IT . Let us now discuss this in
terms of the low-energy theory (3.1).

(a) Z classification due to reflection symmetry. Considering
only reflection symmetry and disregarding the spin degree

of freedom, Hamiltonian (3.1) belongs to class A with R.
Since the codimension of the Dirac ring is p = 2, it is
classified by an MZ invariant (see Table II of Ref. [18]), i.e.,
by the mirror number (2.7), which measures the difference
of occupied states with mirror eigenvalue Reff = +1 on
either side of the Dirac ring. The two bands that cross at
the nodal line have opposite reflection eigenvalues, which
prohibits hybridization between them. Indeed, we find that
the hybridization term τx breaks reflection symmetry Reff.
We note that the mirror invariant (2.7) is of Z type and
can therefore protect multiple Dirac crossings in the Brillouin
zone. To verify this for the low-energy model (3.1), we enlarge
the matrix dimension of Hamiltonian Heff by considering
Heff ⊗ 1n×n, which respects reflection symmetry with the
enlarged reflection operator R′

eff = Reff ⊗ 1n×n. Hybridization
terms for the enlarged Hamiltonian are of the form τx ⊗ A,
with A an arbitrary n × n Hermitian matrix. However, since
(R′

eff)
−1(τx ⊗ A)R′

eff = −τx ⊗ A, all of these terms break
reflection symmetry R′

eff.
(b) Z2 classification due to IT symmetry. Besides reflec-

tion, also the product of inversion with time-reversal symmetry
IeffTeff prohibits hybridization between the two bands, since
the hybridization term τx is not invariant under IeffTeff = τzK.
But in the presence of IeffTeff, Dirac nodal lines are classified
as Z2 instead of MZ. To see this, consider two copies of
Hamiltonian Heff, i.e., Heff ⊗ μ0, which satisfies IT symmetry
with the doubled operator IeffTeff ⊗ μ0. Here, μα denotes
an additional set of Pauli matrices. The Dirac rings of this
doubled Hamiltonian are topologically unstable, since the
symmetry-preserving term τx ⊗ μy gaps out the nodal lines.
As discussed at the end of Sec. II C, the product of inversion
with time-reversal symmetry IT quantizes the Berry phase
P to 0 or π [19,80]. Hence, P can be interpreted as a Z2

topological invariant that guarantees the stability of the nodal
ring. In contrast to the mirror invariant, the integration path
that enters in the definition of this Z2 number [cf. Eq. (2.9)] is
not confined to the mirror plane. For any integration path that
interlinks with the nodal line, P = ±π signals the stability of
the Dirac ring.

In closing we note that, while the low-energy theory (3.1)
accurately captures the topological stability of the nodal ring of
a given semimetal, it does not necessarily correctly reproduce
the location of the drumhead surface state. That is, in order to
determine whether the drumhead surface state is located inside
or outside the projected Dirac ring, it is necessary to compute
the Berry phase of all the occupied states. This information is
not contained in the low-energy model (3.1); cf. Appendix C.

B. Symmetry-breaking perturbations

In analogy to the discussion of Sec. II E, we now study
how different symmetry-breaking perturbations transform the
Dirac ring (3.1) into Dirac points or Weyl rings.

1. Reflection and time-reversal symmetry breaking

The Dirac line node of Heff can be deformed into two Dirac
points by the perturbation

d sin(θ‖ − θ0)k‖τx, (3.2)
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which breaks reflection and time-reversal symmetry, but
respects inversion symmetry. Here, θ‖ = tan−1(ky/kx) and

k‖ =
√

k2
x + k2

y denote polar angle and absolute value of the
in-plane momentum k‖, respectively. The term (3.2) gaps the
Dirac ring except at k = ±k0(cos θ0, sin θ0,0). These two gap
closing points are Dirac nodes with opposite chiralities, which
are protected by the spin Chern number (2.14). Due to the
bulk-boundary correspondence an arc state appears at the
surface, connecting the projected Dirac points in the surface
Brillouin zone. This is illustrated in Fig. 4(b), where we set
θ0 = −π/4 and d = 0.9 eV Å, which mimics the effects of
perturbation (2.13) for the tight-binding Hamiltonian (2.2).

From the arc surface state of the above Dirac semimetal one
can infer the existence of the drumhead surface state of Heff,
since the two transform into each other by letting d tend to
zero in Eq. (3.2). Moreover, the one-dimensional set of Dirac
nodes, induced by Eq. (3.2) and parametrized by θ0, can be
interpreted as the Dirac ring of Heff. That is, as we let θ0 in
Eq. (3.2) run from 0 to π a nodal ring is created. For each
fixed θ0 there is an arc surface state connecting the two points
k‖ = ±k0(cos θ0, sin θ0) in the surface Brillouin zone. Hence,
a drumhead surface state is generated when θ0 is varied from
0 to π . From this argument one infers that drumhead states
also appear at surfaces for which the Berry phase (2.9) is not
quantized (cf. Sec. II C), since the appearance of arc states
does not depend on any crystal symmetries.

2. Spin-rotation symmetry breaking

In the absence of SU(2) spin-rotation symmetry, the Dirac
ring of Heff is topologically unstable. To discuss this, we
consider as in Sec. II E 2 a spinful version of Hamiltonian (3.1),

Ĥeff(k) = Ĥeff(k) ⊗ σ0 + Ĥ sb
eff(k), (3.3)

where the Pauli matrices σα describe the spin degree of
freedom and Ĥ sb

eff denotes a spin-rotation symmetry breaking
term. Ĥeff is invariant under the same symmetries as the spinful
tight-binding Hamiltonian (2.15). That is, it satisfies time-
reversal, reflection, and inversion symmetry with the operators
T̂ = τ0 ⊗ iσyK, R̂ = τz ⊗ σz, and Î = τz ⊗ σ0, respectively.
We find that the Dirac nodal lines of Ĥeff can be gapped out
by the spin-rotation symmetry breaking mass terms τx ⊗ σx

and τx ⊗ σy , which preserve reflection symmetry R̂ as well
as Î T̂ symmetry. These perturbations turn Hamiltonian (3.3)
into a trivial insulator. However, there exist also other spin-
rotation symmetry breaking terms that deform the Dirac ring
into two Weyl rings. These perturbation terms break either
time-reversal symmetry or inversion symmetry.

(a) Time-reversal breaking perturbation. First, we add a
spin-rotation and time-reversal breaking term to the Hamilto-
nian Ĥeff, which takes the form of a staggered Zeeman field

Ĥ sb
eff(k) = ν‖hz

effτz ⊗ σz. (3.4)

This perturbation respects reflection and inversion symmetry.
It splits the Dirac ring into two Weyl rings that are located
within the mirror plane kz = 0 at k‖ =

√
k2

0 ± hz
eff. The

stability of these Weyl nodal lines is guaranteed by the mirror

invariant (2.7), which evaluates to

n+,0
occ (k‖) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, k‖ <

√
k2

0 − hz
eff,

0,

√
k2

0 − hz
eff < k‖ <

√
k2

0 + hz
eff,

1,

√
k2

0 + hz
eff < k‖.

(3.5)

In Fig. 5(d) we plot the surface spectrum of Heff in the presence
of the staggered Zeeman term with ν‖hz

eff = 0.07 eV. There
appear two drumhead surface states which are bounded by the
two projected Weyl rings.

(b) Inversion-breaking perturbation. Alternatively, the
Dirac ring can be split into Weyl rings by an inversion-breaking
perturbation. To show this, we consider

Ĥ sb
eff(k) = δ(kx +

√
3ky)τz ⊗ σz, (3.6)

which respects reflection and time-reversal symmetry. In the
presence of this term Hamiltonian (3.3) exhibits two Weyl rings
within the mirror plane kz = 0 with in-plane momenta given by
the equation (kx ± δ/2)2 + (ky ± √

3δ/2)2 = k2
0 + δ2. These

two Weyl rings intersect on the (
√

3,−1,0) axis, where the gap
term (3.6) vanishes [cf. Fig. 6(c)]. We find again that these
Weyl rings are protected by the mirror number (2.7), with

n+,0
occ (k‖) =

⎧⎪⎨
⎪⎩

1,
(
kx ± δ

2

)2 + (
ky ±

√
3δ
2

)2
> k2

0 + δ2 and(
kx ∓ δ

2

)2 + (
ky ∓

√
3δ
2

)2
< k2

0 + δ2,

0, otherwise.

(3.7)

Figure 6(d) shows the surface spectrum of Ĥeff perturbed by
Eq. (3.6). As for the tight-binding model with the inversion-
breaking term (2.17), there appear two drumhead surface
states. We note that PbTaSe2 [51,52] and TlTaSe2 [53] are
examples of inversion-breaking semimetals with Weyl nodal
lines. The low-energy physics of these materials can be
described by the effective theory (3.3) perturbed by a term
of the form (3.6).

IV. SUMMARY AND DISCUSSION

In this paper we have studied the topological stability of
Dirac and Weyl line nodes of three-dimensional semimetals in
the presence of reflection symmetry, time-reversal symmetry,
inversion symmetry, and SU(2) spin-rotation symmetry. We
have shown that when spin-rotation symmetry is preserved,
the Dirac line is protected by either reflection symmetry or
the product of inversion with time-reversal symmetry IT .
In the former case, the nodal lines are classified by an MZ
invariant [18], which takes the form of a mirror number; see
Eq. (2.7). In the latter case the stability of the Dirac line is
guaranteed by a quantized nonzero Berry phase, which leads
to a Z2 classification; see Eq. (2.9). Even though the mirror
invariant (2.7) does not directly give rise to topological surface
states, Dirac line semimetals generically exhibit drumhead
surface states which are due to the Berry phase (2.9). By
deriving a relation between the mirror number (2.7) and the
Berry phase (2.9), we have established a direct connection
between the existence of drumhead surface states and the
topological stability of Dirac nodal lines in the bulk; see
Eq. (2.11). Moreover, this relation shows that the Berry phase
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can be simply obtained by computing the reflection parity
eigenvalues, in a similar way to that in inversion-symmetric
topological insulators [81].

As a representative example of a line node semimetal, we
have considered Ca3P2 [55]. Among the recently discovered
nodal line semimetal compounds [51–56], Ca3P2 is the only
one whose Dirac ring is at the Fermi energy and which can
be grown in single-crystal form [55]. Hence, this material
is ideal for experimental studies of the drumhead surface
states and the unconventional transport properties of nodal
line semimetals. From ab initio DFT calculations we have
derived a tight-binding and low-energy continuum description
of Ca3P2. By computing the mirror number and the quantized
Berry phase (Fig. 3), we have shown that the Dirac band
crossing of Ca3P2 is protected by reflection or IT symmetry.
Furthermore, we have computed the surface spectrum of Ca3P2

and shown that its drumhead surface state is weakly dispersing
with an effective mass m∗ 
 4me [Figs. 3(b) and 3(d)]. The
weak dispersion of the surface state gives rise to a large density
of states thereby enhancing interaction effects. Therefore,
even small interactions may lead to unusual symmetry-broken
states at the surface of Ca3P2, such as surface supercon-
ductivity [46,47] or surface magnetism [48]. Our low-energy
descriptions, Eqs. (2.2) and (3.1), will serve as an important
basis for future studies of the unconventional properties of
nodal line systems, for example their unconventional transport
phenomena. We note that the continuum Hamiltonian (3.1)
captures the low-energy physics of any Dirac (or Weyl) nodal
line semimetal, while the tight-binding Hamiltonian (2.2)
describes, besides Ca3P2, also the nodal line of the structurally
identical semimetal Zr5Si3.

In Ca3P2 spin-rotation symmetry is conserved to a very
good approximation, since spin-orbit coupling for the light
elements Ca and P is very small. However, there are nodal
line semimetals with heavy atoms, such as PbTaSe2 and
TlTaSe2, in which spin-rotation symmetry is broken, due to
the non-negligible spin-orbit interactions. In these systems
the fourfold degenerate Dirac rings are unstable. Twofold
degenerate Weyl rings, on the other hand, can be protected
against gap opening by reflection symmetry, provided either
time-reversal or reflection symmetry is broken. We have shown
that the stability of these Weyl rings is guaranteed by the mirror
invariant (2.7). Similarly to the Dirac nodal line semimetals,
Weyl ring semimetals support drumhead surface states (Figs. 5
and 6). The region in the surface Brillouin zone where these
drumhead states appear is bounded by the projected Weyl
rings.

Determining the stability of the drumhead surface states
against disorder, which breaks the crystalline symmetries that
protect the surface states, needs a careful analysis of different
types of scattering processes, involving both states near the
bulk line nodes and surface states. For the case of crystalline
topological insulators it has been shown that the surface states
are robust against disorder when the disorder respects the crys-
tal symmetries on average [82]. In Appendix D, we study this
question in terms of a one-dimensional reflection-symmetric
toy model with a quantized Berry phase. In order to infer
how impurity scattering affects the topological properties, we
determine the charge that is accumulated at the two ends of this
one-dimensional system [80]. We find that even in the presence

of disorder that respects reflection symmetry on average, the
end charges remain to a good approximation quantized to
±e/2. Due to Eq. (2.10), which relates the end charges to the
Berry phase, this indicates that the bulk topological properties
remain unaffected by this type of disorder. This finding suggest
that the drumhead surface states of nodal line semimetals are
not destroyed by impurities, as long as the disorder respects
reflection symmetry on average and its strength is smaller than
the energy gap between the conduction and valence bands.

In conclusion, Dirac ring and Weyl ring semimetals are a
new type of topological material which is characterized by
a nonzero mirror invariant and a quantized Berry phase. The
nontrivial band topology of these systems manifests itself at
the surface in terms of a protected drumhead surface state.
The dispersion minimum of this drumhead state gives rise
to a Van Hove singularity in the surface density of states,
which can serve as an experimental fingerprint of topological
nodal line semimetals. There are many interesting avenues
for future research on line node semimetals. For example, the
drumhead states may give rise to unusual correlation physics
at the surface. Another promising direction for future work is
the study of novel topological response phenomena in these
systems.

Note added. Recently we became aware of a study by
Yamakage et al. [83], which discusses the topology of line node
semimetals in terms of a k-independent reflection operator,
using a k-dependent gauge transformation.
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APPENDIX A: DETAILS OF THE TIGHT-BINDING MODEL

In this Appendix we give a detailed description of the tight-
binding Hamiltonian of Sec. II.

1. Matrix elements

The matrix elements given below closely follow Eq. (2.2).
The position vectors sα of each orbital are listed in Table I. We
illustrate each hopping terms in Fig. 7.

a. Ca-Ca matrix elements

In the HCa block, we can further divide orbitals in each
atomic species into those belonging to the lower layer and the
upper layer,

HCa =
(

Hll
Ca Hlu

Ca

Hlu
Ca† Huu

Ca

)
, (A1)

where subblocks Hll
Ca,H

uu
Ca , and Hlu

Ca are 3×3 matrices.
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TABLE I. Position vectors sα of each orbital. All vectors are given
in the crystal coordinate system, which is indicated by the red/green
arrows in Fig. 7. The lattice vectors are a = [7.150, −4.218, 0.000],
b = [0.000, 8.256, 0.000], and c = [0.000, 0.000, 6.836] in units
of Å.

α Orbital sα

1 Ca1 (0.2029, 0.0, 0.25)
2 Ca2 (−0.2029, −0.2029, 0.25)
3 Ca3 (0.0, 0.2029, 0.25)
4 Ca4 (−0.2029, 0.0, −0.25)
5 Ca5 (0.2029, 0.2029, −0.25)
6 Ca6 (0.0, −0.2029, −0.25)
7 P1 (0.6215, 0.0, 0.25)
8 P2 (−0.6215, −0.6215, 0.25)
9 P3 (0.0, 0.6215, 0.25)
10 P4 (−0.6215, 0.0, −0.25)
11 P5 (0.6215, 0.6215, −0.25)
12 P6 (0.0, −0.6215, −0.25)

The Hamiltonian matrices Hll
Ca and Huu

Ca have 3 indepen-
dent intralayer hopping terms, the nearest-neighbor, second-
nearest-neighbor, and third-nearest-neighbor hoppings, td2,

td4, and td5, as shown in Fig. 7:

Hll
Ca =

⎛
⎜⎝

h
c,ll
11 h

c,ll
12 h

c,ll
13

h
c,ll
21 h

c,ll
22 h

c,ll
23

h
c,ll
31 h

c,ll
32 h

c,ll
33

⎞
⎟⎠, (A2)

where

h
c,ll
12 = eik·s1,2

(
td2 + td4c

4
12 + td5c

5
12

)
, (A3)

h
c,ll
13 = eik·s1,3

(
td2 + td4c

4
13 + td5c

5
13

)
, (A4)

h
c,ll
23 = eik·s2,3

(
td2 + td4c

4
23 + td5c

5
23

)
, (A5)

and h
c,ll
11 = h

c,ll
22 = h

c,ll
33 = μd . We define phase factors ci

αβ for
hopping integral tdi with matrix indices α and β:

c4
12 = eik·R100 + eik·R110 , (A6)

Ca1Ca4

Ca3

Ca6Ca2

Ca5
td1

td2
td3

td4

td5

P1P4

P3

P6P2

P5

tp4

tp2ttt

tp3

tp1

tp5 tdp1
tdp3

tdp4

tdp2

(a) (b)

FIG. 7. (a) Definitions of hopping integrals between two Ca
orbitals. (b) Definitions of hopping integrals between two P orbitals
and one Ca and one P orbital. Orbitals in the first Brillouin zone are
labeled. Dark blue and red color represent orbitals in the lower plane
while light blue and pink orbitals lie in the upper plane.

c4
13 = eik·R100 + eik·R0−10 , (A7)

c4
23 = eik·R−1−10 + eik·R0−10 , (A8)

c5
12 = eik·R010 + eik·R0−10 , (A9)

c5
13 = eik·R110 + eik·R−1−10 , (A10)

c5
23 = eik·R−100 + eik·R100 , (A11)

where Rijk is the lattice vector connecting the unit cell in the
(i,j,k) direction and sl,m = sm − sl . Huu

Ca is defined similarly.
Hlu

Ca contains 2 independent interplane hopping integrals
td1 and td3:

Hlu
Ca = c0

⎛
⎝td3e

ik·s1,4 td1e
ik·s1,5 td1e

ik·s1,6

td1e
ik·s2,4 td3e

ik·s2,5 td1e
ik·s2,6

td1e
ik·s3,4 td1e

ik·s3,5 td3e
ik·s3,6

⎞
⎠, (A12)

where c0 is (1 + eik·R001 ).

b. P-P matrix elements

We apply similar division of layer indices for HP matrix:

HP =
(

Hll
P Hlu

P
Hlu

P † Huu
P

)
. (A13)

The Hamiltonian matrices Hll
P and Huu

P have 2 independent
hopping integrals tp1 and tp5 coupling orbitals in the same
layer:

Hll
P =

⎛
⎜⎝

h
p,ll

11 h
p,ll

12 h
p,ll

13

h
p,ll

21 h
p,ll

22 h
p,ll

23

h
p,ll

31 h
p,ll

32 h
p,ll

33

⎞
⎟⎠, (A14)

where

h
p,ll

12 = eik·s7,8
(
tp5 + tp1a

1
12

)
, (A15)

h
p,ll

13 = eik·s7,9
(
tp5 + tp1a

1
13

)
, (A16)

h
p,ll

23 = eik·s8,9
(
tp5 + tp1a

1
23

)
, (A17)

and h
p,ll

11 = h
p,ll

22 = h
p,ll

33 = μp. ai
αβ are phase factors from

hopping tpi with matrix index α and β,

a1
12 = eik·R100 + eik·R110 , (A18)

a1
13 = eik·R100 + eik·R0−10 , (A19)

a1
23 = eik·R−1−10 + eik·R0−10 . (A20)

Huu
P can be defined similarly.
Hlu

P contains 3 independent interplane hopping integrals
tp2,tp3, and tp4:

Hlu
P =

⎛
⎜⎝

h
p,lu

11 h
p,lu

12 h
p,lu

13

h
p,lu

21 h
p,lu

22 h
p,lu

23

h
p,lu

31 h
p,lu

32 h
p,lu

33

⎞
⎟⎠, (A21)
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where

h
p,lu

11 = tp2e
ik·s7,10 (eik·R100 + eik·R101 ), (A22)

h
p,lu

22 = tp2e
ik·s8,11 (eik·R−1−10 + eik·R−1−11 ), (A23)

h
p,lu

33 = tp2e
ik·s9,12 (eik·R010 + eik·R011 ), (A24)

and

h
p,lu

12 = eik·s7,11
(
tp3c0 + tp4a

4
12

)
, (A25)

h
p,lu

13 = eik·s7,12
(
tp3c0 + tp4a

4
13

)
, (A26)

h
p,lu

21 = eik·s8,10
(
tp3c0 + tp4a

4
21

)
, (A27)

h
p,lu

23 = eik·s8,12
(
tp3c0 + tp4a

4
23

)
, (A28)

h
p,lu

31 = eik·s9,10
(
tp3c0 + tp4a

4
31

)
, (A29)

h
p,lu

32 = eik·s9,11
(
tp3c0 + tp4a

4
32

)
. (A30)

The corresponding phase factors are

c0 = 1 + eik·R001 , (A31)

a4
12 = eik·R0−10 + eik·R0−11 , (A32)

a4
13 = eik·R110 + eik·R111 , (A33)

a4
21 = eik·R0−10 + eik·R0−11 , (A34)

a4
23 = eik·R−100 + eik·R−101 , (A35)

a4
31 = eik·R110 + eik·R111 , (A36)

a4
32 = eik·R−100 + eik·R−101 . (A37)

c. Ca-P matrix elements

Finally, the interorbital hopping matrix V describes the
hybridization between Ca and P orbitals. We again divide V

into four 3×3 matrices according to their layer indices,

V =
(

V ll V lu

V ul V uu

)
. (A38)

The V ll and V uu blocks only have diagonal elements, which
can be written down with the hopping integrals tdp4,

V ll = b1 tdp4

⎛
⎝eik·s1,7 0 0

0 eik·s2,8 0
0 0 eik·s3,9

⎞
⎠ (A39)

and

V uu = −b1 tdp4

⎛
⎝eik·s4,10 0 0

0 eik·s5,11 0
0 0 eik·s6,12

⎞
⎠, (A40)

where the phase factor b1 = (eik·R001 − eik·R00−1 ). We note that
the minus sign in V uu is due to the opposite orientation of px

orbitals in the different layer. Also due to the opposite inversion
symmetry eigenvalue of the px and the dz2 orbital, hopping

integrals vanish if both of them lie in the same plane. Hence,
only hopping integrals from different unit cells contribute to
diagonal elements.

Interlayer coupling tdp1,tdp2, and tdp3 contributes to V lu

and V ul matrices,

V lu =

⎛
⎜⎝

V lu
11 V lu

12 V lu
13

V lu
21 V lu

22 V lu
23

V lu
31 V lu

32 V lu
33

⎞
⎟⎠, (A41)

where

V lu
11 = −tdp1e

ik·s1,10 (eik·R101 − eik·R100 ), (A42)

V lu
22 = −tdp1e

ik·s2,11 (eik·R−1−11 − eik·R−1−10 ), (A43)

V lu
33 = −tdp1e

ik·s3,12 (eik·R011 − eik·R010 ), (A44)

and off-diagonal elements

V lu
12 = eik·s1,11

(
tdp2b2 + tdp3b

3
12

)
, (A45)

V lu
13 = eik·s1,12

(
tdp2b2 + tdp3b

3
13

)
, (A46)

V lu
21 = eik·s2,10

(
tdp2b2 + tdp3b

3
21

)
, (A47)

V lu
23 = eik·s2,12

(
tdp2b2 + tdp3b

3
23

)
, (A48)

V lu
31 = eik·s3,10

(
tdp2b2 + tdp3b

3
31

)
, (A49)

V lu
32 = eik·s3,11

(
tdp2b2 + tdp3b

3
32

)
. (A50)

The phase factors are

b2 = −(eik·R001 − eik·R000 ), (A51)

b3
12 = −(eik·R0−11 − eik·R0−10 ), (A52)

b3
13 = −(eik·R111 − eik·R110 ), (A53)

b3
21 = −(eik·R0−11 − eik·R0−10 ), (A54)

b3
23 = −(eik·R−101 − eik·R−100 ), (A55)

b3
31 = −(eik·R111 − eik·R110 ), (A56)

b3
32 = −(eik·R−101 − eik·R−100 ), (A57)

where bi
αβ belongs to hopping tdpi between index α and β.

Similarly, we have

V ul =

⎛
⎜⎝

V ul
11 V ul

12 V ul
13

V ul
21 V ul

22 V ul
23

V ul
31 V ul

32 V ul
33

⎞
⎟⎠, (A58)

where

V ul
11 = −tdp1e

ik·s4,7 (eik·R−10−1 − eik·R−100 ), (A59)

V ul
22 = −tdp1e

ik·s5,8 (eik·R11−1 − eik·R1110 ), (A60)

V ul
33 = −tdp1e

ik·s6,9 (eik·R0−1−1 − eik·R0−10 ), (A61)
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and off-diagonal elements

V ul
12 = eik·s4,8

(
tdp2b2 + tdp3b

3
12

)∗
, (A62)

V ul
13 = eik·s4,9

(
tdp2b2 + tdp3b

3
13

)∗
, (A63)

V ul
21 = eik·s5,7

(
tdp2b2 + tdp3b

3
21

)∗
, (A64)

V ul
23 = eik·s5,9

(
tdp2b2 + tdp3b

3
23

)∗
, (A65)

V ul
31 = eik·s6,7

(
tdp2b2 + tdp3b

3
31

)∗
, (A66)

V ul
32 = eik·s6,8

(
tdp2b2 + tdp3b

3
32

)∗
, (A67)

where ∗ denotes the complex conjugate.

2. Tight-binding parameters

We list the parameters of the tight-binding model in units
of eV below. The hopping integrals between two Ca orbitals
are td1 = −0.2031, td2 = −0.6388, td3 = −0.0786, td4 =
−0.216, and td5 = 0.0516. Those between two P orbitals
are tp1 = −0.041, tp2 = −0.4077, tp3 = −0.0479, tp4 =
−0.1067, and tp5 = 0.0548. Finally, the hopping amplitudes
between Ca and P orbitals are tdp1 = 0.1415, tdp2 = 0.0379,
tdp3 = 0.0443 and tdp4 = 0.0376. The chemical potentials
are μd = 2.6808 and μp = −1.2186 for Ca and P, respectively.

APPENDIX B: TOPOLOGICAL NUMBER
AND BERRY PHASE

To show that the Berry phase in the kz direction is quantized
and is related to n+

occ in Eq. (2.11), we recall some basic facts
of inversion symmetry. We assume no degeneracies so the
inversion symmetry acts on the wave functions |uk,j 〉 in the
unique expression (k ≡ kz)

|u−k,j 〉 = e−iα
j

k Rk|uk,j 〉. (B1)

The reflection operator obeys R−kRk = ±1 for spinless/spin-
1/2 systems, respectively. For spin-1/2, we redefine Rk →
−iRk so that R−kRk = 1. Also, R

†
kRk = 1. Let us rewrite the

Berry phase

P = −i

(∫ π

0
+

∫ 0

−π

) ∑
Ej <EF

〈uk,j |∂k|uk,j 〉dk

= −i

∫ π

0

∑
Ej <EF

〈uk,j |∂k|uk,j 〉dk

+i

∫ π

0

∑
Ej <EF

〈uk,j |R†
ke

iα
j

k ∂ke
−iα

j

k Rk|uk,j 〉dk

=
∑

Ej <EF

(
αj

π − α
j

0

) + i

∫ π

0

∑
Ej <EF

〈uk,j |R†
k∂kRk|uk,j 〉dk.

(B2)

The reflection symmetry operator has a generic block-
diagonalized from [3]

Rk = Ui1j1e
in1k ⊕ Ui2j2e

in2k ⊕ . . . ⊕ UiNjN
einN k, (B3)

where Uiljl
is a unitary matrix and we use the lattice constant

a ≡ 1:

R
†
k∂kRk = in1δi1j1 ⊕ in2δi2j2 ⊕ . . . ⊕ inNδiN jN

. (B4)

Hence, ∂R is just mπ , where m is an integer

i

∫ π

0

∑
Ej <EF

〈uk,j |R†
k∂kRk|uk,j 〉dk = −

∑
l=1

nlmlπ, (B5)

where ml is the number of the occupied states in the Uiljl
block.

Consider the left-hand side of Eq. (2.11),

n+,π
occ − n+,0

occ = 1

2

∑
Ej <0

(〈uπ,j |Rπ |uπ,j 〉 − 〈u0,j |R0|u0,j 〉
)

= 1

2

∑
Ej <0

(eiα
j
π − eiα

j

0 ). (B6)

Since R
†
k0

= Rk0 , where k0 = −k0, such as 0, π so e
iα

j

k0 = ±1
and then

n+,π
occ − n+,0

occ ≡ 1

π

∑
Ej <EF

(
αj

π − α
j

0

)
(mod 2). (B7)

Thus, (−1)n
+,π
occ −n+,0

occ = e
i
∑

Ej <EF
(αj

π −α
j

0 )
. By using Eq. (B2),

(B7), we obtain the relation in Eq. (2.11) between the
topological invariants and the Berry phase P is either 0 or
π (mod 2π ) since the 2nπ phase can be canceled by a large
U (1) gauge transformation.

Similarly, IT symmetry, the composite symmetry of time-
reversal and inversion, also quantizes the Berry phase when
dk is integrated along any closed loop. Since time-reversal
and inversion operators both flip k, the composite symmetry
operators keep the same k. The integration path can be
arbitrarily chose to preserve IT symmetry. Unlike the Berry
phase under reflection symmetry, the integration path should
be strictly in the kz direction to preserve reflection symmetry.

The IT symmetry operator is the combination of a unitary
matrix and complex conjugation T I = UK; the unitary matrix
U might be k-dependent. To simplify the problem, we assume
U is k-independent, which is the case of Ca3P2 tight-binding
model. The relation of wave functions under IT symmetry is
given by

|uk,j 〉 = eiβ
j

k U |uk,lj 〉. (B8)

We note that |uk,j 〉 and |uk,lj 〉 in the same energy level might
be orthogonal or identical. Let us show that the Berry phase is
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quantized

P = − i

∮ ∑
Ej <EF

〈uk,j |∂k|uk,j 〉dk

= − i

∮ ∑
Ej <EF

〈u∗
k,lj

|U †e−iβ
j

k ∂ke
iβ

j

k U |u∗
k,lj

〉dk

=
∑

Ej <EF

(βj
+ − β

j
−) − i

∮ ∑
Ej <EF

〈u∗
k,lj

|∂k|u∗
k,lj

〉dk, (B9)

where β
j
∓ represent the phases at the beginning and end of

the integration path, respectively. The first summation is 2nπ .
Since the j th and the lj th states share the same energy and
each state in the second summation should be orthogonal, we
safely change the index lj to j in the summation. We use the
identity

〈u∗
k,j |∂k|u∗

k,j 〉 = 〈
∂kuk,j |uk,j

〉 = −〈uk,j |∂k|uk,j 〉. (B10)

It follows that the Berry phase is quantized

P =
∑

Ej <EF

(βj
+ − β

j
−) = nπ. (B11)

APPENDIX C: TOY MODEL OF TOPOLOGICAL
NODAL LINES

The tight-binding model of Ca3P2 provides the way to in-
vestigate topological nodal lines in a realistic model. However,
to capture the physical features of the nodal lines only the
low-energy theory is needed. We extend the low-energy theory
to a simple lattice model in order to provide an economic
way to investigate topological nodal lines. Although the space
group of Ca3P2 is P 63/mcm, we consider a square lattice and
extend and transfer the low-energy equation (3.1) with spins
to the lattice form

H lattice
spinful(k) = ν ′

‖
a2

g(k‖)τzσ0 + νz

c
sin ckzτyσ0

+
[

ν ′
0

a2
g(k‖) + V0

]
τ0σ0 + Hcos kz

, (C1)

where g(k‖) = 1 + cos ak0 − cos akx − cos aky , the lattice
constants a = 8.26 Å and c = 6.84 Å, ν ′

‖ = 2ν‖ak0

sin ak0
, and ν ′

0 =
2ν0ak0
sin ak0

. Furthermore, we define

Hcos kz
= (1 − cos ckz)(Zττzσ0 + Z0τ0σ0) (C2)

in the simplest form so that the Berry phase inside the nodal
ring is nonzero when the spin degree of freedom is neglected.
By fitting the energy spectrum from the DFT calculation as
kz = 0, π , we have Zτ = 0.287 eV and Z0 = −0.156 eV.

APPENDIX D: QUANTIZED END CHARGE
IN THE PRESENCE OF DISORDER

To understand the robustness of the topology under disorder
we consider the toy model of a 1d inversion-symmetric
topological insulator. We note that in a 1d system inversion
symmetry is equivalent to reflection symmetry; reflection-
symmetric nodal lines with fixed kx,ky are equivalent to
the 1d inversion-symmetric topological insulator; the Berry

phase, which is the integration along the 1d Brillouin zone, is
quantized. The toy model in momentum space can be simply
written as

H (p) = (μ + cos p)σx + sin pσy + δ cos p1, (D1)

which preserves inversion symmetry by satisfying Eq. (2.6)
with inversion symmetry operator I = σx . Broken chiral sym-
metry caused by δ cos p1 destroys the definition of winding
number so the Berry phase is the only valid topological
invariant. Furthermore, by Eq. (2.4) time-reversal symmetry is
preserved with time-reversal operator T = K . IT symmetry
also guarantees the quantized Berry phase. By choosing
μ = 0.5 and δ = 0.1, the Berry phase P = π leads to the
presence of charge ±e/2 at each end, which is one of the
topological features of this inversion-symmetric insulator.
The sign of the charge depends on the occupation of the end
mode. Hence, we can numerically compute the charge on one
of the ends. If the charge is no longer ±e/2 in the presence
of disorder, then this indicates that the nontrivial topology is
destroyed by the disorder.

We add inversion symmetry breaking disorder rj c
†
j σzcj to

the Hamiltonian in real space

Ĥ =
∑

j

[
μ

2
c
†
j σxcj + c

†
j+1

σx + δ1 + iσy

2
cj + H.c.

]
, (D2)

where rj is a random number from −� + m to � + m. When
m = 0, the average 〈rj 〉 = 0 indicates the average disorder
preserves inversion symmetry. As shown in Fig. 8(a) when
m = 0, the charge on one end is ±e/2 on average. When
inversion symmetry is broken on average, the charge is no
longer quantized and then the topological phase is destroyed. In
Fig. 8(b) the standard deviation of the disorder is proportional
to the deviation of the end disorder. Thus, the quantized end
charges survive when disorder on average is zero and the
fluctuation is small enough.
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FIG. 8. The numerical result for the 1d inversion-symmetric
topological insulator with 200 sites. We consider the half-filling
scenario and compute the absolute value of charge accumulated on
the first 10 sites under Gaussian disorder as fixed disorder average m

and disorder random deviation � 3000 times. (a) As � = 0.02, the
end charge is not quantized when the average disorder is not zero. In
the special condition that the average disorder vanishes so inversion
symmetry on average is preserved, the end charge on average is ±e/2.
(b) The standard deviation of the disorder grows as the deviation of
the end disorder grows.
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