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The density matrix renormalization group method is introduced in energy space to study Anderson impurity
models. The method allows for calculations in the thermodynamic limit and is advantageous for studying not
only the dynamical properties, but also the quantum entanglement of the ground state at the vicinity of an
impurity quantum phase transition. This method is applied to obtain numerically exactly the ground-state phase
diagram of the single-impurity Anderson model on the honeycomb lattice at half-filling. The calculation of
local static quantities shows that the phase diagram contains two distinct phases, the local moment (LM) phase
and the asymmetric strong coupling (ASC) phase, but no Kondo screening phase. These results are supported
by the local spin and charge excitation spectra, which exhibit qualitatively different behavior in these two
phases and also reveal the existence of the valence fluctuating point at the phase boundary. For comparison, we
also study the low-energy effective pseudogap Anderson model using the method introduced here. Although the
high-energy excitations are obviously different, we find that the ground-state phase diagram and the asymptotically
low-energy excitations are in good quantitative agreement with those for the single-impurity Anderson model on
the honeycomb lattice, thus providing a quantitative justification for the previous studies based on low-energy
approximate approaches. Furthermore, we find that the lowest entanglement level is doubly degenerate for the LM
phase, whereas it is singlet for the ASC phase and is accidentally threefold degenerate at the valence fluctuating
point. This should be contrasted with the degeneracy of the energy spectrum because the ground state is found
to be always singlet. Our results therefore clearly demonstrate that the low-lying entanglement spectrum can be
used to determine with high accuracy the phase boundary of the impurity quantum phase transition.
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I. INTRODUCTION

Recent experiments have revealed that the introduction of
adatoms induces the local magnetic moments in graphene
[1,2]. One of the simplest models describing the magnetic
impurity problem in graphene is an Anderson impurity coupled
to the conduction electrons on the honeycomb lattice with
the massless Dirac energy dispersion which results in the
linear density of states (∝ |ω|) around the Fermi level [3].
This problem is known as the pseudogap Kondo problem
[4] and has been studied extensively for over a decade by
the renormalization group analysis [5,6] and the numerical
renormalization group (NRG) method [7–11]. These previ-
ous studies have already found that, at zero temperature,
there exit two phases, i.e., the local moment (LM) phase
and the asymmetric strong coupling (ASC) phase, and the
phase boundary corresponds to the valence fluctuating (VF)
point [7].

These studies are, however, based on the low-energy
effective pseudogap Anderson models [4] and focused mostly
on the two special cases in the large conduction band limit
and in the strong coupling limit [7–10]. Although the essential
part of Kondo physics should be captured in these low-energy
analyses, it is rather surprising that the phase diagram even
for the simplest and most fundamental Anderson impurity
model, not for the low-energy effective models, has not
been established so far. The reason is simply because of
lack of reliable numerical methods which can treat Anderson
impurity models numerically exactly in two and three spatial
dimensions. Establishing the numerically exact ground-state

phase diagram of the Anderson impurity model is also
beneficial to the previous studies based on the low-energy
effective models since it can provide a strong justification for
their approximations.

On the other hand, the entanglement spectrum [12] has
attracted much attention recently in condensed matter physics
for identifying topologically ordered phases [12–16]. In
these systems, the degeneracy of the low-lying entanglement
spectrum is intimately related to the existence of the surface
boundary states which are protected by bulk symmetries.
Since the magnetic impurity problem can be regarded as a
boundary problem in one dimension [17], it is also valuable
to explore its quantum entanglement aspects. In this context,
the recent study of a “spin-only” version of a two-impurity
Kondo model has shown that the gap of the entanglement
spectrum can be regarded as an order parameter [18]. The
entanglement spectrum is thus expected to be also used
to quantify different quantum phases in magnetic impurity
models including Anderson impurity models [19].

The main purposes of this paper are threefold. First, we
introduce a numerical method which enables us to treat exactly
general Anderson impurity models in any spatial dimension in
the thermodynamic limit. Second, we demonstrate the method
developed here by applying it to one of the simplest Anderson
impurity models in two spatial dimensions and compare the
results with those for the low-energy effective pseudogap
Anderson model. Third, we explore the impurity quantum
phase transition and the low-lying entanglement spectrum to
uncover the degeneracy of the lowest entanglement level across
the impurity quantum phase transition.
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To this end, here we introduce the density matrix renormal-
ization group (DMRG) method [20,21] for general Anderson
impurity models represented in energy space. This method
is applied to the single-impurity Anderson model on the
honeycomb lattice at half-filling to determine precisely the
ground-state phase diagram in a wide range of parameters,
including an intermediate coupling region. The calculations
of the local static quantities reveal that the phase diagram
contains only two phases, i.e., the LM and ASC phases.
The local spin and charge excitation spectra further support
these results and also show the existence of the VF point at
the phase boundary. We also study the low-energy effective
pseudogap Anderson model and compare the ground-state
phase diagram as well as the local spin and charge excitation
spectra with those for the single-impurity Anderson model on
the honeycomb lattice. Although the high-energy excitations
are apparently different, the ground-state phase diagrams and
the asymptotically low-energy excitations for these two models
are found to be in excellent quantitative agreement. Moreover,
we find that the degeneracy of the lowest entanglement level
is different in the three different regions of the phase diagram,
i.e., the LM and ASC phases and the VF point. This is in sharp
contrast to the degeneracy of the ground state, which is found
always singlet in all three regions. Although it has been pointed
out that the sudden change of entanglement properties is not
always related to quantum phase transition [22], our results
demonstrate that the low-lying entanglement spectrum can be
used to determine the impurity quantum phase transition, at
least, between the LM and ASC phases.

The rest of this paper is organized as follows. First, the
single-impurity Anderson model on the honeycomb lattice and
the corresponding low-energy effective pseudogap Anderson
model are introduced in Sec. II. The DMRG method to
solve general Anderson impurity models in energy space is
also described in details in Sec. II. The numerical results
for the single-impurity Anderson model on the honeycomb
lattice are shown in Sec. III. Based on the local static
properties shown in Sec. III B, the ground-state phase diagram
is established in Sec. III C. The local spin and charge excitation
spectra are also calculated in Sec. III D to support the phase
diagram. Furthermore, these results are compared with those
for the low-energy effective pseudogap Anderson model in
Sec. III E. Finally, the low-lying entanglement spectrum and
the entanglement entropy for the single-impurity Anderson
model on the honeycomb lattice are discussed in Sec. III F
before summarizing the paper in Sec. IV. The energy space de-
scription of the single-impurity Anderson model is discussed
in Appendix A and the further technical details of numerical
calculations are provided in Appendix B.

II. MODELS AND METHOD

In this section, we first introduce the single-impurity
Anderson model on the honeycomb lattice. Considering this
model as an example, we describe in details the DMRG
method in energy space, which can treat exactly general
Anderson impurity models in any spatial dimensions. We also
introduce the pseudogap Anderson model as a low-energy
effective model for the single-impurity Anderson model on
the honeycomb lattice.

(a)

(b)
i jleft block: right block: RL

impurity site
conduction site

conduction site in energy space

FIG. 1. (a) Single-impurity Anderson model on the honeycomb
lattice described by HAIM in Eq. (1). A red sphere and black dots
represent the impurity site and the conduction sites, respectively. A
blue line denotes the hybridization bond connecting the impurity site
i and the conduction site r0 with the hybridization V in Eq. (4),
and black lines represent the lattice bonds connecting the nearest-
neighbor conduction sites on the honeycomb lattice with the hopping
t in Eq. (3). (b) Single-impurity Anderson model in energy space
described by H in Eq. (20). Note that although the impurity site (a red
sphere at the left edge) is described by the same impurity Hamiltonian
Hi in HAIM and is connected to only one of the conduction sites
(gray spheres), the hybridization between the impurity site and the
conduction site as well as the hopping between the conduction sites
is generally different from those in (a). In the DMRG calculations,
the system is divided into two parts, i.e., the left and right blocks, and
the corresponding bases are denoted as |i〉L and |j〉R.

A. Single-impurity Anderson model

In order to be specific and also because it is one of
the simplest models for the magnetic impurity problem in
graphene, here we consider the single-impurity Anderson
model on the honeycomb lattice [see Fig. 1(a)] defined by
the following Hamiltonian:

HAIM = Hi + Hc + HV , (1)

where the impurity Hamiltonian Hi , including the onsite
Coulomb interaction U and the onsite potential ε at the
impurity site, is given as

Hi = Uni,↑ni,↓ − εni, (2)

the conduction band with the nearest-neighbor hopping t is
described on the honeycomb lattice as

Hc = −t
∑
〈r,r′〉

∑
σ=↑,↓

(c†r,σ cr′,σ + H.c.), (3)

and the hybridization between the impurity site and the
conduction band is represented as

HV = V
∑

σ=↑,↓
(c†i,σ cr0,σ + H.c.). (4)

Here, c
†
r,σ (cr,σ ) is the creation (annihilation) operator of

a conduction electron with spin σ (= ↑,↓) at site r on the
honeycomb lattice and c

†
i,σ (ci,σ ) is the creation (annihilation)

operator of an electron at the impurity site i with ni,σ = c
†
i,σ ci,σ
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and ni = ni,↑ + ni,↓. The sum in Hc denoted by 〈r,r′〉 runs
over nearest-neighbor pairs of conduction sites r and r′ on
the honeycomb lattice. Notice here that the impurity site is
connected to only one of the conduction sites at r0 through
the hybridization V in HV , as shown in Fig. 1(a). The electron
density n is set to be half-filled, i.e., n = 1.

B. DMRG method in energy space

We first describe the Hamiltonian HAIM in energy space.
This can be done by noticing that the effective action of the
impurity site for HAIM can be reproduced exactly by, e.g., the
following Hamiltonian:

Hω = Hi +
∑

σ=↑,↓

∫
dω ωa†

ω,σ aω,σ

+V
∑

σ=↑,↓

∫
dω

√
ρ(ω)(c†i,σ aω,σ + H.c.), (5)

where a†
ω,σ (aω,σ ) is the creation (annihilation) operator of a

conduction electron which represents the eigenstate ofHc with
energy ω and spin σ , and the local density of state per spin for
the conduction band is denoted as ρ(ω) [7,8]. The equivalence
between HAIM and Hω is shown in Appendix A.

Next, we discretize the energy ω with the logarithmic
discretization scheme

ω±
m = ±W

2
�−m, (6)

where W is the conduction band width (W = 6t for the
conduction band described by Hc), � (> 1) is a parameter
which sets a series of intervals in ω±

m’s with m = 0,1, . . . ,M −
1 [23], and we set ω±

M = 0. Defining a representative fermion
operator a

†
m,±,σ (m = 1,2, . . . ,M) for each energy interval

between ω±
m−1 and ω±

m, the Hamiltonian Hω can now be
expressed as

Hr = Hi +
M∑

m=1

∑
σ=↑,↓

(ξ+
m a

†
m,+,σ am,+,σ + ξ−

m a
†
m,−,σ am,−,σ )

+
M∑

m=1

∑
σ=↑,↓

(γ +
m c

†
i,σ am,+,σ + γ −

m c
†
i,σ am,−,σ + H.c.),

(7)

where

γ ±
m = V

[
∓

∫ ±ωm−1

±ωm

dω ρ(ω)

]1/2

(8)

and

ξ±
m =

∫ ±ωm−1

±ωm
dω ρ(ω)ω∫ ±ωm−1

±ωm
dω ρ(ω)

. (9)

This discretization scheme is similar to the one employed in
the NRG method [24]. The local density of states ρ(ω) for the
conduction band can be calculated with desired accuracy by
employing the linear tetrahedron method, as shown in Fig. 2
[25,26].

-4 -3 -2 -1 0 1 2 3 4
ω/t

0
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ρ(
ω

)

honeycomb
pseudogap

FIG. 2. Local density of states ρ(ω) per spin for the conduction
band of the single-impurity Anderson model on the honeycomb lattice
(red) and the pseudogap Anderson model (blue). Here, W 2 = 4

√
3πt2

for the band width W of the pseudogap Anderson model. The Fermi
energy is located at ω = 0 for half-filling.

Since we can use any discretization scheme to discretize the
energy ω, we also introduce the constant discretization scheme

ω±
m = ±W

2

(
1 − m

M

)
(10)

with m = 0,1, . . . ,M . The logarithmic discretization scheme
has much denser energy meshes as |ω| approaches to zero, but
has much less energy meshes for larger |ω| away from zero.
Therefore, in order to treat correctly the band structure in high-
energy scales, the logarithmic discretization scheme requires
small � close to 1, which is computationally demanding.
In contrast, the constant discretization scheme distributes the
energy meshes equally for all energy scales. We find that the
logarithmic discretization scheme is suitable for the calculation
of static quantities but the constant discretization scheme
is better computationally to calculate dynamical quantities
especially when the high-energy excitations are involved (see
Appendix B for more details). It is also shown in Appendix A
that the effective action of the impurity site for Hr in both
discretization schemes is exactly the same as the one forHAIM.

Finally, we transform the Hamiltonian Hr into a one-
dimensional form with no long-range hopping terms but
keeping the interaction term local. For this purpose, we apply
the Lanczos iteration [27] to the second and third terms
in the right-hand side of Hr with choosing the impurity
site as the initial Lanczos basis vector. Introducing the
vector representation of the electron creation and annihilation
operators, e.g.,

a†σ = (c†i,σ ,a
†
1,+,σ ,a

†
2,+,σ ,a

†
3,+,σ , . . . ,a

†
M−1,+,σ ,a

†
M,+,σ ,

a
†
M,−,σ ,a

†
M−1,−,σ , . . . ,a

†
3,−,σ ,a

†
2,−,σ ,a

†
1,−,σ ), (11)

Hr can be represented as

Hr = Hi +
∑

σ=↑,↓
a†σ Ĥ0aσ , (12)
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where Ĥ0 is a (2M + 1) × (2M + 1) matrix defined as

Ĥ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ +
1 γ +

2 γ +
3 . . . γ +

M γ −
M . . . γ −

2 γ −
1

γ +
1 ξ+

1 0 0 . . . 0 0 . . . 0 0
γ +

2 0 ξ+
2 0 . . . 0 0 . . . 0 0

γ +
3 0 0 ξ+

3 . . . 0 0 . . . 0 0
...

...
...

...
. . .

...
...

. . .
...

...
γ +

M 0 0 0 . . . ξ+
M 0 . . . 0 0

γ −
M 0 0 0 . . . 0 ξ−

M . . . 0 0
...

...
...

...
. . .

...
...

. . .
...

...
γ −

2 0 0 0 . . . 0 0 . . . ξ−
2 0

γ −
1 0 0 0 . . . 0 0 . . . 0 ξ−

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Notice here that although the interaction term at the impurity
site is described by the same impurity Hamiltonian Hi , Hr

introduces long-range hopping terms as the impurity site is
hybridized with all conduction sites in energy space. This is
usually problematic for DMRG calculations. As shown below,
this can be completely alleviated by the Lanczos basis transfor-
mation without introducing additional long-range interaction
terms for Hi .

Taking as the initial Lanczos basis the (2M + 1)-
dimensional column unit vector p1 with the kth element

(p1)k = δk,1 (k = 1,2, . . . ,2M + 1), (14)

we can generate the Lanczos basis via the three-time recur-
rences

tlpl+1 = Ĥ0pl − εlpl − tl−1pl−1 (15)

for l = 1,2, . . . ,L − 1 with t0 = 0 and p0 = 0, where

εl = pT
l Ĥ0pl (16)

and

tl = |Ĥ0pl − εlpl − tl−1pl−1|, (17)

i.e., the norm of the (2M + 1)-dimensional column vector in
the right-hand side of Eq. (15).

Using these Lanczos bases P̂ = (p1,p2, . . . ,pL), Ĥ0 can be
transformed into the following tridiagonal matrix:

Ĥ ′
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1 t1 0 0 . . . 0 0
t1 ε2 t2 0 . . . 0 0
0 t2 ε3 t3 . . . 0 0
0 0 t3 ε4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . εL−1 tl−1

0 0 0 0 . . . tl−1 εL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

and accordingly the electron creations operators a†σ are
transformed into the new operators f†σ as

f†σ = (f †
1,σ ,f

†
2,σ , . . . ,f

†
L,σ ) = a†σ P̂ (19)

with f
†
1,σ = c

†
i,σ . Since (pl)k = (P̂ )k,l and pl · pl′ = δl,l′ , one

can easily show that (P̂ T P̂ )l,l′ = δl,l′ . Therefore, the new
operators f†σ and fσ satisfy the fermion anticommutation

relations, e.g., {fl,σ ,f
†
l′,σ ′ } = δl,l′δσ,σ ′ . Note also that ε1 = 0

as (Ĥ0)1,1 = 0.
The resulting Hamiltonian after this basis transformation is

H = Hi +
∑

σ=↑,↓

L∑
l=1

εlf
†
l,σ fl,σ

+
∑

σ=↑,↓

L−1∑
l=1

tl(f
†
l+1,σ fl,σ + H.c.). (20)

Notice first that the impurity site is described by the same local
Hamiltonian Hi as in HAIM and therefore the interaction term
remains local. On the other hand, the hopping terms are now all
short ranged with only nearest-neighbor hopping tl . Therefore,
the model described by H is a simple one-dimensional system
of L sites, as schematically shown in Fig. 1(b), and can be best
treated by the DMRG method [20,21,28,29].

Four remarks are in order regarding the method introduced
here. First, as it is well known in the standard Lanczos method
[27], the transformation from Hr to H is exact only when
L = 2M + 1, assuming that p1 is not contained in an invariant
subspace and thus the Lanczos iteration is not terminated
before generating p2M+1. Only in this case, (P̂ P̂ T )k,k′ = δk,k′

and thus

a†σ Ĥ0aσ = a†σ P̂ P̂ T Ĥ0P̂ P̂ T aσ = f†σ Ĥ ′
0fσ (21)

as P̂ is a (2M + 1) × (2M + 1) orthogonal matrix.
Second, it is apparent from the construction that this method

is for calculations in the thermodynamic limit. M and also �

in the logarithmic discretization scheme determine the energy
resolution as well as the model parameters εl and tl in H.
Therefore, these quantities M and � control the accuracy
of H with respect to HAIM in the thermodynamic limit.
In principle, the logarithmic discretization scheme becomes
exact when � → 1 + 0+ (= 1+) and M → ∞, where 0+ is
positive infinitesimal. Similarly, the constant discretization
scheme becomes exact when M → ∞. However, as discussed
in Appendix B, we find that reasonably large M and L (but
L � 2M + 1) can well represent the thermodynamic limit
(provided that � is sufficiently small for the logarithmic
discretization scheme).

Third, the single-impurity Anderson model in two spatial
dimensions is considered here. This is only to simplify the
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explanation of the method introduced here. The extension
of the method to more general cases such as a two-impurity
Anderson model and a multiorbital many-impurity Anderson
model is rather straightforward by using the block Lanczos
technique [30]. Indeed, the similar transformation for An-
derson impurity models in real space and its extension to
multiorbital systems are found in Refs. [30–32]. The extension
to three-dimensional systems is also straightforward.

Fourth, the method is similar to the NRG approach [24]
in that both treat Anderson impurity models represented in
energy space. Indeed, the logarithmic discretization scheme
is employed in the NRG method, where M corresponds
to the number of renormalization iterations [24]. However,
these two approaches are conceptually different because the
DMRG method optimizes the wave function based on the
largest eigenstates of the reduced density matrix for that wave
function, while the NRG method constructs the low-energy
effective Hamiltonian based on the lowest eigenstates of the
Hamiltonian. Note also that the method introduced here can
take into account the band structure effect accurately over
large energy scales, in contrast to the low-energy approximate
approaches. This is obviously important when high-energy
excitations are discussed.

C. Pseudogap Anderson model

It is valuable to compare the results for the single-impurity
Anderson model on the honeycomb lattice with those for the
corresponding pseudogap Anderson model. The pseudogap
Anderson model is described by Hamiltonian Hω or Hr with
the following local density of states ρPGA(ω) per spin for the
conduction band (see Fig. 2):

ρPGA(ω) =
{

4|ω|/W 2 for |ω| � W/2,

0 for |ω| > W/2.
(22)

This local density of states is directly used for ρ(ω) in Eqs. (5)
and (7) to constructH, which then can be solved by the DMRG
method, as described above. The asymptotic behavior of ρ(ω)
for the conduction band on the honeycomb lattice described
by Hc is

ρ(ω) ∼ 1√
3πt2

|ω| (23)

for ω around zero [3]. Therefore, by setting the band width W

for the pseudogap Anderson model as W 2 = 4
√

3πt2, ρPGA(ω)
can reproduce exactly the asymptotic behavior of ρ(ω) for the
conduction band on the honeycomb lattice, as shown in Fig. 2.

The pseudogap Anderson model and its strong coupling
counterpart, i.e., the pseudogap Kondo model, have been
studied extensively using the analytical and NRG methods
[4–11]. The ground-state phase diagram of the pseudogap
Anderson model has two distinct phases, the LM phase and
the ASC phase, and the VF point at the phase boundary
[7]. In the LM phase, a free local moment at the impurity
site survives without Kondo screening even at zero temper-
ature. The fixed point of this phase can be characterized as
(ε,U,V ) → (ε∗,U ∗,V ∗) = (ε∗,2ε∗,0) with ε∗ = ∞ [7], i.e.,
the free local moment being decoupled from the conduction
band. In the ASC phase, the fixed point is characterized
as (ε∗,U ∗,V ∗) = (∞,0,0) for ε > U/2, and (ε∗,U ∗,V ∗) =

(−∞,0,0) for ε < U/2 [7]. Since the two electrons (two
holes) occupy the impurity site for ε > U/2 (ε < U/2), no
local moment is formed. The fixed point for the VF point
is characterized as (ε∗,U ∗,V ∗) = (0,∞,0) for ε < U/2 and
(ε∗,U ∗,V ∗) = (ε∗,ε∗,0) with ε∗ = ∞ for ε > U/2 [7]. Since
the impurity site is decoupled from the conduction band, the
ground state is threefold degenerate due to three different local
states at the impurity site, i.e., the empty state and the singly
occupied states with up or down electron for ε < U/2.

III. RESULTS

We first summarize briefly the conditions employed for the
numerical calculations before discussing the numerical results
for the single-impurity Anderson model on the honeycomb
lattice. These results are then compared with those for the pseu-
dogap Anderson model. We also examine the entanglement
spectrum for the ground state of the single-impurity Anderson
model on the honeycomb lattice to characterize the impurity
quantum phase transition.

A. Numerical details

We set that L = M (even) in Eq. (20) throughout the cal-
culations discussed here, unless otherwise stated. As already
explained in Sec. II B, M (and also � when the logarithmic
discretization scheme is used) controls the energy resolution
and L can be taken to be up to 2M + 1. Therefore, in principle,
one should take the infinite limit of M and L along with
� → 1+ for the logarithmic discretization scheme. However,
we find that the quantities studied here are well converged for
sufficiently large but finite values of M and L with keeping a
fixed ratio of L/M , at least, when the logarithmic discretization
scheme with � as small as 1.15 is used (see Appendix B).
Therefore, we take L (= M) up to 128 with the z component
of total spin Sz = 0 and keep mD ∼ 32L largest eigenstates of
the reduced density matrix in the DMRG calculations.

When the logarithmic discretization scheme is used, the
discarded weights are found to be significantly small, typically
of the order 10−13–10−11. The corresponding error of the
ground-state energy is as small as ∼10−8t , which is even
smaller than the smallest level spacing of the eigenvalues for
Ĥ ′

0 in Eq. (18) with L = M . When the constant discretization
scheme is used, the discarded weights are as small as 10−9 and
the corresponding error of the ground-state energy is about
10−7t . We employ the logarithmic discretization scheme to
calculate the static quantities as well as the entanglement
spectrum and the constant discretization scheme to calculate
the full excitation spectra (see Appendix B). However, to
extrapolate the static limit of the dynamical quantity, we use
the logarithmic discretization scheme with mD up to 48L. It
should be also noted that the ground state is found to be always
singlet as long as L is even and finite.

B. Local static quantities

Let us first calculate the local density per spin at the impurity
site

n̄iσ = 〈ψ0|niσ |ψ0〉 (24)
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FIG. 3. (a) Local density n̄iσ and (b) total spin S̄i at the impurity
site for the single-impurity Anderson model on the honeycomb lattice
as a function of ε with V = t and various U indicated in (a). The
logarithmic discretization scheme with � = 1.15 and M = 128 is
used.

and the total spin at the impurity site

S̄i = 〈ψ0| �Si · �Si |ψ0〉, (25)

where |ψ0〉 is the ground state and the spin operator �Si at the
impurity site is given as

�Si = 1

2

∑
σ1,σ2

c
†
i,σ1

�τσ1,σ2ci,σ2 (26)

with �τ = (τx,τy,τz) being Pauli matrices. Note that n̄i↑ = n̄i↓
because of SU(2) symmetry of H and S̄i � 0.75.

As shown in Fig. 3, we find that these quantities change
discontinuously at two distinct values of ε for given U and
V . It should be emphasized, however, that these deceptively
discontinuous changes are simply due to a finite grid size of
ε used in the figures, but not due to the level crossing of
two different states as often found in finite-size calculations.
Indeed, we find in Fig. 4 that these quantities vary smoothly
with ε when a much smaller grid size of ε is used. We also find
in Fig. 4 that the change of these quantities becomes sharper
and steeper with increasing M . Therefore, we expect that it
becomes truly discontinuous only when we take the limit of
M → ∞.

Nevertheless, the steep changes of these quantities imply
that there are three phases for a given U , a low-density
phase (n̄iσ � 0.3) for small ε, an intermediate density phase
(n̄iσ ∼ 0.5) which includes the particle-hole symmetric limit
with ε = U/2, and a high-density phase (n̄iσ � 0.7) for large
ε. While the total spin S̄i is suppressed in the low- and
high-density phases, it is enhanced in the intermediate density
phase. It should be noticed here that the low- and high-density
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FIG. 4. Same as in Fig. 3 but with U = 2t and a finer grid size of
ε for different values of M indicated in (a).

phases are related under the particle-hole transformation.
This is because the model with a parameter set (ε,U,V ) in
particle picture can be transformed into the same model with
(U − ε,U,V ) in hole picture. Indeed, our results satisfy that
n̄iσ (S̄i) at the impurity potential ε is exactly the same as
1 − n̄iσ (S̄i) at the impurity potential U − ε for given U and
V . Together with the results of the spin and charge excitation
spectra shown in Sec. III C, we identify the intermediate
density phase as the LM phase where the local moment is
formed at the impurity site, and the low- and high-density
phases as the ASC phase where essentially two holes or
electrons occupy the impurity site with no local moment
formed.

C. Ground-state phase diagram

Systematically calculating n̄iσ and S̄i for different values
of V , we obtain the ground-state phase diagram for the
single-impurity Anderson model on the honeycomb lattice in a
wide range of parameters ε and U . As shown in Fig. 5, the LM
phase appears around the particle-hole symmetric limit with
ε = U/2, where n̄iσ is exactly 1

2 . The region of this phase is
found to decrease with increasing V . This is easily understood
by considering that the increase of V enhances the bonding
between the impurity site and the conduction site r0, which
then leads to the formation of the bond singlet state. Eventually,
the LM phase exists only along the particle-hole symmetric
line in the limit of V → ∞. Our results in Fig. 5 also imply
the absence of Kondo screening phase. This can be understood
simply as the consequence of the characteristic density of
states of the conduction band since the Kondo temperature
TK ∼

√
UV 2ρ(0)/2 exp[−π |(U − ε)ε|/4UV 2ρ(0)] [33]. The

phase diagram is therefore in good qualitative agreement with
that obtained by the low-energy approximate approaches [6,7].
In fact, as discussed below in Sec. III E, the phase diagram
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FIG. 5. Ground-state phase diagrams for the single-impurity
Anderson model on the honeycomb lattice in a wide range of
parameters ε and U , with four different values of V indicated in
the figures. LM (ASC) stands for the local moment (asymmetric
strong coupling) phase. The particle-hole symmetric line ε = U/2 is
indicated by green dashed lines. The phase boundaries are determined
by the calculations of the static quantities shown in Fig. 3.

is found to be quantitatively compared with that for the
pseudogap Anderson model.

D. Dynamical quantities

Next, we calculate the dynamical quantities to support the
assignment of different phases found in the phase diagram.
The dynamical quantities studied here are the spin excitation
spectrum at impurity site

χs(ω) = − 1

π
Im〈ψ0|Sz

i

1

ω + iη − H + E0
Sz

i |ψ0〉 (27)

and the charge excitation spectrum at impurity site

χc(ω) = − 1

π
Im〈ψ0|ni

1

ω + iη − H + E0
ni |ψ0〉, (28)

where E0 is the ground-state energy and η is a broadening
factor. We calculate these quantities using the dynamical
DMRG method [34].

Figure 6 shows the spin excitation spectra χs(ω) for V = t

and U = 2t . In this case, the transition occurs at ε = εc ∼
1.707t–1.708t . As seen in Fig. 6, χs(ω) in the LM phase for
ε < εc increases as ω → 0. In contrast, χs(ω) for ω → 0 is
suppressed in the ASC phase for ε > εc. The M dependence
of χs(0) shown in the inset of Fig. 6 reveals that χs(0) in the
LM (ASC) phase increases (decreases) exponentially with M

for large M , i.e.,

χs(0) ∝ exp (τsM) (29)
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FIG. 6. Spin excitation spectra χs(ω) at the impurity site for the
single-impurity Anderson model on the honeycomb lattice with V =
t and U = 2t . The constant discretization scheme with M = 100 is
used and a broadening factor of η = 0.2t is set. The inset shows the M

dependence of χs(0) calculated using the logarithmic discretization
scheme with � = 1.15 and η = 25W�−M .

with the same τs in each phase, independent of values of ε, as
summarized in Table I. Therefore, we can safely conclude that

lim
M→∞

χs(0) → ∞ (30)

in the LM phase and

lim
M→∞

χs(0) → 0 (31)

in the ASC phase. The divergent behavior of χs(0) implies
the presence of free local moment in the LM phases, while
χs(0) = 0 indicates no local moment at the impurity site in the
ASC phase.

The charge excitation spectra χc(ω) are shown in Fig. 7.
In contrast to χs(ω), we find that χc(ω) → 0 for ω → 0 in
both LM and ASC phases. This is more apparent in the M

dependence of χc(0), as shown in the inset of Fig. 7, because
for large M

χc(0) ∝ exp(τcM) (32)

with τc < 0 (also see Table I), and thus

lim
M→∞

χc(0) → 0 (33)

TABLE I. The diverging or decaying factors τs and τc of the local
spin and charge excitation spectra at ω = 0, χs(0) ∝ exp(τsM), and
χc(0) ∝ exp(τcM), respectively, for large M in the three different
regions of the phase diagram, i.e., the LM and ASC phases and the
VF point, estimated from the results shown in Figs. 6 and 7.

LM phase ASC phase VF point

τs 0.140 −0.140 0.123
τc −0.143 −0.142 0.082
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FIG. 7. Charge excitation spectra χc(ω) at the impurity site for
the single-impurity Anderson model on the honeycomb lattice with
V = t and U = 2t . The constant discretization scheme with M = 100
is used and a broadening factor of η = 0.2t is set. The inset shows the
M dependence of χc(0) calculated using the logarithmic discretization
scheme with � = 1.15 and η = 25W�−M .

in the LM and ASC phases. However, for the exact phase
boundary at ε = εc, we find that χs(0) as well as χc(0) increases
exponentially with M (see the insets of Figs. 6 and 7, and also
see Table I), and therefore

lim
M→∞

χs(0) → ∞ (34)

and

lim
M→∞

χc(0) → ∞, (35)

suggesting the VF point. In the renormalization group analysis,
the VF fixed point is characterized by the renormalized
parameters (ε∗, U ∗, V ∗) = (0, ∞, 0) for ε < U/2 [7].
Consequently, three local states at the impurity site, |0〉i , |↑〉i ,
and |↓〉i , contribute equally to the threefold-degenerate ground
state and thus both χs(0) and χc(0) diverge.

E. Results for the pseudogap Anderson model

Here, we compare the results of the local static quantities,
the ground-state phase diagram, and the excitation spectra
for the pseudogap Anderson model at half-filling, i.e., n =
1, to those for the single-impurity Anderson model on the
honeycomb lattice discussed above.

Figure 8 shows the local density n̄iσ and total spin S̄i

at the impurity site for the pseudogap Anderson model. We
find in Fig. 8 that these local static quantities, including
the phase boundaries where the abrupt changes of these
quantities occur, for the pseudogap Anderson model are in
quantitatively excellent agreement with those for the single-
impurity Anderson model on the honeycomb lattice. Since the
pseudogap Anderson model is a low-energy effective model for
the single-impurity Anderson model on the honeycomb lattice,
our results ensure that the low-energy effective description of

0
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FIG. 8. (a) Local density n̄iσ and (b) total spin S̄i at the impurity
site for the pseudogap Anderson model as a function of ε with V = t

and various U indicated in (a). The logarithmic discretization scheme
with � = 1.15 and M = 128 is used. For comparison, the results for
the single-impurity Anderson model on the honeycomb lattice shown
in Fig. 3 are also indicated by orange shaded symbols.

the pseudogap Anderson model is quantitatively valid for these
static quantities.

Systematically calculating n̄iσ and S̄i for different values of
V , we obtain in Fig. 9 the ground-state phase diagram for the
pseudogap Anderson model. We find that the phase boundaries
are almost identical to those for the single-impurity Anderson
model on the honeycomb lattice. For instance, the VF point
for V = t and U = 2t is located at εc = 1.721t–1.722t for
the pseudogap Anderson model, which is comparable with
εc = 1.707t–1.708t for the single-impurity Anderson model
on the honeycomb lattice.

Figures 10 and 11 show the spin and charge excitation
spectra at the impurity site χs(ω) and χc(ω), respectively.
Comparing with Figs. 6 and 7, the line shapes of these
excitation spectra are apparently different from those for the
single-impurity Anderson model on the honeycomb lattice.
However, as shown in the insets of Figs. 10 and 11, we find
that the asymptotic behavior of these quantities around ω ∼ 0
are qualitatively the same for both models, i.e., χs(0) → ∞
and χc(0) → 0 in the LM phase, χs(0) → 0 and χc(0) → 0
in the ASC phase, and χs(0) → ∞ and χc(0) → ∞ at the
VF point. Assuming that χs(0) and χc(0) diverge or decay
exponentially for large M , as in Eqs. (29) and (32), we can
estimate the diverging or decaying factors τs and τc for the
pseudogap Anderson model. As shown in Table II, we find
that the obtained τs and τc are indeed very close to those for
the single-impurity Anderson model on the honeycomb lattice
shown in Table I, indicating that the asymptotically low-energy
excitations of the single-impurity Anderson model on the
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FIG. 9. Ground-state phase diagrams for the pseudogap An-
derson model in a wide range of parameters ε and U with four
different values of V indicated in the figures. LM (ASC) stands
for the local moment (asymmetric strong coupling) phase. The
particle-hole symmetric line ε = U/2 is indicated by green dashed
lines. The phase boundaries (black solid lines) are determined by the
calculations of the static quantities shown in Fig. 8. For comparison,
the phase boundaries for the single-impurity Anderson model on the
honeycomb lattice are also indicated by orange bold lines.
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FIG. 10. Spin excitation spectra χs(ω) at the impurity site for the
pseudogap Anderson model with V = t and U = 2t . The constant
discretization scheme with M = 100 is used and a broadening factor
of η = 0.2t is set. The inset shows the M dependence of χs(0)
calculated using the logarithmic discretization scheme with � = 1.15
and η = 25W�−M .
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FIG. 11. Charge excitation spectra χc(ω) at the impurity site for
the pseudogap Anderson model with V = t and U = 2t . The constant
discretization scheme with M = 100 is used and a broadening factor
of η = 0.2t is set. The inset shows the M dependence of χc(0)
calculated using the logarithmic discretization scheme with � = 1.15
and η = 25W�−M .

honeycomb lattice are also well described by the low-energy
effective pseudogap Anderson model.

F. Entanglement spectrum

Let us now discuss the entanglement spectrum for the
ground state of the single-impurity Anderson model on the
honeycomb lattice. In the DMRG method, the system is
divided into two parts, the left and right blocks, as shown
in Fig. 1(b), with the sizes being lL and lR, respectively, i.e.,
L = lL + lR. Thus, the wave function is generally represented
as

|ψ〉 =
∑

i

∑
j

ψi,j |i〉L ⊗ |j 〉R, (36)

where |i〉L and |j 〉R indicate the bases of the left and right
blocks, respectively. The reduced density matrix ρ̂L for the
left block is

(ρ̂L)i,i ′ =
∑

j

ψi,jψ
∗
i ′,j , (37)

TABLE II. The diverging or decaying factors τs and τc of the
local spin and charge excitation spectra at ω = 0, χs(0) ∝ exp(τsM),
and χc(0) ∝ exp(τcM), respectively, for large M in the three different
regions of the phase diagram, i.e., the LM and ASC phases and the
VF point, estimated from the results shown in Figs. 10 and 11.

LM phase ASC phase VF point

τs 0.132 −0.140 0.115
τc −0.140 −0.140 0.079
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FIG. 12. Entanglement spectrum for the ground state of the
single-impurity Anderson model on the honeycomb lattice with
V = t and U = 2t . The logarithmic discretization scheme with
� = 1.15 is used. (a) Low-lying entanglement spectrum ξk (red
bars) for ε at the vicinity of the phase boundary εc ∼ 1.707t–1.708t

(dashed vertical line) determined in Fig. 3. The calculations are for
L = 100 with the left block size lL = 51. For comparison, the results
for L = 40 with lL = 21 are also shown by blue bars, in which the
phase boundary is approximately 1.67t . Red arrows are guide for
eyes. (b) The lowest three levels of ξk for ε close to εc, calculated
for L = 100 with lL = 51. (c) Gap of the entanglement spectrum
�ξ = ξ2 − ξ1 as a function of ε for various L with lL = L/2 + 1.
The phase boundary εc determined in Fig. 3 is indicated by a dashed
vertical line.

and the kth eigenvalue of ρ̂L is denoted as λk in descending
order, i.e.,

λ1 � λ2 � · · · � λmD , (38)

where mD is the number of density matrix eigenstates kept in
the DMRG calculations. One can readily show that 0 � λk � 1
and

∑
k λk = 1 when 〈ψ |ψ〉 = 1. The entanglement spectrum

ξk [12] is defined as

ξk = − ln λk, (39)

and hence

ξ1 � ξ2 � · · · � ξmD . (40)

Figure 12 shows a low-lying part of ξk for the ground state
at the vicinity of the phase boundary. It is clear in Fig. 12(a)
that the lowest and the first excited entanglement levels cross
at ε = εc. As shown in Fig. 12(b), we find that the lowest
entanglement level for lL odd is doubly degenerate in the LM
phase, singlet in the ASC phase, and accidentally threefold
degenerate at ε = εc, i.e., the VF point [35]. Because of the
qualitatively different behavior, we can consider the gap of the
entanglement spectrum

�ξ = ξ2 − ξ1 (41)

as an “order parameter” to distinguish the different phases
in the phase diagram. As shown in Fig. 12(c), �ξ changes
abruptly at ε = εc for large M and it is finite only when ε > εc.

(b) =

...

| L | R|ψ2 ⊗

(c) =

...

|0 R|0 L|ψ3 ⊗

(a) =

...

|ψ1 | R⊗| L

FIG. 13. (a) One of the doubly degenerate ground states for L →
∞, |ψ1〉, in the LM phase. (b) The other state, |ψ2〉, of the doubly
degenerate ground states in the LM phase. (c) The singlet ground state
|ψ3〉 in the ASC phase. Here, s = ↑,↓, and 0 in |s〉L(R) represents the
z component of total spin Sz = 1

2 , − 1
2 , and 0, respectively, in the

left (right) block of |ψi〉 for i = 1, 2, and 3. Red spheres at the left
edge represent the impurity site and green arrows indicate the local
spin configurations around the impurity site which may be spatially
extended into the green shaded region.

Indeed, the phase boundary determined from ξk is the same
as the one estimated in Fig. 3. This clearly demonstrates that
�ξ serves as a quantity to determine the phase boundary of
the impurity quantum phase transition. We should emphasize
here that the ground state is always singlet as long as L is even
and finite. Therefore, the similar characteristic feature of the
degeneracy in the low-lying entanglement spectrum is absent
in the low-lying energy spectrum.

Let us now discuss the intuitive understanding of the origin
for the different degeneracy of the low-lying entanglement
spectrum ξk in each phase. We first note that in our calculations
the impurity site is located at the left edge [see Fig. 1(b)] and
the degeneracy of the lowest entanglement level in the LM
phase occurs only for lL odd. This implies that the degeneracy
in the LM phase is due to the quantum number conservation
in each block. Clearly, the ground state of the LM phase is
doubly degenerate in L → ∞ and is described schematically
as |ψ1〉 ∼ |↑〉L ⊗ |↓〉R and |ψ2〉 ∼ |↓〉L ⊗ |↑〉R, where s =↑,
↓, and 0 in |s〉L(R) indicates the z component of total spin
Sz = 1

2 , − 1
2 , and 0, respectively, in the left (right) block of the

ground state. Here, nonzero s in |s〉L is due to the localized
spin formed around the impurity site, and correspondingly
|s〉R has the opposite spin to compensate the spin in the left
block [see Figs. 13(a) and 13(b)]. In a finite L, however, these
two states |ψ1〉 and |ψ2〉 are entangled and the ground state
is |ψ0〉 ∼ (|ψ1〉 − |ψ2〉)/

√
2. We can now readily show that

the lowest ξk is doubly degenerate. This is no longer the case
when lL is even. Although the impurity site is still represented
approximately as |↑〉i or |↓〉i , |s〉L ∼ |0〉L for lL even because
|↑〉i and |↓〉i must be entangled in the left block due to the
conservation of Sz [36]. Therefore, the lowest ξk is no longer
degenerate when lL is even.

In the ASC phase for ε > U/2, the impurity site is
approximately doubly occupied |↑↓〉i . Therefore, the ground
state is described as |ψ3〉 ∼ |0〉L ⊗ |0〉R, as schematically
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FIG. 14. (a) Entanglement spectrum gap �ξ and (b) entangle-
ment entropy SE for the ground state of the single-impurity Anderson
model on the honeycomb lattice with V = t and U = 2t . The
calculations are for L = 100 with three different lL indicated in the
figures. The logarithmic discretization scheme with � = 1.15 and
M = 100 is used. Green dashed lines indicate the phase boundary εc

determined in Fig. 3.

shown in Fig. 13(c), and thus the lowest ξk is not degenerate
[37]. The VF point, on the other hand, corresponds to the
special case where |ψ1〉, |ψ2〉, and |ψ3〉 are all degenerate
in L → ∞. These three states are entangled in a finite L

and the ground state is represented approximately as |ψ0〉 ∼
(|ψ1〉 − |ψ2〉 + |ψ3〉)/

√
3. We can now show that the lowest

ξk for |ψ0〉 is threefold degenerate.
Finally, let us briefly discuss the lL dependence of the

entanglement spectrum gap �ξ and the entanglement entropy
SE. The entanglement entropy is a quantity to measure the
degree of quantum entanglement between the left and right
blocks of a given quantum state |ψ〉 and is defined as

SE = −Trρ̂L ln ρ̂L = −
mD∑
k=1

λk ln λk. (42)

Figure 14 shows the lL dependence of these quantities
calculated for the ground state of the single-impurity Anderson
model on the honeycomb lattice.

Because the degeneracy of the lowest entanglement level,
i.e., the largest λk , is different in each region of the phase
diagram, we find in Fig. 14(b) that SE can exhibit a maximum
around the phase boundary when lL is chosen appropriately.
Therefore, SE can also be an indicator to estimate the transition
point of the impurity quantum phase transition. However, in
contrast to �ξ , the variation of SE is rather smooth across the
transition for a finite L. Furthermore, we find that SE can even
monotonically decrease with increasing ε without showing a
peak structure around the transition point [see, for example,
the results for lL = 97 in Fig. 14(b)]. This indicates that the
maximum of SE is not always located at the phase boundary.
Thus, the degeneracy of the low-lying entanglement spectrum
is a much better quantity to determine the phase boundary for
the finite-L calculations.

IV. SUMMARY

We have introduced the DMRG method in energy space for
Anderson impurity models, which allows us for calculations
in the thermodynamic limit. We have applied this method to
the single-impurity Anderson model on the honeycomb lattice
to establish the ground-state phase diagram at half-filling.
By systematically calculating the local static quantities, we
have found that the phase diagram contains two phases, i.e.,
the LM phase and the ASC phase, but no Kondo screening
phase. To support these results, we have also calculated the
spin and charge excitation spectra at the impurity site, which
behave qualitatively differently in these phases and reveal the
existence of the VF point at the phase boundary. These results
are thus qualitatively in good agreement with those obtained
previously by the low-energy approximate approaches.

For quantitative comparison, we have also studied the low-
energy effective pseudogap Anderson model using the method
introduced here. Although the high-energy excitations are
obviously different, we have found that the ground-state phase
diagram and the asymptotic low-energy excitations are in
good quantitative agreement with those for the single-impurity
Anderson model on the honeycomb lattice. Therefore, our
result provides the first quantitative justification for studies
based on the low-energy effective models.

We have also discussed the entanglement properties for
the ground state of the single-impurity Anderson model on
the honeycomb lattice. We have found that the low-lying
entanglement spectrum exhibits qualitatively different behav-
iors in the different regions of the phase diagram: the lowest
entanglement level is doubly degenerate for the LM phase,
singlet for the ASC phase, and threefold degenerate at the VF
point. We have also provided the intuitive understanding of
these different behaviors in the degeneracy of the lowest entan-
glement level. The degeneracy of the lowest entanglement level
differs from the degeneracy of the lowest-energy level because
the ground state is found to be always singlet as long as L is
even and finite. Furthermore, we have shown that the entangle-
ment entropy can exhibit a broad maximum around the phase
transition point when the ground state is properly separated to
calculate the entanglement entropy. However, this is not always
the case and sometimes the entanglement entropy varies mono-
tonically across the transition. Therefore, we conclude that
the entanglement spectrum is a better quantity to distinguish
different phases in the impurity quantum phase transition.

Finally, our present analysis has no intention to make the
quantitative comparison with experiments on the impurity
problem in graphene [1,2]. For the quantitative comparison,
further details not included in the simplest single-impurity
Anderson model should be considered. For example, the
electron correlation in the conduction band might have a
significant effect on the nature of quasiparticles [38–42]. It is
also valuable to study the effect of disorder in the conduction
band [43], which is tractable by the present method. The in-
corporation of different chemical bondings between graphene
and adatom inevitably requires more complex hybridization,
which affects the local electronic and magnetic properties
around the impurity [44]. Furthermore, the spin-orbit coupling
induced by the structural deformation around the impurity can
be significantly large [45–49]. A transition metal substrate
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can also induce a giant Rashba splitting in graphene [50,51].
The method introduced here, in combination with the first-
principles band-structure calculation based on the density
functional theory, would be a valuable extension to disentangle
these effects for the impurity problem in graphene.
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APPENDIX A: EFFECTIVE ACTIONS OF THE IMPURITY
SITE FOR HAIM, Hω, AND Hr

In this Appendix, we show that the effective action of the
impurity site for the single-impurity Anderson model HAIM on
the honeycomb lattice is exactly the same as those for Hω and
Hr in energy space.

In the momentum space, Hc and HV in HAIM are written,
respectively, as

Hc =
∑

k

∑
σ=↑,↓

∑
ζ=±

ε
(ζ )
k c

†
k,ζ,σ ck,ζ,σ (A1)

and

HV = V√
2N

∑
k

∑
σ=↑,↓

∑
ζ=±

eik·r0c
†
i,σ ck,ζ,σ + H.c., (A2)

where N is the number of unit cells and c
†
k,ζ,σ (ck,ζ,σ ) is

an electron creation (annihilation) operator of the conduction
band at momentum k with the band dispersion

ε
(ζ )
k = ζ t

∣∣1 + eik·a1 + eik·a2
∣∣. (A3)

Here, a1 and a2 are the primitive lattice vectors of the
honeycomb lattice. The partition function for HAIM is then

ZAIM =
∫

Dψ̄ Dψ exp [−SAIM], (A4)

where

SAIM =
∫ β

0
dτ

∑
σ=↑,↓

ψ̄i,σ (τ )(∂τ − ε)ψi,σ (τ )

+
∫ β

0
dτ

∑
k

∑
σ=↑,↓

∑
ζ=±

ψ̄k,ζ,σ (τ )∂τψk,ζ,σ (τ )

+
∫ β

0
dτ

∑
σ=↑,↓

∑
k

∑
ζ=±

ε
(ζ )
k ψ̄k,ζ,σ (τ )ψk,ζ,σ (τ )

+ V√
2N

∫
dτ

∑
σ=↑,↓

∑
k

[
eik·r0ψ̄i,σ (τ )ψk,ζ,σ (τ )

+ e−ik·r0ψ̄k,ζ,σ (τ )ψi,σ (τ )
]

+U

∫ β

0
dτψ̄i,↑(τ )ψ̄i,↓(τ )ψi,↓(τ )ψi,↑(τ ). (A5)

Here, ψi,σ (τ ) [ψ̄i,σ (τ )] and ψk,ζ,σ (τ ) [ψ̄k,ζ,σ (τ )] are the
Grassman’s numbers corresponding to ci,σ (c†i,σ ) and ck,ζ,σ

(c†k,ζ,σ ), respectively, at imaginary time τ , and β is the inverse
temperature. Carrying out the Gaussian integrals over the
Grassman’s numbers for the conduction electrons, we obtain

ZAIM = C

∫
Dψ̄iDψi exp[−Simp], (A6)

where the effective action Simp of the impurity site is given as

Simp = 1

β

∞∑
n=−∞

∑
σ=↑,↓

ψ̄n,i,σ [−iωn − ε + �(iωn)]ψn,i,σ

+U

∫ β

0
dτ ψ̄i,↑(τ )ψ̄i,↓(τ )ψi,↓(τ )ψi,↑(τ ) (A7)

with ωn = (2n + 1)π/β (n: integer) and C being a constant.
Here, we have introduced that

ψn,i,σ =
∫ β

0
dτ eiωnτψi,σ (τ ), (A8)

ψ̄n,i,σ =
∫ β

0
dτ e−iωnτ ψ̄i,σ (τ ), (A9)

and

�(iωn) = V 2

2N

∑
k

∑
ζ=±

1

iωn − ε
(ζ )
k

= V 2
∫ ∞

−∞
dω

ρ(ω)

iωn − ω
, (A10)

where ρ(ω) is the local density of states per spin for the
conduction band.

Similarly, the partition function for Hω in Eq. (5) is given
as

Zω =
∫

Dψ̄ Dψ exp [−Sω], (A11)

where

Sω =
∫ β

0
dτ

∑
σ=↑,↓

[
ψ̄i,σ (τ )(∂τ − ε)ψi,σ (τ )

+
∫

dω ψ̄ω,σ (τ )∂τψω,σ (τ )

]

+
∫ β

0
dτ

∑
σ=↑,↓

∫
dω ω ψ̄ω,σ (τ )ψω,σ (τ )

+V

∫
dτ

∑
σ=↑,↓

∫
dω

√
ρ(ω)

[
ψ̄i,σ (τ )ψω,σ (τ )

+ ψ̄ω,σ (τ )ψi,σ (τ )
]

+U

∫ β

0
dτ ψ̄i,↑(τ )ψ̄i,↓(τ )ψi,↓(τ )ψi,↑(τ ) (A12)

and ψω,σ (τ ) [ψ̄ω,σ (τ )] is the Grassmann’s number correspond-
ing to aω,σ (a†

ω,σ ) at imaginary time τ . Carrying out the
Gaussian integral for the conduction band, we can readily show
that the effective action Simp of the impurity site is exactly the
same as the one for HAIM with the same �(iωn) given in
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Eq. (A10). Therefore, as long as the impurity properties are
considered, these two models described by HamiltoniansHAIM

and Hω are equivalent.
We can follow the same analysis to obtain the effective

action of the impurity site for Hr given in Eq. (7), and find that
the effective action is exactly the same as the one in Eq. (A7)
except that �(iωn) is now replaced by

�r (iωn) =
M∑

m=1

(γ +
m )2

iωn − ξ+
m

+
M∑

m=1

(γ −
m )2

iωn − ξ−
m

(A13)

=
M∑

m=1

V 2

iωn − ξ+
m

∫ ωm−1

ωm

dω ρ(ω)

+
M∑

m=1

V 2

iωn − ξ−
m

∫ −ωm

−ωm−1

dω ρ(ω). (A14)

Comparing Eqs. (A10) and (A14), we can find that

lim
M→∞

�r (iωn) = �(iωn), (A15)

provided that � → 1+ is also taken for the logarithmic
discretization scheme. Therefore, the effective action Simp of
the impurity site forHr becomes exactly the same as the one for
HAIM when the small enough energy interval is adopted with
M → ∞ and also � → 1+ for the logarithmic discretization
scheme.

APPENDIX B: FURTHER TECHNICAL DETAILS

In this Appendix, we examine further technical details.
First, we discuss the l dependence of hopping tl inH [Eq. (20)]
for the single-impurity Anderson model on the honeycomb
lattice. Next, we analyze the convergence behavior of static
quantities with respect to L and �. We also determine the phase
boundary in the thermodynamic limit by explicitly taking the
limits of L → ∞ and � → 1+, which turns out to coincide
within our numerical accuracy with the phase boundary
obtained by the calculations for L = 128 and � = 1.15 in
Fig. 3. Finally, we discuss the convergence issue of dynamical
quantities.

1. The l dependence of hopping tl in H
Let us first show in Fig. 15 the l dependence of tl , i.e.,

the nearest-neighbor hopping between the conduction sites in
energy space described by H, for the single-impurity Ander-
son model on the honeycomb lattice when the logarithmic
discretization scheme is used. It is observed in Fig. 15 that tl
decays exponentially with increasing l. Indeed, we find that tl
decays approximately as tl ≈ �−l/2 except for the oscillatory
behavior towards one of the edges of the chain opposite to
the impurity site [see also Fig. 1(b)]. Although this oscillatory
behavior of tl is not a major problem for our calculations,
we terminate l at L = M to save the computational time.
As discussed below, this is rationalized because the physical
quantities are already well converged with L = M as long as
M is large enough.

The overall behavior of tl found in Fig. 15 is in good
agreement with the one for the pseudogap Anderson model. It
is known that the asymptotic behavior of tl for the pseudogap

0 50 100 150
l

10-4

10-3

10-2

10-1

100

101

t l/
t

M=20
M=40
M=60
M=80

100 120 140
l

0.8

0.9

1

1.1

t l+
1/t l

Λ−l/2

FIG. 15. l dependence of tl inH for the single-impurity Anderson
model on the honeycomb lattice with various values of M indicated in
the figure. Note that the maximum value of l for a given M is 2M + 1.
The logarithmic discretization scheme with � = 1.15 is used. A red
dotted line indicates �−l/2 with � = 1.15. The inset shows tl+1/tl for
M = 80. Two horizontal dashed lines in the inset are tl+1/tl = 1 and
�−1.

Anderson model is

tl ∼
{
C(�)�−l/2 (l : even),
C(�)�−(l+1)/2 (l : odd),

(B1)

where C(�) is a constant depending only on � [8]. Therefore,
tl+1/tl ∼ �−1 for l even and tl+1/tl ∼ 1 for l odd. As shown
in the inset of Fig. 15, we find that tl for the single-impurity
Anderson model on the honeycomb lattice also shows the same
asymptotic behavior.

In contrast, the l dependence of tl is qualitatively different
when the constant discretization scheme is used. As shown in
Fig. 16, tl is significantly different when different M is used.
This is simply because ω±

m for a given m depends directly on M

for the constant discretization scheme, while it is independent

0 50 100 150
l

0

0.5

1

1.5

2

t l/
t

M=20
M=40
M=60
M=80

FIG. 16. Same as in Fig. 15 but the constant discretization scheme
is used. Dashed lines along the symbols indicate W

√
1 − (l/M)2/4.
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1/L
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0.63

⎯S
i(Λ

, L
)

Λ=1.15
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Λ=1.25
Λ=1.30
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Λ=1.501 1.2 1.4

Λ
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0.614
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0.616

⎯S
i(Λ

)

FIG. 17. L dependence of the total spin S̄i(L,�) at impurity site
for the single-impurity Anderson model on the honeycomb lattice
at half-filling with V = t , U = 2t , and ε = t (i.e., a particle-hole
symmetric case). The logarithmic discretization scheme with various
� (indicated in the figure) is used. Here, we set M = L. The inset
shows the extrapolated values of S̄i(L,�) to L → ∞, i.e., S̄i(�), for
six different �’s. A red line is a quadratic fit of data.

of M for the logarithmic discretization scheme. We also find
in Fig. 16 that the overall behavior of tl is well described as
tl ≈ W

√
1 − (l/M)2/4. This is a universal feature when the

constant discretization scheme is used since the same overall
behavior is found even when the constant density of states is
assumed.

2. Convergence behavior of static quantities with respect
to L and �

Next, we examine the L and � dependence of the total
spin S̄i at impurity site defined in Eq. (25). In order to show
more explicitly the L and � dependence, here we shall denote
S̄i as S̄i(L,�) when it is calculated using the logarithmic
discretization scheme. We find in Fig. 17 that S̄i(L,�) for
a given � is well converged when L is sufficiently large. Note
here that we set M = L in Fig. 17. However, the extrapolated
value of S̄i(L,�) to L → ∞, i.e.,

S̄i(�) = lim
L→∞

S̄i(L,�), (B2)

implying that M → ∞ is also taken with a finite and fixed ratio
of M/L, exhibits slight but visible � dependence. As shown
in the inset of Fig. 17, we find that S̄i(�) is almost linearly
dependent on � when � is close to 1, and the difference
between S̄i(�) with � = 1.15 and the extrapolated value to
� → 1+, i.e.,

S̄∗
i = lim

�→1+
S̄i(�) (B3)

is quite small (∼10−3). We thus conclude that S̄i(�) with
� = 1.15 can represent the value in the thermodynamic limit
and the corresponding error is as small as 10−3. We should
note here that the practical NRG calculations are typically
performed with � � 1.5 [52].

Next, let us compare the results for the logarithmic dis-
cretization scheme and the constant discretization scheme. We

0 0.01 0.02 0.03 0.04
1/L

0.59

0.6

0.61

0.62

⎯S
i

log,M=L/2
log,M=2L/3
log,M=L
const,M=L/2
const,M=2L/3
const,M=L

FIG. 18. L dependence of the total spin S̄i at impurity site
for the single-impurity Anderson model on the honeycomb lattice
at half-filling with V = t , U = 2t , and ε = t (i.e., a particle-hole
symmetric case). Here, we use both logarithmic and constant
discretization schemes, denoted as “const” and “log,” respectively,
with M = L/2, 2L/3, and L. We set � = 1.15 for the logarithmic
discretization scheme. Dashed lines along the symbols for the
constant discretization scheme are fitting curvatures with cubic
polynomials of 1/L. A black dashed line indicates the extrapolated
value S̄∗

i to L → ∞ and � → 1+ obtained in the inset of Fig. 17.

indeed find in Fig. 18 that, irrespectively of the discretization
schemes, all results converge into a unique value in the limit of
L → ∞ within the error of 10−3. More precisely, the results in
Fig. 18 for the logarithmic and constant discretization schemes
should converge to S̄i(�) with � = 1.15 and S̄∗

i , respectively.
We also find in Fig. 18 that the ratio M/L, which we set to be
1 in our calculations shown in the main text, dose not affect
the converged value as long as L and M are sufficiently large.
For the logarithmic discretization scheme, the difference for
various M/L is found to be as small as 10−9.

3. Phase boundary in the thermodynamic limit

Here, we examine the phase boundary in the thermody-
namic limit by explicitly taking the limits of L → ∞ and
� → 1+ for the static quantities, i.e., the local density per
spin n̄iσ and the total spin S̄i at the impurity site, calculated
using the logarithmic discretization scheme. In order to show
explicitly the L and � dependence of these quantities, here we
adopt the convention used in Eqs. (B2) and (B3). Similarly,
we take the limit of L → ∞ for the local density per spin
n̄iσ (L,�) calculated for given L and �, i.e.,

n̄iσ (�) = lim
L→∞

n̄iσ (L,�), (B4)

and then take the limit of � → 1+, i.e.,

n̄∗
iσ = lim

�→1+
n̄iσ (�) (B5)

to estimate the value in the thermodynamic limit. To obtain
the well-converged and predictive values of S̄i(�) and n̄iσ (�)
within the residual error of 10−5, L is required as large as 180
for � = 1.15.
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Λ=1.30
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FIG. 19. Local density per spin n̄iσ (�) at impurity site for the
single-impurity Anderson model on the honeycomb lattice at half-
filling with V = t and U = 2t . The logarithmic discretization scheme
with various � (indicated in the figure) is used.

Typical results around the phase boundary are shown in
Figs. 19 and 20. We find in Figs. 19 and 20 that n̄iσ (�) and
S̄i(�) exhibit the abrupt changes exactly at the same ε, i.e.,
εc(�), for each �, although εc(�) itself depends clearly on
�. The phase boundary in the thermodynamic limit is thus
obtained by extrapolating εc(�) to � → 1+, i.e.,

ε∗
c = lim

�→1+
εc(�). (B6)

As shown in the inset of Fig. 20, we find that ε∗
c = 1.707t ±

0.001t for V = t and U = 2t , which is in excellent agreement
with εc = 1.707t–1.708t estimated from the results for L =
128 and � = 1.15 in the main text (Figs. 3 and 5). We should
also note that εc is very close to εc(�) = 1.708–1.709t for
� = 1.15. Therefore, we conclude that the typical error of the

1.69 1.7 1.71 1.72
ε/t

0.40

0.45

0.50

0.55

⎯S
i(Λ

)

Λ=1.50
Λ=1.35
Λ=1.30
Λ=1.25
Λ=1.15

1 1.2 1.4
Λ

1.705

1.710

1.715

ε c(Λ
)/t

FIG. 20. Total spin S̄i(�) at impurity site for the single-impurity
Anderson model on the honeycomb lattice at half-filling with V = t

and U = 2t . The logarithmic discretization scheme with various �

(indicated in the figure) is used. The inset shows εc(�) at which the
abrupt change of n̄iσ (�) and Si(�) occurs with varying ε. A red line
is a fitting curve with a quadratic polynomial of �.

phase boundary εc obtained in Figs. 3 and 5 is as small as
0.002t .

4. Convergence behavior of dynamical quantities

Finally, we discuss the convergence of the dynamical
quantities χs(ω) and χc(ω) for a given broadening factor η.
In order to make an accurate comparison, here we consider the
noninteracting limit. In this limit, the spin excitation spectrum
at the impurity site is given as

χ0(ω) = η

2π

∑
ek<μ

∑
e′
k>μ

∣∣u(k)
i u

(k′)
i

∣∣2

(ω − ek + ek′)2 + η2
, (B7)

where u
(k)
i is the impurity site component of the kth eigenstate

of Ĥ ′
0 in Eq. (18) with its eigenvalue ek . The charge excitation

spectrum at the impurity site is expressed with the same
form as in Eq. (B7) except for the additional factor 4, i.e.,
χc(ω) = 4χ0(ω), in the noninteracting limit. Therefore, we
only consider χ0(ω) below.

As shown in Fig. 21, we find that χ0(ω) for smaller L

exhibits oscillating behavior when the constant discretization
scheme is used. This is simply understood because the
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0.02

0.04

0.06

0.08

χ 0(ω
)

const,M=30
const,M=100

2.4 2.6 2.8 3 3.2
ω/t
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0.016

0.02

χ 0(ω
)

const,M=1000
log,M=100

0 1 2 3 4 5 6
ω/t
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0.08

χ 0(ω
)

const,M=30
const,M=100

2.4 2.6 2.8 3 3.2
ω/t

0.012

0.016
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χ 0(ω
)

const,M=1000
log,M=100

(a)

(b)

FIG. 21. Spin and charge excitation spectrum χ0(ω) at the
impurity site in the noninteracting limit for the single-impurity
Anderson model on the honeycomb lattice at half-filling with V = t

and ε = 0. Here, we use both constant and logarithmic discretization
schemes, denoted as “const” and “log,” respectively, with M = L and
broadening factors η = 0.2t (a) and 0.1t (b). We set � = 1.15 for
the logarithmic discretization scheme. The insets show the enlarged
scale around ω ∼ 2.4–3.2t . For clarity, the results for the constant
discretization scheme with M = 20 and 40 are not shown.
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broadening factor η is smaller than the level spacing of ek

when L is small. Therefore, the absence of such oscillating
behavior for large enough L is a hallmark of the convergence
for a given η. Indeed, we find in Fig. 21 that χ0(ω) for L = 100
is well converged, as compared with that for L = 1000, and
the estimated error is as small as 10−3.

We also notice in the insets of Fig. 21 that the similar
oscillating behavior appears in the high-energy regions when
the logarithmic discretization scheme is employed. This
oscillating behavior is absent in the constant discretization
scheme when the same M is used. This is simply because, in
the logarithmic discretization scheme, the energy mesh size is
determined by � and becomes wider in the higher-energy
regions than in the lower-energy regions. In contrast, in
the constant discretization scheme, the energy mesh size is
constant for all energy regions and becomes smaller with
increasing M .

Aside from the slow convergence problem in the high-
energy regions, there is a more serious technical issue for the
logarithmic discretization scheme. In the dynamical DMRG
calculation for, e.g., the spin excitation spectrum χs(ω) at the
impurity site, we have to construct the reduced density matrix
of a mixed state composed of the ground state |ψ0〉 and the
two excited states

|A〉 = Sz
i |ψ0〉 (B8)

and

|B〉 = 1

(ω − H + E0)2 + η2
Sz

i |ψ0〉 (B9)

for each ω. Therefore, as compared with the ground-state
calculation, the convergence of the dynamical calculation is
slower with respect to the number mD of the reduced density
matrix eigenstates kept in the DMRG calculation. This is an
additional source of numerical errors and depends sensitively
on the discretization schemes.

Since

〈A|A〉 = 〈ψ0|Sz
i S

z
i |ψ0〉 = S̄i

3
(B10)

and
η

π
〈B|[(ω − H + E0)2 + η2]|B〉 = χs(ω), (B11)

we can infer for each ω the errors in the two excited states |A〉
and |B〉 by evaluating

δA =
∣∣∣∣〈A|A〉 − S̄i

3

∣∣∣∣ (B12)
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ω/t
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const, δB
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FIG. 22. δA and δB , defined in Eqs. (B12) and (B13), respectively,
in the noninteracting limit for the single-impurity Anderson model on
the honeycomb lattice at half-filling with V = t and ε = 0. Here, we
use both constant and logarithmic discretization schemes, denoted as
“const” and “log,” respectively, with M = L = 100 and a broadening
factor η = 0.2t . We set � = 1.15 for the logarithmic discretization
scheme. These results are obtained by performing six sweeps of the
DMRG iteration with keeping mD = 1400.

and

δB =
∣∣∣ η

π
〈B|[(ω − H + E0)2 + η2

]|B〉 − χs(ω)
∣∣∣ (B13)

in the noninteracting limit, where χs(ω) is known exactly in
Eq. (B7) and S̄i = 1.5 when the particle-hole symmetry is
preserved.

Figure 22 shows the results of δA and δB for the constant
and logarithmic discretization schemes with keeping the same
number mD of the reduced density matrix eigenstates and the
same tolerance for the optimization of |ψ0〉 and |B〉 [34].
As shown in Fig. 22, we find that both δA and δB for the
logarithmic discretization scheme are larger than those for
the constant discretization scheme. These results clearly show
that the convergence of the excited states in the logarithmic
discretization scheme is slow and thus a larger mD is required
to reach the same convergence as in the constant discretization
scheme, implying that the logarithmic discretization scheme
demands more computational cost. Therefore, we employ the
constant discretization scheme to calculate the full excitation
spectra.
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