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We construct two-dimensional non-Abelian topologically ordered states by strongly coupling arrays of one-
dimensional quantum wires via interactions. In our scheme, all charge degrees of freedom are gapped, so the
construction can use either quantum wires or quantum spin chains as building blocks, with the same end result.
The construction gaps the degrees of freedom in the bulk, while leaving decoupled states at the edges that are
described by conformal field theories (CFT) in (1 + 1)-dimensional space and time. We consider both the cases
where time-reversal symmetry (TRS) is present or absent. When TRS is absent, the edge states are chiral and
stable. We prescribe, in particular, how to arrive at all the edge states described by the unitary CFT minimal models
with central charges c < 1. These non-Abelian spin liquid states have vanishing quantum Hall conductivities, but
nonzero thermal ones. When TRS is present, we describe scenarios where the bulk state can be a non-Abelian,
nonchiral, and gapped quantum spin liquid, or a gapless one. In the former case, we find that the edge states are
also gapped. The paper provides a brief review of non-Abelian bosonization and affine current algebras, with
the purpose of being self-contained. To illustrate the methods in a warm-up exercise, we recover the tenfold
way classification of two-dimensional noninteracting topological insulators using the Majorana representation
that naturally arises within non-Abelian bosonization. Within this scheme, the classification reduces to counting
the number of null singular values of a mass matrix, with gapless edge modes present when left and right null
eigenvectors exist.
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I. INTRODUCTION

A. Motivation and strategy

Topologically ordered states of matter [1], of which the
fractional quantum Hall effect (FQHE) is the quintessential
example, contain rich elementary excitations. A necessary and
sufficient condition for topological order is argued in Ref. [2]
to be the existence of pointlike excitations obeying either
Abelian [3,4] or non-Abelian [5–13] anyonic statistics.

The quantum numbers of the topological anyon excitations
are encoded by a topological quantum field theory (TQFT)
in the bulk. The type of TQFT in the bulk can imply the
existence of gapless degrees of freedom on the edge, in the
form of a conformal field theory (CFT) in (1 + 1)-dimensional
space and time. While the bulk-boundary correspondence is
not one-to-one, certain implications can be formulated. For
example, the fractional part of the central charge [12] of the
bulk TQFT has to match that of the chiral central charge of
the edge CFT. [Changes by integers can always be obtained
by gluing an integer-quantum-Hall-type phase to the (2 + 1)-
dimensional system, which does not change the bulk TQFT.]
Thus the CFT describing the edge excitations is to some extend
a diagnostic of the bulk topological order. For instance, the
value taken by the central charge of this CFT is sensitive to
whether it originates from either an Abelian or a non-Abelian
topological order. A noninteger chiral central charge of the
edge CFT implies non-Abelian topological order in the bulk.

The goal of this paper is to establish that a class of models
built out of itinerant electrons, confined to two-dimensional
space, display non-Abelian topological order upon fine-tuning
of finite-range electron-electron interactions. The strategy that
we employ is to couple a one-dimensional array of quantum

wires, each of which supports a finite density of noninteracting
electrons, through electron tunneling and electron-electron
interactions. Prior to switching on the electron tunneling
and electron-electron interactions, the electrons can only
move ballistically along their hosting wire. There is no
electronic motion in the direction transverse to any given
wire. The one-dimensional array of quantum wires realizes
a CFT in (1 + 1)-dimensional space and time with a central
charge cdecoupled twice the number of wires. After switching
on the electron tunneling and electron-electron interactions,
a crossover to two-dimensional physics takes place along
which the noninteracting critical theory flows to a CFT
with a central charge ccoupled that is either zero or has a
nonvanishing fractional part depending on whether periodic
or open boundary conditions are imposed when coupling the
wires. With periodic boundary conditions along the chain of
wires, the ground state is separated from all excitations by a
gap. With open boundary conditions along the chain of wires,
the residual gapless excitations are necessarily localized along
the left and right terminations of the chain of wires.

In our scheme, the charge degrees of freedom are gapped.
For this reason, instead of using quantum wires as building
blocks, we could equally as well start with a set of coupled
quantum spin chains. This opens the possibility to engineer
two-dimensional non-Abelian quantum spin liquids using
coupled spin chains. We consider both the cases where
time-reversal symmetry (TRS) is present or absent. The fact
that we gap the charge degrees of freedom means that, even
when time-reversal symmetry (TRS) is broken, there is no
quantum Hall conductance, but only a quantum thermal Hall
conductance; this is an example of a non-Abelian chiral spin
liquid.
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B. Summary of main results

We employ non-Abelian bosonization in order to construct
symmetry protected topological (SPT) phases and topolog-
ically ordered phases of matter out of arrays of interact-
ing quantum wires for, as the name suggests, non-Abelian
bosonization is ideally suited to construct topological orders
that are characterized by a non-Abelian Lie group.

The logic behind our construction is as follows. An
individual quantum wire with spinful electrons has (in absence
of spin-orbit or Zeeman couplings) an internal symmetry group
UR(2) × UL(2), where R and L stands for the right- and left-
moving modes at low energies, respectively. A translationally
invariant array of N such wires has the symmetry group
UR(2N ) × UL(2N ). The generators of this group and any of its
subgroups can be associated with current operators, which in
turn are products of electron operators. Consider any subgroup
H of U(2N ). The degrees of freedom that are not singlets
under the subgroup can be removed from UR(2N ) and UL(2N )
simultaneously via the interaction

λH

∑
a

Ĵ a
R Ĵ a

L , λH > 0, (1.1)

where a runs over all generators of the subgroup H , while
Ĵ a

R and Ĵ a
L are the associated current operators formed from

the left-moving and right-moving modes, respectively. The
resulting theory will have a reduced number of degrees of
freedom associated with the group quotient (or coset in short)
[UR(2N )/HR] × [UL(2N )/HL].

When choosing possible subgroups H , the physical con-
straint of locality has to be observed. If the generators of H

involve electronic degrees of freedom from far apart wires,
then H is not admissible. Likewise, while HR and HL are
the same mathematical subgroup, they need not be realized
in the same wires. However, they need to be realized in
nearby wires, as interaction (1.1) would otherwise represent
long-range interactions between the wires.

The above procedure is then iterated using the same
subgroup H repeatedly, but each time realized on a different
set of wires, until the symmetry group UR(2N ) × UL(2N ) is
completely broken in the bulk. Physically this corresponds to
gapping all the low-energy modes in the bulk. In an array
of wires with open boundary conditions, there may remain a
protected group coset with associated currents that are build
exclusively from the degrees of freedom near the edge. For
this procedure to be applicable, H must be chosen such
that UR(2N )/HR still contains HR (shifted by the appropriate
number of wires) as a subgroup, and likewise for L. This is
a fundamental compatibility condition that has to be obeyed
by all the current-current interactions that are used to gap out
degrees of freedom. It is tantamount to the condition that the
respective Hamiltonian terms of the form (1.1) commute.

Before embarking on this program, we choose in Sec. II D to
employ as a warmup the non-Abelian bosonization technique
to construct the noninteracting SPT phases that constitute the
tenfold way for noninteracting topological insulators and su-
perconductors (the tenfold way, in short) [14–17]. At first sight,
this might seem to overcomplicate matters as the same result
has already been obtained with Abelian bosonization [18].
However, the essential case of the superconducting class D,

stabilized by Z2 fermion parity symmetry only, is at odds with
the U(1) group that is fundamentally associated with Abelian
bosonization. One needs to invoke further arguments to obtain
the desired construction [18]. With non-Abelian bosonization,
the construction follows rather naturally, as we shall see.

The symmetry group associated with the mean-field de-
scription of an array of N (spinless) superconducting wires
is OR(2N ) × OL(2N ) ∼ UR(N ) × UL(N ), where the right-
and left-moving electronic degrees of freedom are each
decomposed in two Majorana fermions. Via non-Abelian
bosonization, these degrees of freedom are represented by a
O(2N )-valued bosonic matrix field G(t,x) that is a function of
time t and the position x along the wire. A term

λM tr (GM), (1.2)

parametrized by a constant and real-valued 2N × 2N matrix
M gaps out all the modes that are not in the kernel of
M . More precisely, the remaining right-moving Majorana
modes correspond to the right eigenspace with eigenvalue 0
of M , while the remaining left-moving Majoranas are the left
eigenspace with eigenvalue 0. For example, if

M =

⎛⎜⎜⎜⎜⎝
0 · · · 0

1
. . .
. . .

0 · · · 1 0

⎞⎟⎟⎟⎟⎠, (1.3)

there remains a single left-moving Majorana mode at the left
edge and a single right-moving Majorana mode at the right
edge of the wire array. This realizes the simplest nontrivial
example of an SPT state in class D, equivalent to a chiral
p-wave superconductor [19,20]. We discuss all nontrivial
examples from the tenfold way using this approach.

We then return in Sec. III to the main part of the paper,
namely to intrinsically interacting and topologically ordered
states of quantum wires. For this construction, we consider
the subgroup · · · U(2k) × U(2k′) × U(2k) × U(2k′) · · · of the
group U(2N ) of all wires by arranging k and k′ wires into a
bundle in an alternating fashion. Then, the low-energy sector of
each bundle is reduced to the states generated by the nontwisted
affine Lie algebra ŝu (2)k [and ŝu(2)k′ respectively]. This is
achieved through current-current interactions from the coset
representation

ŝu(2)k = û(2k)

û(1) ⊕ ŝu(k)2

. (1.4)

The identity (1.4) is valid for any integer k = 1,2, · · · . Here,
the U(1) subgroup corresponds to the total charge of the
electron modes in the k consecutive wires of a bundle. To
gap only this subgroup without gapping the charge mode
of, e.g., a single wire, a (2k)-body interaction is used. In
contrast, all the remaining interactions of the construction
are of two-body nature. For example, the ŝu(k)2 subalgebra
in Eq. (1.4) corresponds to k flavors within each bundle and
is gapped by the respective current-current interactions. (The
same applies to the other k′ flavors within each bundle.) While
these wire flavors in each bundle can be thought of as a pseudo-
or isospin degree of freedom, the remaining nontwisted affine
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Lie algebra · · · ŝu(2)k ⊕ ŝu(2)k′ ⊕ ŝu(2)k ⊕ ŝu(2)k′ · · · stems
from the physical spin of the electrons in the bundles of wires.

The essential step in our construction consists in coupling
these coarse-grained SU(2) “chiral spins” across the bundles of
wires in such a way that a pattern of long-range entanglement
emerges. This is achieved by coupling the right-moving
subgroup in one wire bundle with the left-moving subgroup
in the consecutive bundle with a current-current interaction.
This coupling breaks time-reversal symmetry and makes our
construction chiral. Our construction thus realizes a chiral spin
liquid, not a fractional quantum Hall state (the Hall response
vanishes). (A one-dimensional array of coupled spin-1/2
chains, if it is to support such a chiral spin-liquid ground
state, must break time-reversal symmetry either explicitly or
spontaneously.)

While gapping all modes in the bulk, there re-
mains a right-moving (left-moving) coset-algebra ŝu(2)k ⊕
ŝu(2)k′/ŝu(2)k+k′ on the left (right) edge of the sample. It is
protected, since it is fully chiral. This construction realizes, for
different values of k and k′, edge states associated to different
CFTs, with central charges ck,k′ . In particular, the associated
CFTs on the edge include, for k′ = 1, all unitary minimal
models with central charge

ck,1 = 1 − 6

(k + 2)(k + 3)
, (1.5)

and, for k′ = 2, all superconformal minimal models with
central charge

ck,2 = 3

2
− 12

(k + 2)(k + 4)
. (1.6)

Figure 1 is a schematic illustration of the Hamiltonian
that leads to the topologically ordered state for k = k′ = 1,
realizing Ising topological order.

We emphasize that the large non-Abelian symmetry group
UR(2N ) × UL(2N ) that was invoked prior to coupling the
wires should be thought of as a special limit that allows
to use the tools of non-Abelian bosonization. It is not the
symmetry UR(2N ) × UL(2N ) that is protecting the essential
topological properties of the phase. It is worth noting that our
construction preserves the full SU(2) rotation symmetry of the
physical spin. However, breaking it through the substitutions
λH → λa

H in Eq. (1.1) is inconsequential for the stability

… …

FIG. 1. Schematic representation of the Hamiltonian for a state
with non-Abelian topological order arising from interactions between
electronic quantum wires. Each ⊗ and � represents the right- and
left-moving (spinful) electrons of a quantum wire coming out of the
plane of the page. Each gray area represents an interaction that gaps
out charge fluctuations on the bundle of wires that it encloses. Each
line represents a SU(2) symmetric Heisenberg interaction between
the spin densities of left and right movers that it connects. Lines of
the same color represent interaction terms of the same strengths.

of the chiral edge states. Conversely, weakly breaking the
full spin-1/2 SU(2) rotation symmetry prior to coupling the
wires is also inconsequential for the stability of the chiral
edge states. (Weakly is defined relative to the characteristic
energy scales involved in our SU(2) symmetric construction
of a topologically ordered phase.)

In the last parts of Sec. III, we investigate the consequences
of imposing a symmetry acting trivially in space on such a wire
construction. We study the case of time-reversal symmetry.
One can define a time-reversal invariant system that is related
to the chiral construction outlined above in one of two ways. (I)
One adds to the Hamiltonian the time-reversed counterpart of
each term that is already present. (II) One doubles the Hilbert
space by invoking an additional valley degree of freedom
that is exchanged under reversal of time and realizes in one
valley the chiral construction outlined above and in the other
valley its antichiral partner. Case I leads to a phase transition
between two distinct topological ordered states that cannot
be solved using non-Abelian bosonization. Case II is solvable
by construction. It realizes a nonchiral and non-Abelian spin
liquid. Since the charge sector is gapped both in the bulk
and on the edges, the spin-Hall response vanishes. The edge
of this system is nonchiral, as it hosts the chiral coset CFT
in one valley polarization and the antichiral coset CFT in
the other valley polarization on one given edge. It is then
imperative to ask to what extend these edge-modes are stable
against local time-reversal symmetric perturbations at the
edge. We find that the edge is not stable. However, if a
certain U(1) symmetry is imposed, one-body backscattering
terms are not sufficient to gap the edge. We determine the
non-Abelian current-current interaction that is capable of
gapping the edge in this case. This result is consistent with
what is known from Abelian wire constructions in the case
where a U(1) subgroup of the SU(2) spin-rotation symmetry
is preserved. Protected edge modes appear only in phases with
nonvanishing spin-Hall conductivity [21]. (See also Ref. [22]
for a parton construction of non-Abelian spin liquids that
respects time-reversal symmetry.)

C. Comparison with prior works

Arrays of coupled wires have been applied to many
problems in statistical and in condensed matter physics. The
multichannel Kondo effect can be formulated as an effective
array of coupled quantum wires [23–25]. We borrow the
technology of conformal embedding from Refs. [23–25] in
this paper.

Another motivation to study coupled quantum wires stems
from the mystery represented by the pseudogap phase in
high-temperature superconductors and, more generally, the
problem of the breakdown of Fermi liquid theory without
conventional symmetry breaking [26–36]. If each wire is
half-filled and decoupled from all other wires, the charge sector
is gapped while the spin-1/2 degrees of freedom are gapless.
The decoupled array of quantum wires turns into a decoupled
array of quantum spin-1/2 chains. Depending on how these
spin-1/2 chains are coupled, gapped or gapless magnetic
phases emerge in two and higher dimensions. Moving away
from half-filling allows to study the correlated hopping of a
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small density of electrons or holes in a strongly correlated
background of spins.

The bands of quasi-one-dimensional organic conductors
such as the Bechgaard salts family are characterized by
the hierarchy of electronic hopping amplitudes ta � tb �
tc along the orthogonal crystalline axis a, b, and c. This
hierarchy justifies modeling the bands by weakly coupled
quantum wires. In the presence of a uniform magnetic field
parallel to the c crystalline axis, the strongly nested Fermi
surface is unstable to charge- or spin-density wave instabilities
triggered by umklapp instabilities at a commensurate filling
fraction. The limit, tc/tb = 0 realizes the integer quantum Hall
effect (IQHE) [37,38]. The limit, tc/tb 	 1 realizes a weak
topological insulator in the symmetry class A from the tenfold
way [38–40].

The critical properties of the plateau transitions between
two consecutive quantized Hall plateaus in the IQHE are
captured by the Chalker-Coddington model (see Ref. [41]), in
the limit in which electron-electron interactions are neglected.
It was shown in Ref. [42] how to represent the Chalker-
Coddington model as a one-dimensional array of coupled
quantum wires. More generally, one may assign to any array
of quantum wires a transfer matrix that maps states that are
incoming and outgoing to one end of the wires into states
that are incoming and outgoing to the other end of the wires.
This is a very useful approach to characterize analytically and
numerically the effects of static disorder on transport along the
wires, ignoring the effects of electron-electron interactions.

Coupling arrays of quantum wires by forward electronic
interactions select sliding Luttinger liquid (SLL) phases in
dimensions larger than one [43–47]. In two remarkable papers,
Refs. [48] and [49], it was shown how to add backward
electronic interactions in a one-dimensional array of quantum
wires so as to gap the SLL phases and stabilize Abelian
and non-Abelian fractional quantum Hall states, respectively,
instead (see also Refs. [18,50–58] for one-dimensional arrays
of coupled quantum wires and Ref. [59] for a two-dimensional
array of coupled quantum wires stabilizing long-ranged
entangled phases of fermionic matter). Common to all these
papers is the fact that only electron-electron interactions are
considered, contrary to the models from Refs. [60–66] in which
the fundamental constituents are fractionalized fermions (such
as Majorana fermions) subject to interactions.

What distinguishes our work from Ref. [49] and ensuing
papers is that we do not rely on the charge sector of the quantum
wires to stabilize a non-Abelian topologically ordered phase.
In Ref. [49], the electrons are spin polarized by a strong
uniform magnetic field, the filling fraction is fine tuned to
the magnitude of the applied magnetic field. Here and as was
done in Ref. [67] when deriving Abelian and the SU(2) level
k Read-Rezayi chiral spin liquids from arrays of quantum
wires, we gap the charge sector from the outset by breaking
translation invariance explicitly if necessary (i.e., if the filling
fraction is not commensurate to the one-dimensional Fermi
wave number), leaving only the spin-1/2 degrees of freedom
in the low-energy sector of the theory. The non-Abelian
topologically ordered phase is then selected by fine-tuned
spin-spin interactions. Of course, we could have used spin
chains as building blocks of the wire construction from the
outset. From this point of view, our work can be thought of

as a generalization to non-Abelian chiral spin liquids of the
approach used in Ref. [68] to realize the Abelian Kalmeyer-
Laughlin state using weakly coupled zigzag chains hosting
quantum spin-1/2 degrees of freedom. The time-reversal
broken non-Abelian topologically ordered phase constructed
below should be compared to the Abelian (see Refs. [68–83])
and non-Abelian (see Refs. [84–86]) chiral spin-liquid states
that have been proposed for diverse two-dimensional lattices.

Common to Ref. [49] is the belief that deriving topological
ordered states from coupled wires is useful. First, it provides an
intuitive bridge between the abstract description of topological
order in terms of topological quantum field theories (see
Ref. [87] and references therein) on the one hand, and exactly
solvable models that are designed from wave functions or
lattice models that can only be studied numerically, on the
other hand. Second, it opens the door for engineering materials
supporting topological order.

II. REVIEW OF NON-ABELIAN BOSONIZATION
AND CURRENT ALGEBRAS

In order to keep this paper reasonably self-contained, we
begin with a review on non-Abelian bosonization, including
non-Abelian current algebras, which will be of major utility in
deriving the main results of the paper in Sec. III. The reader
who is fluent with non-Abelian bosonization is welcome to
skip this brief summary and may jump to Sec. II D, where,
as a warmup exercise, we rederive the tenfold classification of
topological insulators in two-dimensional space using the tools
here reviewed. A particular aspect in this section that is original
is how to determine the presence of gapless edge modes in
systems with boundaries, where we introduce a mass matrix
whose null singular values signal gapless modes. Moreover,
the left-edge and right-edge modes appear as left and right null
eigenvectors of the mass matrix.

A. Affine Lie algebras

Non-Abelian bosonization is intimately related to affine
Lie algebras. Affine Lie algebras are generalizations of Lie
algebras [88]. One of the Lie algebras with which physicists are
most familiar is that associated to the total angular momentum
operator Ĵ , i.e.,

[Ĵ a,Ĵ b] =
3∑

c=1

iεabc Ĵ c, a, b = 1,2,3, (2.1)

where we have set the Planck constant � to unity. The Levi-
Civita symbol εabc, the fully antisymmetric rank three tensor,
is an example of the structure constants of a Lie algebra. The
three components of the total angular momentum operator Ĵ
are the generators of the Lie algebra (2.1). This Lie algebra
is denoted by su(2), for the operator exp(iα · Ĵ) represents an
element of the unitary group SU(2) parametrized by the vector
α ∈ R3.

More generally, a Lie algebra g is a vector space equipped
with a binary operation denoted [·,·] that is called the Lie
bracket. The Lie bracket is a mapping from g × g → g such
that it is (i) antisymmetric under interchange of its two entries,
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(ii) linear in both entries, and (iii) satisfies the Jacobi identity

[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y ]] = 0 (2.2)

for any X,Y,Z ∈ g.
A Lie algebra can be specified by a set of generators Ĵ a

with a = 1, . . . ,dim g that are Hermitian operators obeying
the relations

[Ĵ a,Ĵ b] =
dim g∑
c=1

if ab
c Ĵ c (2.3)

for a,b = 1, . . . ,dim g. The number dim g of generators is the
dimension of the algebra. The numbers f ab

c are real valued
and can be chosen to be antisymmetric under interchange of a

and b by virtue of the fact that the Lie bracket is antisymmetric
under exchanging a with b.

A subset h of the Lie algebra g is called a Lie subalgebra if
this subset is closed under the Lie bracket, i.e., if [h,h] ⊂ h. A
Lie subalgebra h of g is an ideal if it satisfies the stronger
constraint that [g,h] ⊂ h. The null vector and g itself are
trivially ideals. A proper ideal of g is an ideal that is neither
the null vector nor g itself. A simple Lie algebra has no proper
ideal. A semisimple Lie algebra is a direct sum of simple Lie
algebras. A semisimple Lie algebra generates a semisimple
Lie group, i.e., a direct product of simple Lie groups.

Let t be any real number and let C[t,t−1] denote the set
of polynomials of the form

∑
n∈Z pn tn with finitely many

nonvanishing complex-valued coefficients pn. Let g denote a
Lie algebra. The loop algebra

g̃ := g ⊗ C[t,t−1] (2.4a)

is a Lie algebra equipped with the Lie bracket

[
Ĵ a

m,Ĵ b
n

] =
dim g∑
c=1

if ab
c Ĵ c

m+n, (2.4b)

where the short-hand notation

Ĵ a
m := Ĵ a ⊗ tm, Ĵ b

n := Ĵ b ⊗ tn, Ĵ c
m+n := Ĵ c ⊗ tm+n,

(2.4c)
was introduced for any a,b = 1, . . . ,dim g and for any m,n ∈
Z.

We introduce the one-dimensional vector space

Ck̂ := {z k̂ | z ∈ C}. (2.5)

We introduce the operator

L̂0 := −t
d

dt
(2.6a)

acting on the vector space of Laurent polynomials C[t,t−1]
through the operation of commutation with the fundamental
rule that

L̂0 tm − tm L̂0 = −m tm (2.6b)

for any integer m and define the one-dimensional vector space

CL̂0 := {z L̂0 | z ∈ C}. (2.6c)

The algebra

ĝ := g̃ ⊕ Ck̂ ⊕ CL̂0 (2.7a)

with the brackets

[
Ĵ a

m,Ĵ b
n

] =
dim g∑
c=1

if ab
c Ĵ c

m+n + k̂ n δab δm+n,0, (2.7b)

[
Ĵ a

m,L̂0

] = mĴ a
m, (2.7c)

and [
Ĵ a

m,k̂
] = 0 (2.7d)

for any a,b = 1, . . . ,dim g and for any m,n ∈ Z is called a
nontwisted affine Lie algebra. It is an infinite-dimensional
algebra with the generators Ĵ a

m, k̂, and L̂0.
The simplest realization of an affine Lie algebra in physics

is that of the normal modes â
†
m and ân of the real-valued

Klein-Gordon scalar field in (1 + 1)-dimensional Minkowski
space and time. These obey the canonical Boson algebra

[âm,â†
n] = δm,n, [âm,ân] = [â†

m,â†
n] = 0. (2.8)

The Heisenberg algebra

[L̂m,L̂n] = [R̂m,R̂n] = m δm+n,0, [L̂m,R̂n] = 0, (2.9a)

for the nonvanishing integers m and n follows from the
definitions

L̂n :=
{

−i
√+n â+n, n > 0,

+i
√−n â

†
−n, n < 0,

(2.9b)

R̂n :=
{

−i
√+n â−n, n > 0,

+i
√−n â

†
+n, n < 0.

(2.9c)

The Heisenberg algebra is the affine extension of the û(1)
algebra generated by the zero mode â0. The eigenvalue of
the central operator k̂ is not quantized for an Abelian Lie
group as it depends on the multiplicative factor chosen in the
transformations (2.9b) and (2.9c).

B. Free fermion realizations of affine Lie algebras

We define the partition function

Z :=
∫

D[χ ] e−S[χ] (2.10a)

over the Grassmann vector field χT ≡ (χT
R χT

L ) with the
action

S[χ ] := i

2

∫
dz̄ dz

2

(
χT

R 2∂z̄ χR + χT
L 2∂z χL

)
(2.10b)

and the complex coordinates z̄ = x1 − ix2 and z = x1 + ix2 of
the complex plane. [Choosing x1 ≡ t and x2 ≡ ix relates the
complex plane to (1 + 1)-dimensional Minkowski space and
time.] The Grassmann vector field χT

R ≡ (χR,1 · · ·χR,n) only
depends on z, it is holomorphic. The Grassmann vector field
χT

L ≡ (χL,1 · · ·χL,n) only depends on z̄, it is antiholomorphic.
Their components obey the Laurent series expansion, i.e., the
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operator product expansion (OPE),

χR,α(z) χR,β(0) = − i

2π

δαβ

z
+ · · · , (2.11a)

χL,α(z̄) χL,β(0) = − i

2π

δαβ

z̄
+ · · · , (2.11b)

χR,α(z) χL,β(0) = 0, (2.11c)

for any α,β = 1, . . . ,n.
The theory (2.10) is invariant under the local transformation

χR(z) �→ OR(z) χR(z), χL(z̄) �→ OL(z̄) χL(z̄), (2.12)

where OR(z) and OL(z̄) are matrix fields belonging to SO(n).
We define the corresponding so(n) Noether currents

J a(z) := iπ (χT
R T a χR)(z), J̄ a(z̄) := iπ (χT

L T a χL)(z̄),
(2.13a)

where the generators T a ≡ T (rs) [with the collective label a

representing the ordered pair (r,s) with 1 � r < s � n] are
n × n Hermitian matrices with the components

T
(rs)
ij = i(δr,i δs,j − δr,j δs,i). (2.13b)

It then follows that

J a(z) J b(0) =
∑

c

if ab
c J c(0)

z
+ 1

2

tr (T a T b)

z2
, (2.14a)

J̄ a(z̄) J̄ b(0) =
∑

c

if ab
c J̄ c(0)

z̄
+ 1

2

tr (T a T b)

z̄2
, (2.14b)

J a(z) J̄ b(0) = 0, (2.14c)

where

f ab
c ≡ f(rs)(pq)(mn)

= δm,r (δn,q δs,p − δn,p δs,q) + δm,s(δr,q δn,p − δn,q δr,p)

(2.14d)

are the structure constants of so(n). Observe that the choice
made in Eq. (2.13b) implies the normalizations

tr (T a T b) = 2 δab,
∑
a,b

f ab
c f ab

d = 2(n − 2) δcd . (2.14e)

Insertion of the Laurent expansions

J a(z) =:
∑
m∈Z

z−m−1 J a
m, J̄ a(z) =:

∑
m∈Z

z̄−m−1 J̄ a
m, (2.15)

into the operator product expansions (2.14a) and (2.14b),
respectively, delivers a pair of a holomorphic and an antiholo-
morphic affine Lie algebras of the form (2.7) with the central
term k̂ replaced by its eigenvalue, the level k = 1.

We close this discussion of free Majorana fermions with the
definition of their central charge. Without loss of generality,
we work in the holomorphic sector of the theory. The energy-
momentum tensor has the light-cone component

TR(z) ≡ − 2π Tzz

≡ − π

2
T z̄z̄(z)

:= − i
π

2

n∑
α=1

2

(
δS

δ(∂z̄ χR,α)
(∂zχR,α)

)
(z)

= iπ
(
χT

R ∂z χR

)
(z). (2.16a)

Its OPE with itself is

TR(z) TR(0) = c/2

z4
+ 2 TR(0)

z2
+ (∂zTR)(0)

z
+ · · · , (2.16b)

where the numerator of the term with the fourth-order pole is

c = n/2. (2.16c)

The number c is called the central charge associated to the
(holomorphic) Virasoro algebra defined by the OPE (2.16b).

C. Bosonic realizations of affine Lie algebras

Another example of a critical theory is the Wess-Zumino-
Witten (WZW) model defined by the partition function [89,90]

Z :=
∫

D[G] e−SWZW[G], (2.17a)

where G ∈ G denotes a matrix-valued bosonic field, G denotes
a compact Lie group, and D[G] denotes the Haar measure on
G. (We shall denote with ĝk the affine Lie algebra of integer
level k corresponding to the compact Lie group G.) The WZW
action in two-dimensional Euclidean space (x,y) ≡ (xi) ∈ R2

is

SWZW[G] := k

16π

∫
d2x tr(∂iG ∂iG

−1) + k 
[G]. (2.17b)

(The summation convention over the repeated index i = 1,2
is implied.) The topological contribution 
[G] is the Wess-
Zumino term


[G] := − i

24π

∫
B

d3ξεijktr[(Ḡ−1∂iḠ) (Ḡ−1∂j Ḡ)(Ḡ−1∂kḠ)].

(2.17c)

Here, Ḡ denotes the extension of G to the solid ball B ≡
{(ξ1,ξ2,ξ3)|∑3

i=1 ξ 2
i � 1} with two-dimensional Euclidean

space as its boundary. As explained in Refs. [89,90], k must be
an integer for the functional exp(−k 
[G]) over the compact
Lie group G to be single valued.

The theory (2.17) is invariant under the local transformation

G(z̄,z) �→ L(z̄) G(z̄,z) RT(z), (2.18)

where R and L are matrices belonging to G and z̄ = x − iy
is the complex conjugate to z = x + iy ∈ C. The OPE of its
Noether currents (with proper normalizations) delivers a pair
of a holomorphic and an antiholomorphic affine Lie algebra
ĝk of the form (2.7) with the central term k̂ replaced by its
eigenvalue, the level k.

The central charge c of the bosonic theory (2.17) is

c = k dim(G)

k + Coxeter�(G)
, (2.19)

where dim(G) is the dimension of the compact Lie group
G (the dimensionality of its adjoint representation), while
Coxeter�(G) is the dual Coxeter (twice the eigenvalue of
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the Casimir operator in the adjoint representation when the
squared length of the highest root is normalized to 2).

If

G = G1 × G2, (2.20a)

it then follows that

c =
∑
i=1,2

k dim(Gi)

k + Coxeter�(Gi)
. (2.20b)

More generally, denote with ĝ
(i)
ki

the WZW theory of level ki .
The WZW theory with the semisimple affine Lie algebra

ĝ := ĝ
(i)
k1

⊕ · · · ⊕ ĝ
(i)
ki

⊕ · · · (2.21a)

has the central charge

c =
∑

i

ki dim(G(i))

ki + Coxeter�(G(i))
. (2.21b)

There are several ways to make contact between the critical
theory (2.10) and the critical theory (2.17).

Example 1. We do the identifications

G → O(n), k → 1, (2.22a)

for which

dim(G) → 1

2
n (n − 1), (2.22b)

Coxeter�(G) → n − 2, (2.22c)

c = dim(G)

1 + Coxeter�(G)

→ (1/2) n (n − 1)

1 + n − 2

= 1

2
n. (2.22d)

Example 2. We assume that n = m n′ and do the identifica-
tions

ĝ → ⊕n′
i=1ĝi , Gi = O(m), ki → 1, (2.23a)

for which

dim Gi → 1

2
m (m − 1), (2.23b)

Coxeter�(Gi) → m − 2, (2.23c)

c =
n′∑

i=1

dim(Gi)

ki + Coxeter�(Gi)

→ n′ (1/2) m (m − 1)

1 + m − 2

= 1

2
m n′. (2.23d)

This result for the central charge can be applied to the cases of
O(1) and O(2) even though O(1) is not a continuous Lie group
while O(2) is an Abelian group.

We choose example 1. The non-Abelian bosonization rule
for any local quadratic term made from the Majorana fields
[χR (χL) denotes the right-moving (left-moving) n-component
Majorana vector field] is

muv Gαβ = iχL,α χR,β , (2.24)

for α,β = 1, . . . ,n, and where muv is the mass parameter that
depends on the regularization scheme (the ultraviolet cutoff),
and Gαβ is a matrix element of G.

The central charge of the O(n)1 WZW model is

c = n

2
. (2.25)

It coincides with the central charge for n Majorana
fermions (2.10), as the central charge of a single pair of right-
and left-moving Majorana channels is 1/2.

Recall that the central charge counts the effective degrees
of freedom at criticality, i.e., the effective number of gapless
degrees of freedom. Thus, if we add some quadratic mass term
into our massless fermionic theory (2.10) so as to break a
part of the O(n) symmetry, the central charge should then be
reduced.

For example, if we add the term

iχL,1 χR,2 = muv G12, (2.26)

then the symmetry OR(n) × OL(n) breaks down to OR(n −
1) × OL(n − 1). Correspondingly, the central charge reduces
to

c = n

2
− 1

2
. (2.27)

A pair of right- and left-moving Majorana modes has become
massive.

Observe that

iχL,1 χR,2 + iχL,1 χR,3 = muv (G12 + G13) (2.28)

does not reduce the OR(n) × OL(n) symmetry to OR(n − 2) ×
OL(n − 2). To see this, introduce the matrix M

G12 + G13 =: tr(M G). (2.29)

A solution is to choose a matrix with the only nonvanishing
matrix elements M21 = M31 = 1 sitting on the same column.
This is to say that M is constructed out of only one linearly
independent column vector out of n column vectors. Hence
there must exist two orthogonal matrices R and L such that

Md = RT M L (2.30)

is a diagonal matrix with one and only one nonvanishing
diagonal matrix element. We choose this nonvanishing matrix
element to be the first diagonal entry, (Md )11 = 
1 �= 0. While
the action (2.17) is invariant under the transformation (2.18),
the mass term becomes

muvtr(M G) �→ muv tr(M LG RT)

= muv tr(RT M LG )

= muv Tr(Md G )
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= muv 
1 G11

= iχL,1 χR,1 (2.31)

after the transformation (2.18). Hence, the mass term (2.28)
reduces the symmetry to OR(n − 1) × OL(n − 1) and not
to OR(n − 2) × OL(n − 2), as might have been erroneously
deduced by identifying the “2” in n − 2 with two independent
mass terms.

For an arbitrary mass matrix M , we can employ the
singular-value decomposition

Md = RT M L, (2.32)

to get a diagonal matrix of rank r , i.e.,

Mdiag = diag

⎛⎝
1,
2, . . . ,
r︸ ︷︷ ︸
r

, 0,0, . . . ,0︸ ︷︷ ︸
n−r

⎞⎠, (2.33)

whereby 
1,
2, · · · ,
r �= 0. The symmetry is then reduced
from OR(n) × OL(n) to OR(n − r) × OL(n − r) with the cor-
responding central charge

c = n

2
− r

2
. (2.34)

D. The tenfold way via non-Abelian bosonization

The goal of this section is to derive the tenfold way in
two-dimensional space by modeling two-dimensional space as
an array of wires on which noninteracting degrees of freedom
(i) obey the Majorana algebra, (ii) propagate freely along any
wire, and (iii) while they can hop between consecutive wires.
The novelty in deriving the tenfold way is that we shall use
non-Abelian bosonization techniques, and apply the singular-
value decomposition on the mass matrix, as described above,
to count the number of gapless edge modes.

We shall consider the symmetry classes D and DIII
that, together with the symmetry classes C, A, and AII,
correspond to the topological superconductors and insulators
in two-dimensional space from the tenfold way [14–17]. The
symmetry classes C, A, and AII are treated in Appendix B.

1. The symmetry class D

We shall use a path integral representation of the array of
quantum wires. There will be 2MN independent Grassmann
variables χα,f,I , where α = R,L distinguish a right from a
left mover, f = 1, . . . ,M is a flavor index, and I = 1, . . . ,N

enumerates the wire.
The simplest model for an array of quantum wires in

the symmetry class D to realize a topological gapped phase
assumes

M = 1, χα,I (t,x), (2.35a)

for α = R,L and I = 1, . . . ,N . We have thus assigned a pair
of Majorana fermions to each wire I = 1 · · · N . We define
the action

S
(D)
0 :=

∫
dt

∫
dx L(D)

0 (2.35b)

with

L(D)
0 := i

2

N∑
I=1

[χR,I (∂t + ∂x)χR,I + χL,I (∂t − ∂x)χL,I ].

(2.35c)
We also define the Grassmann partition function

Z
(D)
0 :=

∫
D[χ ] e+iS(D)

0 . (2.35d)

The theory with the partition function Z
(D)
0 is critical, for

there are 2N decoupled massless Majorana modes that are
dispersing in (1 + 1)-dimensional Minkowski space and time.
Hence the central charge c

(D)
0 for the partition function Z

(D)
0 is

c
(D)
0 = N

2
. (2.36a)

The partition function Z
(D)
0 is invariant under any local linear

transformation (O(R),O(L)) ∈ OR(N ) × OL(N ) defined by the
fundamental rule

χR(t − x) �→ O(R)(t − x) χR(t − x),

χL(t + x) �→ O(L)(t + x) χL(t + x).
(2.36b)

The partition function Z
(D)
0 is also invariant under the antilinear

transformation with the fundamental rule

χR(t,x) �→ χL(−t,x), χL(t,x) �→ χR(−t,x), (2.36c)

that implements reversal of time in such a way that it squares
to the identity (see Appendix A). Even though reversal of
time (2.36c) is a symmetry of the partition function Z

(D)
0 , we

shall not impose invariance under reversal of time (2.36c) for a
generic representative of the symmetry class D. Any partition
function Z(D) for the array of quantum wires is said to belong
to the symmetry class D if Z(D) is invariant under the linear
transformation (fermion parity) with the fundamental rule

χα �→ −χα, (2.37)

for α = R,L.
We seek a local single-particle perturbation L(D)

mass that
satisfies three conditions when added to the Lagrangian
density (2.35c).

Condition D.1. It must be invariant under the transforma-
tion (2.37).

Condition D.2. It must gap completely the theory with the
partition function Z

(D)
0 if we impose the periodic boundary

conditions

χα,I (t,x) = χα,I+N (t,x), (2.38)

for α = R,L and I = 1, . . . ,N .
Condition D.3. The partition function Z(D) with the

Lagrangian density L(D)
0 + L(D)

mass must be a theory with the
central charge

c(D) = 1
2 (2.39)

if open boundary condition are imposed.
Conditions D.1, D.2, and D.3 imply that we may assign

wire I = 1 the left-chiral central charge 1/2 and wire I = N

the right-chiral central charge 1/2. For example, if wire I = 1
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supports a right-moving (i.e., chiral) Majorana edge mode,
then wire I = N supports a left-moving (i.e., chiral) Majorana
edge mode.

We make the ansatz

L(D)
mass := iλ

N−1∑
I=1

χL,I χR,I+1 (2.40)

with λ a real-valued coupling. To establish that the
ansatz (2.40) meets conditions D.2 and D.3, we use non-
Abelian bosonization. We choose the non-Abelian bosoniza-
tion scheme by which the partition function is given by the
path integral

Z(D) =
∫

D[G] eiS(D)
. (2.41a)

The field G ∈ O(N ) is a matrix of bosons. The measure D[G]
is constructed from the Haar measure on O(N ). The action
S(D) is the sum of the actions S

(D)
0 and S(D)

mass. The action S
(D)
0 is

S
(D)
0 = 1

16π

∫
dt

∫
dx tr (∂μG ∂μG−1)

+ 1

24π

∫
B

d3y L(D)
WZW, (2.41b)

where

L(D)
WZW = εijk tr [(Ḡ−1∂iḠ) (Ḡ−1∂j Ḡ)(Ḡ−1∂kḠ)]. (2.41c)

The action S(D)
mass stems from the Lagrangian density

L(D)
mass = λ

N−1∑
I=1

GI,I+1 ≡ λ tr(M (D) G). (2.41d)

The second equality is established by using the non-Abelian
bosonization formula (2.24) (we have set the mass parameter
muv = 1). The N × N matrix M (D) is represented by

M (D) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 0 1 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.41e)

The singular-value decomposition of the mass matrix (2.41e)
gives

M
(D)
diag = diag

⎛⎜⎝
1,
2,
3,...,
N−1︸ ︷︷ ︸
N−1

,0

⎞⎟⎠. (2.42)

The quadratic perturbation (2.41d) thus reduces the central
charge c

(D)
0 = N/2 by the amount (N − 1)/2, i.e., the central

charge for the theory with the partition function Z(D) is

c(D) = N

2
− N − 1

2
= 1

2
. (2.43)

We have constructed a topological superconductor with the
gapless chiral Majorana mode χR,I=1 propagating along edge
I = 1 (the left eigenstate of the mass matrix) and the gapless

FIG. 2. Pictorial representation for the selected backscattering
in the symmetry class D. Each yellow box represents a quantum
wire composed of two Majorana degrees of freedom. The wires are
enumerated by I = 1, . . . ,N in ascending order from left to right.
For any I , the Majorana modes are denoted by χR,I and χL,I reading
from left to right, respectively.

chiral Majorana mode of opposite chirality χL,I=N propagating
along edge I = N (the right eigenstate of the mass matrix).
This construction is summarized by Fig. 2.

The symmetry class D has the Z topological classification
for the following reason. If one takes an arbitrary integer
number ν of copies of the gapless edge theory, these ν copies
remain gapless. The stability of the ν chiral gapless edge
modes within either wire 1 or wire N is guaranteed because
backscattering among these gapless chiral edges modes is not
allowed kinematically.

2. The symmetry class DIII

The simplest model for an array of quantum wires in the
symmetry class DIII to realize a topological gapped phase
assumes

M = 2, χα,f,I (t,x), (2.44a)

for α = R,L, f = ±, and I = 1, . . . ,N . We have thus assigned
four Majorana fermions to each wire I = 1 · · · N . We define
the action

S
(DIII)
0 :=

∫
dt

∫
dx L(DIII)

0 (2.44b)

with

L(DIII)
0 := i

2

N∑
I=1

∑
σ=±

[χR,σ,I (∂t + ∂x)χR,σ,I

+χL,σ,I (∂t − ∂x)χL,σ,I ]. (2.44c)

We also define the Grassmann partition function

Z
(DIII)
0 :=

∫
D[χ ] eiS(DIII)

0 . (2.44d)

The theory with the partition function Z
(DIII)
0 is critical,

for there are 4N decoupled massless Majorana modes that
are dispersing in (1 + 1)-dimensional Minkowski space and
time. Hence the central charge for the theory with the partition
function Z

(DIII)
0 is

c
(DIII)
0 = N. (2.45a)

The partition function Z
(DIII)
0 is invariant under any local

transformation (O(R),O(L)) ∈ OR(2N ) × OL(2N ) defined by

χR(t − x) �→ O(R)(t − x) χR(t − x),

χL(t + x) �→ O(L)(t + x) χL(t + x).
(2.45b)
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It is also invariant under the antilinear transformation with the
fundamental rules

χR,+,I (t,x) �→ +χL,−,I (−t,x),

χR,−,I (t,x) �→ −χL,+,I (−t,x),

χL,+,I (t,x) �→ +χR,−,I (−t,x),

χL,−,I (t,x) �→ −χR,+,I (−t,x),

(2.45c)

that implements reversal of time in such a way that reversal of
time squares to minus the identity (see Appendix A).

Any partition function Z(DIII) for the array of quantum wires
is said to belong to the symmetry class DIII if reversal of
time is a symmetry represented by an antilinear and involutive
operation that squares to minus the identity, i.e., Eq. (2.45c),
and if Z(DIII) is invariant under the linear transformation
(fermion parity) with the fundamental rule

χα,f,I �→ −χα,f,I , (2.46)

for α = R,L, f = ±, and I = 1, . . . ,N .
We seek a local single-particle perturbation L(DIII)

mass that
satisfies three conditions when added to the Lagrangian
density (2.44c).

Condition DIII.1. It must be invariant under the transfor-
mations (2.45c) and (2.46).

Condition DIII.2. It must gap completely the theory with the
partition function Z

(DIII)
0 if we impose the periodic boundary

conditions

χα,f,I (t,x) = χα,f,I+N (t,x) (2.47)

for α = R,L, f = ±, and I = 1, . . . ,N .
Condition DIII.3. The partition function Z(DIII) with the

Lagrangian density L(DIII)
0 + L(DIII)

mass must be a theory with the
central charge

c(DIII) = 1 (2.48)

if open boundary conditions are imposed.
Conditions DIII.1, DIII.2, and DIII.3 imply that we may

assign wire I = 1 the central charge 1/2 and wire I = N the
central charge 1/2, for wires I = 1 and I = N both support a
Kramers degenerate pair of right- and left-moving Majorana
edge modes.

We make the ansatz

L(DIII)
mass :=

N−1∑
I=1

iλ (χL,−,I χR,−,I+1 − χR,+,I χL,+,I+1) (2.49)

with λ a real-valued coupling. Condition DIII.1 is met by
construction. To establish that the ansatz (2.49) meets condi-
tions DIII.2 and DIII.3, we use non-Abelian bosonization. We
choose the non-Abelian bosonization scheme by which the
partition function is given by the path integral

Z(DIII) =
∫

D[G] eiS(DIII)
. (2.50a)

The field G ∈ O(2N ) is a matrix of bosons. The measureD[G]
is constructed from the Haar measure on O(2N ). The action
S(DIII) is the sum of the actions S

(DIII)
0 and S(DIII)

mass . The action

S
(DIII)
0 is

S
(DIII)
0 = 1

16π

∫
dt

∫
dx tr (∂μG ∂μG−1)

+ 1

24π

∫
B

d3y L(DIII)
WZW, (2.50b)

where

L(DIII)
WZW = εijk tr [(Ḡ−1∂iḠ) (Ḡ−1∂j Ḡ)(Ḡ−1∂kḠ)]. (2.50c)

The action S(DIII)
mass stems from the Lagrangian density

L(DIII)
mass =

N−1∑
I=1

λ (G(−,I ),(−,I+1) + G(+,I+1),(+,I ))

≡ λ tr (M (DIII) G). (2.50d)

The second equality is established by using the non-Abelian
bosonization formula (2.24) (we have set the mass parameter
muv = 1). The 2N × 2N matrix M (DIII) is represented by

M (DIII) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 B 0 0 0 0 · · ·
BT 0 B 0 0 0 · · ·
0 BT 0 B 0 0 · · ·
0 0 BT 0 B 0 · · ·
0 0 0 BT 0 B · · ·
0 0 0 0 BT 0 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.50e)

in the basis for which B is the 2 × 2 matrix

B :=

⎛⎜⎜⎝
(−,+)︷︸︸︷

0

(−,−)︷︸︸︷
0

1︸︷︷︸
(+,+)

0︸︷︷︸
(+,−)

⎞⎟⎟⎠. (2.50f)

For any N > 0, the 2N × 2N matrices M (DIII) defined
by (2.50e) has two vanishing and 2 × (N − 1) nonvanishing
eigenvalues.

The quadratic perturbation (2.50d) thus reduces the central
charge c

(DIII)
0 = 2 × N/2 by the amount 2 × (N − 1)/2, i.e.,

the central charge for the theory with the partition function
Z(DIII) is

c(DIII) = 2 × N

2
− 2 × (N − 1)

2
= 1. (2.51)

We have constructed a topological superconductor with the
gapless pair of helical Majorana modes (χL,+,I ,χR,−,I )I=1
propagating along edge I = 1 and the gapless pair of helical
Majorana modes (χR,+,I ,χL,−,I )I=N propagating along edge
I = N . This construction is summarized by Fig. 3.

The symmetry class DIII has the Z2 classification from
the following argument. We take ν copies of the gapless edge
theories on the right edge (I = N ). We drop the index I =
N for notational simplicity. The most general backscattering
processes are encoded by

L(DIII)
N :=

ν∑
a,b=1

iχL,−,a λab χR,+,b. (2.52)
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FIG. 3. Pictorial representation for the selected backscattering
in the symmetry class DIII. Each yellow box represents a quantum
wire composed of four-Majorana degrees of freedom. The wires are
enumerated by I = 1, . . . ,N in ascending order from left to right.
For any I , the Majorana modes are denoted by χR,+,I , χL,+,I , χR,−,I ,
and χL,−,I reading from left to right, respectively.

Hermiticity dictates here that

λab = λ∗
ab, a,b = 1, . . . ,ν, (2.53)

i.e., all matrix elements λab are real valued. Time-reversal
symmetry dictates that

ν∑
a,b=1

iχL,−,a λab χR,+,b �→
ν∑

a,b=1

(−i)(−1)χR,+,a λab χL,−,b

=
ν∑

a,b=1

iχR,+,a λab χL,−,b

=
ν∑

a,b=1

iχR,+,b λbaχL,−,a

=
ν∑

a,b=1

iχL,−,a (−λba) χR,+,b,

(2.54a)

i.e., the real-valued matrix elements (2.53) must also be
antisymmetric

λab = −λba, a,b = 1, . . . ,ν. (2.54b)

Because of the identity

det (λab) = det (λab)T = det (−λab) = (−1)ν det (λab),
(2.55)

if follows that the matrix (λab) has at least one vanishing
eigenvalue when ν is odd. When ν is odd, a pair of helical edge
modes must remain gapless. When ν is even, all pairs of helical
edge modes can be gapped. The topological classification Z2
for the symmetry class DIII in 2D follows.

III. NON-ABELIAN TOPOLOGICAL ORDER
OUT OF COUPLED WIRES

We have shown in Sec. II D (plus Appendix B) that the
tenfold way in two-dimensional space can be derived from
a one-dimensional array of quantum wires, whereby each
wire hosts Majorana fermions (i.e., “real-valued” fermions)
that may hop between consecutive wires through one-body
backscattering. This derivation of the tenfold way in two-
dimensional space presumes no more and no less than the
existence of noninteracting Majorana fermions.

In each of the superconducting symmetry classes D,
DIII, and C, the existence of the numbers 2, 4, and 4 of
noninteracting Majorana fermions per wire, respectively, was
shown to be sufficient to realize a superconducting ground

state with protected edge states. The numbers 2, 4, and 4
are the same numbers of complex fermions per wire used
in Ref. [18] to stabilize short-ranged entangled topological
superconducting ground states in the symmetry classes D, DIII,
and C for chains of wires that were coupled through strictly
many-body interactions. The derivation of the tenfold way in
Sec. II D (plus Appendix B) is thus more economical than that
in Ref. [18]. In fact, the numbers of Majorana fermions per wire
that we have postulated in Sec. II D and in Appendix B are the
minimum numbers of Majorana fermions per wire required
to realize short-ranged entangled gapped phases supporting
protected edge states in the tenfold way.

There is a drawback to this derivation, however. Majorana
fermions are not the fundamental fermions in condensed matter
physics. The electron is. Majorana fermions only emerge as
quasiparticles out of interactions that electrons undergo with
themselves or with collective modes such as phonons or spin
waves. One plain way to state the drawback of the derivation
in Sec. II D is that it takes as the starting point an already
fractionalized electron.

In this section, we are going to modify our strategy as
follows. Each wire in the one-dimensional array of wires
supports electrons instead of Majorana fermions. Second,
any interaction that gaps the bulk will be built out of one-
body or many-body electron-electron interactions obeying
two conditions. First, interactions explicitly conserve the
electron number. Second, the spatial range of all interactions
are bounded from above by one finite length scale. In this
way, the interaction conserves the total electron number
and are local. Nevertheless, we shall insist on recovering
Majorana fermions or their generalizations (parafermions) on
the boundaries by properly choosing the many-body electron-
electron interactions.

A. One-dimensional arrays of quantum wires with local
current-current interactions

A chain of N decoupled wires is labeled with the index
I = 1, . . . ,N . Electrons move freely along any one of these N

wires. Their spin-1/2 projections along the quantization axis
are σ =↑ , ↓. For simplicity, all wires are identical. At low
energies, we postulate the noninteracting Lagrangian density1

L0 := i
N∑

I=1

∑
σ=↑,↓

[ψ∗
R,σ,I (∂t + ∂x) ψR,σ,I

+ψ∗
L,σ,I (∂t − ∂x) ψL,σ,I ] (3.1a)

1Any one flavor of a low-energy electron in some given wire is
related to the left and right movers from this wire by the multiplicative
phase factor e±ikF x , where the Fermi wave vector kF is fixed by the
filling fraction for this flavor of electrons in the given wire. The
product of these multiplicative phase factors arising from taking
the local product of low-energy electron operators can always be
absorbed by a coupling that is modulated with respect to x with the
proper periodicity. With this caveat in mind, we can choose to work
with the convention kF = 0 without loss of generality.
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with the action

S0 :=
∫

dt

∫
dx L0 (3.1b)

and the partition function

Z0 :=
∫

D[ψ∗,ψ] eiS0 . (3.1c)

The partition function Z0 is invariant under any local linear
transformation

(U(R),U(L)) ∈ UR(2N ) × UL(2N ) (3.2a)

defined by the fundamental rules

ψ∗T
R (t − x) �→ ψ∗T

R (t − x) U(R)†(t − x),

ψ∗T
L (t + x) �→ ψ∗T

L (t + x) U(L)†(t + x),
(3.2b)

and

ψR(t − x) �→ U(R)(t − x) ψR(t − x),

ψL(t + x) �→ U(L)(t + x) ψL(t + x),
(3.2c)

on the Grassmann integration variables. The corresponding
central charge is

c0 = 2N. (3.3)

The partition function Z0 is also invariant under reversal of
time, whereby this operation is represented by the antilinear
transformation with the fundamental rules

ψ∗
R,↑,I �→ +ψ∗

L,↓,I , ψ∗
R,↓,I �→ −ψ∗

L,↑,I , (3.4a)

ψ∗
L,↑,I �→ +ψ∗

R,↓,I , ψ∗
L,↓,I �→ −ψ∗

R,↑,I , (3.4b)

and

ψR,↑,I �→ +ψL,↓,I , ψR,↓,I �→ −ψL,↑,I , (3.4c)

ψL,↑,I �→ +ψR,↓,I , ψL,↓,I �→ −ψR,↑,I , (3.4d)

on the Grassmann integration variables.
The chain-resolved symmetry UR(2) × UL(2), a subgroup

of the symmetry group (3.2a), is broken by coupling consecu-
tive chains through one-body tunnelings.

Example 1. The uniform one-body hopping of the electrons
between consecutive chains

LFS := −t

N∑
I=1

[
ψ∗T

R,I ψR,I+1 + ψ∗T
R,I+1 ψR,I + (R → L)

]
,

(3.5)

where t is positive and periodic boundary conditions by
which I ≡ I + N are imposed on the Grassmann fields, turns
the one-dimensional critical theory (3.1) into an anisotropic
two-dimensional gas of electrons in the thermodynamic limit
N → ∞.

Example 2. The staggered one-body hopping

LD := −it
N∑

I=1

[
ψ∗T

R,I ψL,I+1 − ψ∗T
L,I+1 ψR,I

+ψ∗T
L,I ψR,I+1 − ψ∗T

R,I+1 ψL,I

]
, (3.6)

where t is positive and periodic boundary conditions by
which I ≡ I + N are imposed on the Grassmann fields, turns
the one-dimensional critical theory (3.1) into an anisotropic
two-dimensional Dirac gas of electrons in the thermodynamic
limit N → ∞, i.e., a quasi-one-dimensional representation of
graphene.

Coupling the chains through many-body tunnelings that
preserve the chain-resolved UR(2) × UL(2) subgroup of the
symmetry group (3.2a) (i.e., the independent conservation of
the right- and left-moving electronic charge and spin in each
wire) also delivers two-dimensional gapless phases of matter
in the thermodynamic limit N → ∞ [43–46].

Example 3. The four-fermion interactions

LSLL :=
N∑

I,J=1

[(
ψ∗T

R,I ψR,I

)
VIJ

(
ψ∗T

R,J ψR,J

)+ (R → L)
]
(3.7)

with VIJ = VJI a symmetric and real-valued N × N matrix
and periodic boundary conditions by which I ≡ I + N are
imposed on the Grassmann fields, stabilize a sliding Luttinger
liquid (SLL) phase in the thermodynamic limit N → ∞,
whose defining properties are that of algebraic order along
the quantum wires in contrast to exponentially decaying
correlation functions in the direction transverse to that of the
quantum wires [43–46].

We are after two-dimensional phases that are insulating
when periodic boundary conditions hold. This can always be
achieved by a suitable combination of a breaking of translation
symmetry, on the one hand, and of an interaction between left-
and right-movers, on the other hand. For this reason, we shall
ignore couplings of the quantum wires that deliver gapless
two-dimensional phases as in examples 1, 2, and 3 relative to
those couplings between left and right movers responsible for
an insulating phase when periodic boundary conditions hold.

This section is organized as follows. We begin by showing
in Sec. III B how to combine one-body and current-current
interactions that fully gap the critical theory (3.1). We proceed
in Sec. III C by coupling the wires through current-current
interactions so that (i) time-reversal symmetry is explicitly
broken, (ii) the critical theory (3.1) is fully gapped when
periodic boundary conditions are imposed along the chain of
quantum wires, and (iii) there remains gapless edge states that
realize chiral conformal field theories with the chiral central
charge

0 < c < 3 (3.8)

on any one of the two boundaries close to wire 1 and N ,
respectively, when open boundary conditions are imposed
along the chain of quantum wires. We close with Sec. III D
by selecting interactions that are time-reversal symmetric.
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B. Complete gapping

As a warm up, we observe that the symmetry group (3.2a)
contains as a subgroup the symmetry group (UR(2) ×
UL(2)) × · · · × (UR(2) × UL(2)). We are assigning to the
unitary group U(2) of 2 × 2 matrices the label R and L when it
acts on the right- and left-moving electrons, respectively, from
a given wire. The partition function Z0 is, indeed, invariant
under any local linear transformation(

U(R)
I ,U(L)

I

) ∈ UR(2) × UL(2) (3.9a)

defined by the fundamental rules

ψ∗
R,σ,I (t − x) �→ ψ∗

R,σ ′,I (t − x)
(
U(R)†

I

)
σ ′σ (t − x),

ψ∗
L,σ,I (t + x) �→ ψ∗

L,σ ′,I (t + x)
(
U(L)†

I

)
σ ′σ (t + x),

(3.9b)

and

ψR,σ,I (t − x) �→ (
U(R)

I

)
σσ ′(t − x) ψR,σ ′,I (t − x),

ψL,σ,I (t + x) �→ (
U(L)

I

)
σσ ′(t + x) ψL,σ ′,I (t + x),

(3.9c)

for any σ =↑ , ↓ and any I = 1, . . . ,N on the Grassmann
integration variables. These symmetries imply for the light-
cone components [we choose the multiplicative normalization
from Refs. [23–25] rather than the one in Eq. (2.16)]

TR,I := i

2π

∑
σ=↑,↓

ψ∗
R,σ,I (∂t − ∂x) ψR,σ,I (3.10a)

and

TL,I := i

2π

∑
σ=↑,↓

ψ∗
L,σ,I (∂t + ∂x) ψL,σ,I (3.10b)

of the energy-momentum tensor the Sugawara identities [91]

TR,I = TR,I [û(1)] + TR,I [ŝu(2)1] (3.11a)

and

TL,I = TL,I [û(1)] + TL,I [ŝu(2)1], (3.11b)

where

TR,I [û(1)] = 1

2cv

jR,I jR,I , (3.11c)

TR,I [ŝu(2)1] = 1

1 + cv

JR,I · JR,I , (3.11d)

and

TL,I [û(1)] = 1

2cv

jL,I jL,I , (3.11e)

TL,I [ŝu(2)1] = 1

1 + cv

JL,I · JL,I , (3.11f)

for I = 1, . . . ,N , respectively. Here, we have introduced the
charge currents

jR,I := ψ∗
R,I σ0 ψR,I , jL,I := ψ∗

L,I σ0 ψL,I , (3.12a)

and the spin currents

JR,I := 1
2ψ∗

R,I σ ψR,I , JL,I := 1
2 ψ∗

L,I σ ψL,I , (3.12b)

within any wire I = 1, . . . ,N . The unit 2 × 2 matrix acting in
spin space is denoted σ0 and σ is the vector made of the three
Pauli matrices acting in spin space. Finally, the eigenvalue

cv :=
3∑

a,b=1

ε1ab ε1ab = 2 (3.13a)

of the SU(2) Casimir operator in the adjoint representation is
also the multiplicative normalization factor that enters in

tr (σμσν) = cv δμν, μ,ν = 0,1,2,3. (3.13b)

The physics of Luttinger liquids has taught us that we can
gap the charge and the spin sector independently (spin-charge
separation) in any given wire I = 1, . . . ,N [92,93]. For
example, umklapp scatterings with the proper periodicities
open Mott gaps in the charge sector, while preserving the
critical behavior in the spin sector. Conversely, a generic spin
current-current interaction of the form

Lint,I := −
3∑

a=1

λa
I J a

R,I J
a
L,I (3.14)

for any I = 1, . . . ,N is argued to gap the spin sector in the
I th wire if the coupling constants λa

I > 0 without affecting the
charge sector, for the couplings λa

I > 0 obey the one-loop RG
equation (see Appendix C 1) [94]2

dλa
I

d�
= π

3∑
b,c=1

(εabc)2 λb
I λc

I (3.15)

for a = 1,2,3 under the rescaling a �→ (1 + d�) a of the short-
distance characteristic length a.3 In the special case when the
current-current interactions preserve the spin SU(2) symmetry,
i.e., when

λa
I ≡ λI (3.16a)

for all I = 1, . . . ,N and all a = 1,2,3,

dλI

d�
= π cv λ2

I . (3.16b)

C. Partial gapping without time-reversal symmetry

We have identified the continuous symmetry groups (3.2)
and (3.9) for the free theory (3.1). In the latter, the currents
entering the Sugawara construction (3.11) corresponding to
the symmetry group U(2) × · · · × U(2) obey the semisimple
affine Lie algebra

û :=
N⊕

I=1

û(2)1. (3.17)

In the former case, we could also have introduced the Sugawara
construction with the affine Lie algebra û(2N )1 of level one

2See Chap. 17V from Ref. [93] for a more modern derivation of this
one-loop RG equation.

3The nature of the phase corresponding to the strong coupling fixed
point of the one-loop RG-flow (3.15) can only be established by
solving nonperturbatively the effects of the strong interaction (3.14).
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k+k’ k+k’ k+k’ k+k’

m=1 m=2 m=3 m=4

FIG. 4. Chain of N wires grouped into n bundles of k + k′ wires
with N = 20, n = 4, k = 4, and k′ = 1. The chain of wires is labeled
by I = 1, . . . ,N . The bundles of k + k′ wires are labeled by the
teletype font m = 1, . . . ,n.

which is associated to the symmetry group U(2N ). In fact,
this was done in Appendix B 3 for the group U(2N ) ∼ O(4N )
when discussing the symmetry class AII.

We shall now consider a symmetry group (and the corre-
sponding Sugawara construction) that is intermediate between
U(2) × · · · × U(2) and U(2N ). The idea is the following. We
break the chain of N � 1 wires into n > 1 unit cells (bundles),
each of which is made of k + k′ consecutive wires as is
illustrated in Fig. 4. In other words, we assume that

N = n (k + k′) (3.18)

with k and k′ two nonvanishing positive integers. The thermo-
dynamic limit N → ∞ is taken holding k and k′ fixed. The
spatial range of the current-current interactions that we will use
to gap partially the spectrum of the free theory (3.1) involves at
most two consecutive bundles of k + k′ wires. Locality is thus
guaranteed. We assign the teletype font m = 1, . . . ,n when
labeling the bundles of k + k′ consecutive wires that make up
an enlarged unit cell of the chain of N wires. An important
case corresponds to the choice k = k′ = 1 that amounts to
rearranging the chain of wires into a chain of ladders, as is
depicted in Fig. 1.

The symmetry that we select when considering any one of
the n bundles of k + k′ consecutive wires is the direct product

U := U(2k) × U(2k′). (3.19a)

The corresponding semisimple affine Lie algebra is

û1 := û(2k)1 ⊕ û(2k′)1. (3.19b)

By construction, the central charges c[û1], c[û(2k)1], and
c[û(2k′)1] are related by

c[û1] = c[û(2k)1] + c[û(2k′)1]. (3.20)

As it should be

2N = 2 n (k + k′)

= n{c[û(2k)1] + c[û(2k′)1]}
= n c[û1]. (3.21)

We are in position to take advantage of the non-Abelian
bosonization of a bundle of k + k′ consecutive wires in any

of the enlarged unit cell labeled by m = 1, . . . ,n with the
symmetry group U(2k) × U(2k′) making up the chain of N

decoupled and identical wires. To avoid heavy notation, we
drop the label m when the bundles are decoupled.

Inspired by the works of Affleck and Ludwig in connection
to the multichannel Kondo effect [23–25], we use the following
generalization of the Sugawara decomposition (3.11), which
we only present in the sector with the symmetry group U(2k)
without loss of generality. The identity

û(2k)1 = û(1) ⊕ ŝu(2)k ⊕ ŝu(k)2 (3.22a)

between affine Lie algebras is equivalent to stating that

TR[û(2k)1] = TR[û(1)] + TR[ŝu(2)k] + TR[ŝu(k)2], (3.22b)

TL[û(2k)1] = TL[û(1)] + TL[ŝu(2)k] + TL[ŝu(k)2], (3.22c)

where (for simplicity, we only present this relation in the
right-moving sector; we also choose the multiplicative normal-
ization from Refs. [23–25] rather than the one in Eq. (2.16))

TR[û(2k)1] = i

2π

2∑
α=1

k∑
A=1

ψ∗
R,α,A (∂t − ∂x) ψR,α,A (3.22d)

on the one hand, and

TR[û(1)] = 1

4k
jR jR, (3.22e)

TR[ŝu(2)k] = 1

k + 2

3∑
c=1

J c
R J c

R, (3.22f)

TR[ŝu(k)2] = 1

2 + k

k2−1∑
c=1

Jc
R Jc

R, (3.22g)

on the other hand. The currents are here defined by

jR :=
2∑

α=1

k∑
A=1

ψ∗
R,α,A ψR,α,A, (3.23a)

J c
R := 1

2

2∑
α,β=1

k∑
A=1

ψ∗
R,α,A σ c

αβ ψR,β,A, (3.23b)

Jc
R :=

2∑
α=1

k∑
A,B=1

ψ∗
R,α,A T c

AB ψR,α,B, (3.23c)

for c = 1,2,3 and c = 1, . . . ,k2 − 1, respectively. Hereto, we
have imposed the normalization condition

tr (T c T c′
) = 1

2 δcc′ (3.23d)

for c,c′ = 1, . . . ,k2 − 1. This normalization condition is
equivalent to choosing the structure constants of the unitary
Lie algebra su(k) such that

k2−1∑
c′′,c′′′

fcc′′c′′′ fc′c′′c′′′ = k δcc′ (3.23e)

for any c,c′ = 1, . . . ,k2 − 1.
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The transformation laws of the currents (3.23) under the
representation (3.4) of time reversal are

jR �→ +jL, jL �→ +jR, (3.24a)

J c
R �→ −J c

L, J c
L �→ −J c

R, (3.24b)

Jc
R �→ (−1)p(c) Jc

L, Jc
L �→ (−1)p(c) Jc

R, (3.24c)

for c = 1,2,3 and c = 1, . . . ,k2 − 1. Here, p(c) = 0 if the
generator T c is a real-valued matrix while p(c) = 1 if the
generator T c is an imaginary-valued matrix.

For any given bundle, the currents (3.23a)–(3.23c), and their
counterparts with k replaced by k′ are separately conserved,
for they all commute pairwise. To each of these six pairwise
commuting currents, there corresponds a gapless sector of the
free theory on which these currents act. The point-split and
normal-ordered Lagrangian density4

LU (1)
int := − gU (1) e

iα(x)

(
k∏

A=1

2∏
α=1

ψ∗
R,α,A

)

×
(

1∏
A=k

1∏
α=2

ψL,α,A

)
+ [ψ∗

R → ψL, ψL → ψ∗
R, α(x) → −α(x)]

(3.25)

gaps the U(1) charge sector for the wires 1 to k from the
bundle for gU(1) > 0 sufficiently large. The SU(2) current-
current interaction

LSU(2)
int := −λSU(2)

3∑
c=1

J c
R J c

L (3.26)

gaps the SU(2) sector for the wires 1 to k from the bundle
when λSU(2) > 0. The SU(k) current-current interaction

LSU (k)
int := −λSU(k)

k2−1∑
c=1

Jc
R Jc

L (3.27)

gaps the SU(k) sector for the wires 1 to k from the bundle
when λSU(k) > 0. The same reasoning applies in the sector
with U(2k′) symmetry.

We choose to gap the U(1) and SU(k) sectors without
breaking spontaneously the SU(k) symmetry, while leaving
the sector of the theory associated to the symmetry

G := SU(2) × SU(2) (3.28)

momentarily gapless. The low-energy theory is then given by
the gapless theory with an energy-momentum tensor of the
Sugawara form whereby the currents realize the semisimple
affine Lie algebra

ĝ
(n)
k,k′ :=

n⊕
m=1

(ŝu(2)k ⊕ ŝu(2)k′). (3.29)

4There exists a different ordering of the right- and left-moving α’s,
and A labels than the ordering chosen in Eq. (3.25) that opens up
a superconducting gap in the charge sector. The ordering chosen in
Eq. (3.25) corresponds to a kth order umklapp process.

This gapless theory has the central charge

c
[
ĝ

(n)
k,k′
] =

n∑
m=1

(c[ŝu(2)k] + c[ŝu(2)k′])

= 3 n

(
k

k + 2
+ k′

k′ + 2

)
. (3.30)

As it should be, this central charge is smaller than the central
charge 2 n (k + k′) from Eq. (3.3).

We consider the diagonal subgroup

H := SU(2) (3.31)

of the group (3.28). The corresponding semisimple affine Lie
algebra, a semisimple affine subalgebra of ĝk,k′ , is

ĥ
(n)
k,k′ :=

n⊕
m=1

ŝu(2)k+k′ . (3.32)

We need to reinstate the label m = 1, . . . ,n for the bundles
of k + k′ consecutive wires as well as the left- and right-
moving labels as we are going to couple these sectors. We
denote the generators of ĝ

(n)
k,k′ by JA

R,m and JA
L,m, where A =

1, . . . ,6 and m = 1, . . . ,n. For example, in the right-moving
sector, we may choose the vector field

J R,m := 1

2

2∑
α,β=1

k∑
A=1

ψ∗
R,α,A,m σ αβ ψR,β,A,m, (3.33a)

when A = 1,2,3 and the vector field

J ′
R,m := 1

2

2∑
α,β=1

k′∑
A′=1

ψ∗
R,α,A′,m σ αβ ψR,β,A′,m, (3.33b)

when A = 4,5,6. We denote the generators of ĥ
(n)
k,k′ by KB

R,m

and KB
L,m, where B = 1, . . . ,3 and m = 1, . . . ,n. For example,

in the right-moving sector, we may choose the vector field

KR,m := J R,m + J ′
R,m. (3.33c)

We work with open boundary conditions along the chain of
quantum wires and define the interaction [see Fig. 5(c)]

LL→R
int := −

n−1∑
m=1

6∑
A=1

λA
m JA

L,m JA
R,m+1

−
n∑

m=1

3∑
B=1

υB
m KB

L,mKB
R,m, (3.33d)

where the couplings λA
m and υB

m are real-valued. Had we
imposed periodic boundary conditions in the direction of the
chain of wires on the Grassmann fields, it would be legitimate
to extend the sum over the bundles so as to include the term
with m = n.

It is shown in Appendix C 2 that (i) all couplings in
Eq. (3.33d) flow to strong coupling when initially nonvanish-
ing and positive, (ii) no new terms involving the right-moving
generators from ĝ

(n)
k,k′/ĥ

(n)
k,k′ in the bundle m = 1 appear to
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…

…

…

…

(a)

(b)

(c)

(d)

FIG. 5. (a) A chain of wires is partitioned into bundles. A bundle
is depicted by a domino. The pattern in the domino corresponds
to a right- and left-moving critical sector with the affine Lie
algebra ĝ

k,k′ := ŝu(2)k ⊕ ŝu(2)
k′ represented by a thick vertical like

supporting an up arrow for right movers and down arrow for left
movers. Its diagonal subalgebra ĥ

k,k′ := ŝu(2)
k+k′ is represented by

the forking into a blue solid line. The coset ĝ
k,k′/ĥk,k′ is represented

by the forking into a red dashed line. (b) An arc inside each domino
depicts a current-current interaction between the generators of ĥ

k,k′ ,
i.e., the second line on the right-hand side of Eq. (3.33d). These arcs
gap all the critical modes generated by ĥ

k,k′ := ŝu(2)
k+k′ within a

bundle. (c) An arc between two consecutive dominoes depicts the
current-current interactions between the generators of ĝ

k,k′ , i.e., the
first line on the right-hand side of Eq. (3.33d). The arrows on these
arcs indicate that these interactions break time-reversal symmetry.
These arcs gap all remaining critical modes except for the modes
generated by the right-moving ĝ

k,k′/ĥk,k′ on bundle m = 1 and the

modes generated by the left-moving ĝ
k,k′/ĥk,k′ on bundle m = n. (d)

Reversal of time is represented by reversing all arrows.

one loop, and (iii) no new terms involving the left-moving
generators from ĝ

(n)
k,k′/ĥ

(n)
k,k′ in the bundle m = n appear to one

loop.
We make the following conjecture regarding the strong

coupling fixed point depending on the initial values of the
couplings in Eq. (3.33d). With open boundary conditions
and when all the couplings in Eq. (3.33d) are positive and
of the same order, the resulting theory remains critical. As
the resulting theory would be fully gapped had we opted
for periodic boundary conditions, the critical sectors of the
theory with open boundary conditions must be confined to the
boundaries, namely the first bundle m = 1 and the last bundle
m = n. The first bundle of k + k′ wires hosts the critical theory
described by the right sector of the coset theory

ĝk,k′/ĥk,k′ := ŝu (2)k ⊕ ŝu (2)k′/ŝu (2)k+k′ (3.34a)

with the chiral central charge

c[(ĝk,k′/ĥk,k′)R] = 3

(
k

k + 2
+ k′

k′ + 2

)
− 3

k + k′

k + k′ + 2

= 1 − 6k′

(k + 2)(k + k′ + 2)
+ 2(k′ − 1)

k′ + 2
.

(3.34b)

The last bundle of k + k′ wires hosts the critical theory
described by the left sector of the coset theory

ĝk,k′/ĥk,k′ := ŝu (2)k ⊕ ŝu (2)k′/ŝu (2)k+k′ (3.34c)

with the chiral central charge

c[(ĝk,k′/ĥk,k′)L] = c[(ĝk,k′/ĥk,k′)R]. (3.34d)

The interaction (3.33d) has broken the time-reversal symmetry,
gapped the bulk, and left in the first and last bundle two
massless coset theories of opposite chiralities. For the bundle
on the left (right) boundary, the critical boundary theory is
built from the holomorphic (antiholomorphic) generators in
the quotient ŝu(2)k ⊕ ŝu(2)k′/ŝu(2)k+k′ of affine Lie algebras.

The last term on the right-hand side of Eqs. (3.34b)
and (3.34d) is the central charge

c[ŝu(2)k′/û(1)] = 3 k′

k′ + 2
− 1 = 2(k′ − 1)

k′ + 2
(3.35)

of the coset ŝu(2)k′/û(1). In the local operator content of this
theory, one finds a pair of local parafermionic fields ψ̂

†
par and

ψ̂par with the scaling dimensions (k′ − 1)/k′ and a real-valued
bosonic field ϕ̂ such that the generators of the affine Lie algebra
ŝu(2)k′ are represented by the operators5

Ĵ+(z) =
√

k′ ψ̂par(z) : e+i
√

2/k′ ϕ̂(z) : , (3.36a)

Ĵ−(z) =
√

k′ ψ̂†
par(z) : e−i

√
2/k′ ϕ̂(z) : , (3.36b)

Ĵ 0(z) = i
√

2k′ (∂zϕ̂)(z). (3.36c)

For k′ = 1, the parafermions reduce to the identity. For k′ = 2,
the parafermions obey the fermion algebra. For k′ > 2, the
parafermions obey a more complicated algebra. For example,
if one writes

ψ̂par ∝ i

2
[χ̂1 + (χ̂1)k

′−1] + 1

2
[χ̂2 + (χ̂2)k

′−1], (3.37a)

it then follows that

(χ̂1)k
′ = 1, (χ̂2)k

′ = 1, (3.37b)

(χ̂1)k
′−1 = (χ̂1)†, (χ̂2)k

′−1 = (χ̂2)†, (3.37c)

χ̂1 χ̂2 = ei2π/k′
χ̂2 χ̂1, (3.37d)

holds locally.
It is time to specialize by choosing

k′ = 1. (3.38)

5See Chap. 18.5.3 from Ref. [88].
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With this choice, the chiral central charges (3.34b) and (3.34d)
are nothing but the central charge

c(k) = 1 − 6

(k + 2)(k + 3)
(3.39)

for the minimal models of two-dimensional conformal field
theories. This is not a coincidence, for it is known that the
coset affine Lie algebra

ĝk,1/ĥk,1 = ŝu(2)k ⊕ ŝu(2)1/ŝu(2)k+1 (3.40)

realizes the series of minimal models with k = 1,2, . . . [88].
The minimal models encode the critical properties of two-
dimensional lattice models at their critical temperature such as
the Ising model (k = 1), the tricritical Ising model (k = 2), the
three-states Potts model (k = 3), and so on. We conclude that
we have realized the holomorphic and antiholomorphic critical
sectors of the minimal models on the opposite boundaries of
an open chain of n bundles of wires, respectively. We also note
that the current-current interactions suffice to realize the SU(2)
level k Read-Rezayi chiral spin liquids had we opted not to
use the coset construction to gap the bulk modes when k′ = 0.
(The Kalmeyer-Laughlin chiral spin liquid, an Abelian state,
is nothing but the SU(2) level k = 1 Read-Rezayi chiral spin
liquid.)

The choice k′ = 2 turns the chiral central charges (3.34b)
and (3.34d) into the chiral central charge

c(k) = 3

2

[
1 − 8

(k + 2)(k + 4)

]
(3.41)

for the minimal models of two-dimensional superconformal
field theories. This is again not a coincidence, for it is known
that the coset affine Lie algebra

ĝk,2/ĥk,2 = ŝu(2)k ⊕ ŝu(2)2/ŝu(2)k+2 (3.42)

realizes the series of superconformal minimal models with
k = 1,2, . . . [88]. Notice that, for k = 1, c(k = 1) = 7/10
coincides with the second member (k = 2) of the minimal
model (3.39) that corresponds to the tricritical Ising model.
The tricritical Ising model is one example that realizes
supersymmetry in statistical physics. We conclude that we
have realized the holomorphic and antiholomorphic critical
sectors of the superconformal minimal models on the opposite
boundaries of an open chain of n bundles of wires, respectively.

D. Partial gapping with time-reversal symmetry

We shall impose time-reversal symmetry on the array of
quantum wires coupled by current-current interactions in three
different ways.

In Sec. III D 1, we symmetrize the interaction (3.33d) under
reversal of time.

In Sec. III D 2, we double the number of degrees of freedom
in the low-energy sector of the theory by postulating that
this doubling originates from degrees of freedom that are
exchanged under reversal of time. We then write down current-
current interactions that preserve time-reversal symmetry, gap
the bulk, but leave gapless boundary states.

In Sec. III D 3, unlike was the case in Secs. III C, III D 1,
and III D 2, we assume that spin-1/2 rotation symmetry is

broken prior to adding current-current interactions. We then
explain how to reproduce the treatment of Sec. III D 2.

1. Case I: symmetrized interaction

We assume that the interactions responsible for gapping the
U(k) × U (k′) sector of the theory in Sec. III C preserve both
time-reversal symmetry and spin-1/2 rotation symmetry.

Reversal of time turns the interaction (3.33d) into the
interaction [see Fig. 5(d)]

LR→L
int := −

n−1∑
m=1

6∑
A=1

λA
m JA

R,m JA
L,m+1

−
n∑

m=1

3∑
B=1

υB
m KB

R,mKB
L,m. (3.43)

As was the case with the interaction (3.33d), we conjecture
a gapped bulk with two massless coset theories of opposite
chiralities on the first and last bundles of wires. For the left
(right) boundary bundle, the critical boundary theory is built
from the antiholomorphic (holomorphic) generators in the
quotient ŝu(2)k ⊕ ŝu(2)k′/ŝu(2)k+k′ of affine Lie algebras.

We may then interpolate between the interactions (3.33d)
and (3.43) as a function of the real-valued parameter κ by
defining

Lint(κ) := 1 − κ

2
LL→R

int + 1 + κ

2
LR→L

int . (3.44)

The interactions (3.33d) and (3.43) compete to impose one of
two ways for the breaking of time-reversal symmetry. When
κ � −1, the interaction LL→R

int is marginally relevant, while
the interaction LR→L

int is marginally irrelevant, as is shown in
Appendix C 3. It is the fixed point represented by Fig. 5(c) to
which the relevant couplings flow. When 1 � κ , it is the fixed
point represented by Fig. 5(d) to which the relevant couplings
flow as is shown in Appendix C 3. The analysis of the one-loop
RG flows is more subtle when κ ∈ [−1, + 1] \ {0}. It is shown
in Appendix C 3 that LL→R

int and LR→L
int are both marginally

relevant perturbations. If one assumes that the point κ = 0
at which time-reversal symmetry holds explicitly is singular,
there are then two logical possibilities pertaining to the nature
of this singularity.

On the one hand, the singularity at κ = 0 could signal a
continuous quantum phase transition at which the bulk gap
closes and the (thermal) Hall conductivity switches sign, as
occurs with the single-particle Dirac Hamiltonian [95]

HD := −iσx p̂x − iσy p̂y + m σz (3.45)

in two-dimensional space when the mass m changes sign in a
continuous fashion, as depicted by the solid line in Fig. 6. If so,
the gapless bulk phase represents an exotic gapless spin liquid
phase in (2 + 1)-dimensional space and time, for it emerges
from two long-ranged entangled gapped phases supporting
non-Abelian topological order that are unrelated by a breaking
of a local symmetry.

If all phase transitions in the range −1 � κ � +1 are
continuous, the critical point at κ = 0 is either stable or
unstable. The latter case occurs if the number of critical points
in the range −1 < κ < 0 is even, as shown in Fig. 7(a). The
former case occurs if the number of critical points in the range
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−1 +1
κ

0

Gap

+−

FIG. 6. One possible phase diagram with the interaction (3.44).
The time-reversal symmetric point is parametrized by κ = 0. The
vertical axis is the many-body gap between the ground state and
all excited states when periodic boundary conditions are imposed.
The continuous line represents the scenario for an exotic spin-liquid
quantum critical point. The dashed line represents the scenario for a
first-order quantum phase transition. The signs − and + distinguish
the two ground states that evolve adiabatically as κ �= 0 changes and
cross precisely at κ = 0.

−1 < κ < 0 is odd, as shown in Fig. 7(b). The one-loop RG
analysis made in Appendix C 3 applies to the vicinity of the
noninteracting critical point when all the couplings λA

m and
vB
m in Eq. (3.44) vanish. In the limit λA

m → 0 and vB
m → 0,

the one-loop RG flow for κ is the one depicted in Fig. 7(a).
However, we cannot infer from this weak coupling analysis
whether it is Fig. 7(a) or 7(b) that applies to the relevant limit
λA
m → ∞ and vB

m → ∞.
On the other hand, the singularity at κ = 0 could signal a

discontinuous transition, as occurs in the Ising model upon
changing the sign of an applied magnetic field. At κ = 0, the
energy eigenvalue of the ground state for κ < 0 crosses that
of the ground state for κ > 0, while the gap to the excitation
spectra for κ < 0 and κ > 0 do not close at κ = 0, as depicted
by the dashed line in Fig. 6.

2. Case II: doubled degrees of freedom

We continue assuming that the interactions responsible for
gapping the U(k) × U(k′) sector of the theory in Sec. III C
preserve both time-reversal symmetry and spin-1/2 rotation
symmetry. An alternative implementation of time-reversal

(a)

0−1 +1

κ

(b)

0−1 +1

κ

FIG. 7. For the case when the phases transitions in the range
−1 � κ � +1 at strong values of the couplings λA

m > 0 and vB
m > 0

in Eq. (3.44) are continuous, the critical point at κ = 0 is either
unstable or stable depending on whether the number of critical points
for −1 < κ < 0 is even as in (a) or odd as in (b), respectively.

symmetry consists in (i) doubling the dimensionality of the
Fock space by direct product with a two-dimensional auxiliary
Hilbert space and (ii) demanding that reversal of time is
represented by a matrix that is off-diagonal with respect to
this auxiliary two-dimensional Hilbert space. An example of
such a two-dimensional auxiliary Hilbert space is provided
by the two valleys of graphene [recall example 2 of a
quasi-one-dimensional gapless phase defined by Eq. (3.6)].
According to Eq. (3.6), half of the degrees of freedom encoded
in any one of the bundles can be interpreted as originating from
the two-dimensional nonvanishing momenta about which the
low-energy degrees of freedom are constructed.

Accordingly, we may choose to work with the total of 8 × N

electronic right- or left-moving degrees of freedom, which we
organize into n bundles, each of which supports 8 × (k + k′)
electronic right- or left-moving degrees of freedom, where k

and k′ are two nonvanishing positive integers. In other words,
the number 4 × N = 4 × n (k + k′) of electronic right- or left-
moving degrees of freedom corresponding to the number of
quantum wires (3.18) is replaced by

8 × N = 8n (k + k′). (3.46)

This is to say that we extend the quadruplet of Grassmann-
valued vectors ψ∗

R, ψ∗
L, ψR, and ψL with the components ψ∗

R,σ,I ,
ψ∗

L,σ,I , ψR,σ,I , and ψL,σ,I , respectively, by the quadruplet
of Grassmann-valued vectors ψ̃∗

R, ψ̃∗
L, ψ̃R, and ψ̃L with the

components ψ̃∗
R,σ,I , ψ̃∗

L,σ,I , ψ̃R,σ,I , and ψ̃L,σ,I , respectively.
We then replace the critical theory (3.1) by the critical theory

L0 := i
[
ψ∗T

R (∂t + ∂x) ψR + ψ∗T
L (∂t − ∂x) ψL

]
+ i
[
ψ̃∗T

R (∂t + ∂x) ψ̃R + ψ̃∗T
L (∂t − ∂x) ψ̃L

]
(3.47a)

with the action

S0 :=
∫

dt

∫
dx L0 (3.47b)

and the partition function

Z0 :=
∫

D[ψ∗,ψ]
∫

D[ψ̃∗,ψ̃] eiS0 . (3.47c)

Reversal of time is the antilinear transformation defined by
the fundamental rules

ψ∗
R,↑,I �→ +ψ̃∗

L,↓,I , ψ∗
R,↓,I �→ −ψ̃∗

L,↑,I , (3.48a)

ψ∗
L,↑,I �→ +ψ̃∗

R,↓,I , ψ∗
L,↓,I �→ −ψ̃∗

R,↑,I , (3.48b)

ψ̃∗
R,↑,I �→ +ψ∗

L,↓,I , ψ̃∗
R,↓,I �→ −ψ∗

L,↑,I , (3.48c)

ψ̃∗
L,↑,I �→ +ψ∗

R,↓,I , ψ̃∗
L,↓,I �→ −ψ∗

R,↑,I , (3.48d)

and

ψR,↑,I �→ +ψ̃L,↓,I , ψR,↓,I �→ −ψ̃L,↑,I , (3.48e)

ψL,↑,I �→ +ψ̃R,↓,I , ψL,↓,I �→ −ψ̃R,↑,I , (3.48f)

ψ̃R,↑,I �→ +ψL,↓,I , ψ̃R,↓,I �→ −ψL,↑,I , (3.48g)

ψ̃L,↑,I �→ +ψR,↓,I , ψ̃L,↓,I �→ −ψR,↑,I . (3.48h)

205123-18



NON-ABELIAN TOPOLOGICAL SPIN LIQUIDS FROM . . . PHYSICAL REVIEW B 93, 205123 (2016)

By this definition, reversal of time squares to minus the identity
and leaves the critical theory (3.47) invariant. Moreover, if we
define the Grassmann-valued doublets

�∗
R :=

⎛⎝ψ∗
R

ψ̃∗
R

⎞⎠, �∗
L :=

⎛⎝ψ∗
L

ψ̃∗
L

⎞⎠ (3.49a)

and

�R :=
⎛⎝ψR

ψ̃R

⎞⎠, �L :=
⎛⎝ψL

ψ̃L

⎞⎠, (3.49b)

the representation

L0 = i�∗T
R (∂t + ∂x)�R + i�∗T

L (∂t − ∂x)�L (3.49c)

of the critical theory (3.47) makes it explicit that it has the
symmetry group UR(4N ) × UL(4N ).

Any one bundle of 8 × (k + k′) electronic right-moving or
left-moving degrees of freedom is represented by any one
domino from Fig. 8. The symmetry that we select when
considering any one of the n bundles of 8 × (k + k′) electronic
right-moving or left-moving degrees of freedom is the direct
product

U := (U (2k) × Ũ (2k)) × (U (2k′) × Ũ (2k′)). (3.50a)

As before, the multiplicative factor of 2 in 2k or 2k′ stands for
the electronic spin-1/2 degrees of freedom. However, a second
multiplicative factor of 2 in 8 × n (k + k′) is responsible for
the two copies of the unitary group of 2k-dimensional matrices
and 2k′-dimensional matrices, respectively. The corresponding
semisimple affine Lie algebra is

û1 := (û(2k)1 ⊕ ˆ̃u(2k)1) ⊕ (û(2k′)1 ⊕ ˆ̃u(2k′)1). (3.50b)

…

…

K K K K

K̃ K̃ K̃ K̃

J J J J

J̃ J̃ J̃ J̃

FIG. 8. Chain of N wires, each wire supporting four right-
and four left-moving flavors, that are coupled by current-current
interactions in a way that is explicitly symmetric under reversal of
time. A bundle of 8 × (k + k′) right- or left-moving electronic degrees
of freedom is represented by a domino. There are n = N/(k + k′)
dominoes. The currents denoted by J generate the affine Lie algebra
ŝu(2)k ⊕ ŝu(2)

k′ . The currents denoted by K generate the affine Lie
algebra ŝu(2)

k+k′ . The currents denoted by J̃ generate the affine Lie
algebra ̂̃su(2)k ⊕ ̂̃su(2)

k′ . The currents denoted by K̃ generate the
affine Lie algebra ̂̃su(2)

k+k′ .

Equation (3.50) should be compared to Eq. (3.19). As before,
we use the conformal embedding

û(2k)1 = û(1) ⊕ ŝu(2)k ⊕ ŝu(k)2, (3.51a)

ˆ̃u(2k)1 = ˆ̃u(1) ⊕ ̂̃su(2)k ⊕ ̂̃su(k)2, (3.51b)

û(2k′)1 = û(1) ⊕ ŝu(2)k′ ⊕ ŝu(k′)2, (3.51c)

ˆ̃u(2k′)1 = ˆ̃u(1) ⊕ ̂̃su(2)k′ ⊕ ̂̃su(k′)2, (3.51d)

between affine Lie algebras. Here, the generators of these
affine Lie algebra are given by Eq. (3.23) for the conformal
embedding (3.51a), by

j̃R :=
2∑

α=1

k∑
A=1

ψ̃∗
R,α,A ψ̃R,α,A, (3.52a)

J̃ c
R := 1

2

2∑
α,β=1

k∑
A=1

ψ̃∗
R,α,A σ c

αβ ψ̃R,β,A, (3.52b)

J̃c
R :=

2∑
α=1

k∑
A,B=1

ψ̃∗
R,α,A T c

AB ψ̃R,α,B, (3.52c)

(c = 1,2,3 and c = 1, . . . ,k2 − 1) for the conformal em-
bedding (3.51b), and similarly for the conformal embed-
dings (3.51c) and (3.51d), respectively.

We choose to gap the sectors with the symmetries U(1),
SU(k), Ũ(1), S̃U(k), and similarly for k′, while leaving the
sector of the theory associated to the symmetry

G := (SU(2) × S̃U(2)) × (SU(2) × S̃U(2)) (3.53a)

momentarily gapless. The semisimple affine Lie algebra
associated to G is

ĝ
(n)
k,k′ =

n⊕
m=1

(ŝu(2)k ⊕ ̂̃su(2)k) ⊕ (ŝu(2)k′ ⊕ ̂̃su(2)k′). (3.53b)

It is now the diagonal subgroup

H := SU(2) × S̃U(2) (3.54a)

of the group (3.53a) that we shall use to construct the
gapless theory on the edge. The corresponding simple affine
subalgebra of ĝk,k′ , is

ĥ
(n)
k,k′ :=

n⊕
m=1

ŝu(2)k+k′ ⊕ ̂̃su(2)k+k′ . (3.54b)

The currents generating ŝu(2)k ⊕ ŝu(2)k′ are represented by
the symbol J , the currents generating ̂̃su(2)k ⊕ ̂̃su(2)k′ are
represented by the symbol J̃ , the currents generating ŝu(2)k+k′
are represented by the symbol K , and the currents generatinĝ̃su(2)k+k′ are represented by the symbol K̃ in Fig. 8.

Current-current interactions are represented in Fig. 8 by
arcs that are directed when they involve the currents J or J̃ ,
while they are undirected when they involve the currents K or
K̃ . In Fig. 8, the action of reversal of time is twofold. First, the
directions of arrows must be reversed, thereby interchanging
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right- or left-movers. Second, the letters without ˜ acquire
a ˜ , while letters with ˜ loose their ˜ . The corresponding
interaction

Lint := −
n−1∑
m=1

6∑
A=1

λA
m JA

L,m JA
R,m+1 −

n∑
m=1

3∑
B=1

υB
m KB

L,m KB
R,m

−
n−1∑
m=1

6∑
A=1

λA
m J̃ A

R,m J̃ A
L,m+1 −

n∑
m=1

3∑
B=1

υB
m K̃B

R,m K̃B
L,m

(3.55a)

with the real-valued couplings λA
m and υB

m is invariant under
the rules (i.e., those for angular momentum)

JA
L,m �→ −J̃ A

R,m, JA
R,m �→ −J̃ A

L,m,

J̃ A
R,m �→ −JA

L,m, J̃ A
L,m �→ −JA

R,m,
(3.55b)

KB
L,m �→ −K̃B

R,m, KB
R,m �→ −K̃B

L,m,

K̃B
R,m �→ −KB

L,m, K̃B
L,m �→ −KB

R,m,

a consequence of the definition of time reversal made in
Eq. (3.48). Observe that iterating the transformation (3.55b)
twice yields the identity operation. The time-reversal-
symmetric interaction (3.55) partially gaps the theory with
8N decoupled noninteracting electronic right- or left-moving
degrees of freedom. The one-loop RG equations obeyed by
the couplings entering the Lagrangian density (3.55a) are
derived in Sec. C 4 and given in Eqs. (C34) and (C39). They
are marginally relevant and flow to strong couplings if the
couplings are initially nonvanishing and positive.

Inclusion of all the spin-rotation symmetric and time-
reversal-symmetric interactions responsible for fully gap-
ping the U(1) × Ũ(1), SU(k) × S̃U(k), and SU(k′) × S̃U(k′)
symmetry sectors together with the time-reversal-symmetric
interaction (3.55) results in the critical theory that is built from
the coset WZW theory

ĝk,k′/ĥk,k′ := (ŝu(2)k ⊕ ̂̃su(2)k) ⊕ (ŝu(2)k′ ⊕ ̂̃su(2)k′)

ŝu(2)k+k′ ⊕ ̂̃su(2)k+k′
(3.56a)

between affine Lie algebras, with the (nonchiral) central charge

c[ĝk,k′/ĥk,k′] = 2

[
3

(
k

k + 2
+ k′

k′ + 2

)
− 3

k + k′

k + k′ + 2

]
= 2

[
1 − 6k′

(k + 2)(k + k′ + 2)
+ 2(k′ − 1)

k′ + 2

]
.

(3.56b)

This central charge is twice the value of the chiral central
charge (3.34d). Since imposing periodic boundary conditions
gaps completely the chain of quantum wires, we infer that
both the bundle m = 1 and m = n can be assigned the nonchiral
central charge

c[ĝk,k′/ĥk,k′]

2
=
[

1 − 6k′

(k + 2)(k + k′ + 2)
+ 2(k′ − 1)

k′ + 2

]
.

(3.57)
The stability analysis of either one of the boundary coset

WZW theories with the central charge (3.57) is more subtle

than that for Sec. III C. There are relevant primary fields in the
coset WZW theories with the central charge (3.57). However,
their potential for gapping the critical point for the boundaries
is not accounted for in the stability analysis as long as they
are not generated under an RG flow by either one-body or
many-body electron-electron interactions.

There is a crucial difference between either one of the
boundary coset WZW theories with the central charge (3.57)
and the chiral boundary theories from Sec. III C. Starting
from electrons, the latter can only be obtained on the one-
dimensional boundaries of two-dimensional space. Starting
from electrons, the former, however, can be obtained directly
from either one of the strictly one-dimensional models rep-
resented by the single domino from Fig. 9(a) and the single
domino from Fig. 9(b). For example, Fig. 9(a) realizes the same
critical theory as the left boundary critical theory represented
by Fig. 8 provided the interaction depicted in Fig. 9(a) that is
defined by

Lint := −
3∑

B=1

υB
boundary,1 KB

L,1 KB
R,1

−
6∑

A=1

λA
boundary,1 JA

L,1 J̃ A
R,1

−
3∑

B=1

υB
boundary,1 K̃B

R,1 K̃B
L,1 (3.58)

preserves time-reversal symmetry. This is indeed the case as
time reversal is represented by

JA
L,1 �→ −J̃ A

R,1, JA
R,1 �→ −J̃ A

L,1,

J̃ A
R,1 �→ −JA

L,1, J̃ A
L,1 �→ −J A

R,1,
(3.59)

KA
L,1 �→ −K̃A

R,1, KA
R,1 �→ −K̃A

L,1,

K̃A
R,1 �→ −KA

L,1, K̃A
L,1 �→ −KA

R,1,

(a)

K

K̃

J J̃,

(b)

J J̃,

K

K̃
(c)

J J̃, J J̃,

K

K̃

FIG. 9. The partial gapping of a single domino with local current-
current interactions can be done in two ways (a) and (b). The complete
gapping of a single domino with local current-current interactions is
achieved in (c).
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for A = 1, . . . ,6 and B = 1, . . . ,3. We emphasize that the
transformation law (3.59) squares to unity.

On the one hand, it is shown in Appendix D that the
time-reversal symmetry alone does not prevent gapping either
one of the boundary coset WZW theories with the central
charge (3.57) through one-body mass terms for the electrons.
On the other hand, it is shown in Appendix D that the
time-reversal symmetry together with the U(1) symmetry
under the linear transformation

ψ∗
R �→ ψ∗

R e−iθ , ψ̃∗
R �→ ψ̃∗

R e+iθ , (3.60a)

ψ∗
L �→ ψ∗

L e−iθ , ψ̃∗
L �→ ψ̃∗

L e+iθ , (3.60b)

ψR �→ e+iθ ψR, ψ̃R �→ e−iθ ψ̃R, (3.60c)

ψL �→ e+iθ ψL, ψ̃L �→ e−iθ ψ̃L, (3.60d)

that is parameterized by 0 � θ < 2π , does prevent gapping
through one-body mass terms for the electrons. Observe
here that the U(1) symmetry (3.60) of the Lagrangian den-
sities (3.47), (3.55), and (3.58) is generated from the Ising-like
linear transformation with the fundamental rules

ψ∗
R �→ +ψ∗

R, ψ̃∗
R �→ −ψ̃∗

R, (3.61a)

ψ∗
L �→ +ψ∗

L, ψ̃∗
L �→ −ψ̃∗

L, (3.61b)

ψR �→ +ψR, ψ̃R �→ −ψ̃R, (3.61c)

ψL �→ +ψL, ψ̃L �→ −ψ̃L. (3.61d)

The U(1) symmetry (3.60) is the analog to the residual U(1)
spin-1/2 symmetry in the spin quantum Hall effect that insures
the quantization of the spin Hall conductivity. [96,97]

However, as is implied by Fig. 9, it is possible to gap
independently the coset theory with the central charge (3.57)
on any one of the boundary at m = 1 and m = n by adding
either the interaction

−
6∑

A=1

λ′A
boundary,1 JA

R,1 J̃ A
L,1 (3.62)

(with λ′A
boundary,1 > 0) or the interaction

−
6∑

A=1

λ′A
boundary,m JA

L,n J̃ A
R,n (3.63)

(with λ′A
boundary,m > 0), respectively. The transformation (3.60)

acts trivially on the currents (3.23), (3.52), etc. Hence,
imposing the symmetry under the transformation (3.60) is
no rescue to prevent the instability of the helical edge states
to local current-current interactions, as it was with regard to
electronic mass terms.

The instability of the boundary states in Fig. 8 is not
surprising. The low-energy sector of the theory after gapping
the sectors with the U(k + k′) and Ũ(k + k′) symmetries is
of bosonic character, for it is solely expressed in terms of
spin-1/2 currents. Time-reversal in this sector of the conformal

J̃J

…

…

K K K

K̃ K̃ K̃

J J J J

J̃ J̃ J̃ J̃

, 

K

K̃

FIG. 10. Unfolding a chain of dominoes coupled by time-reversal
symmetric interactions.

embedding is represented by an operator that squares to
the identity. If so, time-reversal symmetry is not expected
to protect gapless boundary states. The existence of gapless
boundary states demands fine-tuning of all strong many-body
electronic interactions permitted by time-reversal symmetry.

This is not to say that the bulk theory in Fig. 8 is
uninteresting. It does support topological order when two-
dimensional space shares the same topology as that of a
torus. When the ground state in Fig. 8 is the direct product
of the ground state corresponding to Fig. 5(c) with its time-
reversed image, the ground state corresponding to Fig. 5(d),
the topological degeneracy is the square of the topological
degeneracy corresponding to Fig. 5(c). This counting can be
established as follows. We opt to gap the right-boundary in
Fig. 8 as is illustrated in Fig. 10 with the vertical (red) arc.
[We are caping the right boundary with Fig. 9(a).] We may
then unfold the dominoes by cutting them about the dashed
blue line in Fig. 10. The upper and lower parts of all dominoes
are now interpreted to be distinct (by the presence of absence
of the symbol )̃ quantum wires. We then recover Fig. 5(c)
with N replaced by 2N . The operation of time-reversal is to
be interpreted as a mirror transformation about the dashed
line (i.e., nonlocal in space) after unfolding. We also observe
that if we unfold the dominoes of Figs. 9(a), 9(b), and 9(c),
we obtain the bundles made of 2(k + k′) quantum wires
shown in Figs. 11(a), 11(b), and 11(c), respectively. Either
of Figs. 11(a) and 11(b) realize a strongly interacting critical
point of 2(k + k′) quantum wires obtained by fine-tuning of
strong many-body electron interactions. This is reminiscent of
the Takhtajan-Babujian critical point in the spin-1 chain with
(competing) bilinear and biquadratic interactions [98–109],
as well as of diverse spin-ladder systems with competing
interactions [110–118].

Even if open boundary conditions are imposed on
two-dimensional space (two-dimensional space is the two-
dimensional Euclidean plane) at infinity, “holes” in two-
dimensional space bring about a topological degeneracy [119].
A “Hole” is here understood to be a path-connected and
large region of two-dimensional space in which electrons are
precluded from entering as is illustrated in Fig. 12 within
the context of modeling two-dimensional space with a one-
dimensional array of quantum wires. Electrons can neither
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(a)

K K̃

J J̃,

(b)

K̃ K

J̃ J,

(c)

J J̃,

K K̃

J J̃,

FIG. 11. The partial gapping of a bundle made of 2(k + k′) quantum wires with local current-current interactions can be done in two ways
(a) and (b). The complete gapping of a bundle made of 2(k + k′) quantum wires with local current-current interactions is achieved in (c). The
dashed vertical line is a mirror axis of symmetry.

tunnel nor interact with electrons across a large hole because
of locality.

3. Case III: broken rotation symmetry

The final example with time-reversal symmetry starts from
a chain of decoupled and noninteracting wires that obeys
time-reversal symmetry but with strongly broken spin-1/2
rotation symmetry. Instead of the low-energy theory (3.1) with
its SU(2) spin-1/2 rotation symmetry, we consider the case for
which this symmetry is strongly broken down to no more than
the U(1) subgroup encoding rotations about a quantization
axis. In this case, the non-Abelian spin-1/2 current algebra
is no longer available to gap the bulk with current-current
interactions. One must rely exclusively on the SU(k) × SU(k′)
sector to gap the bulk with current-current interactions.

The construction of III C followed by those of Sec. III D 1
and III D 2 can then be reproduced if the spin-1/2 SU(2)
symmetry group is replaced by another SU(2). To this end,
we choose a bundle with k = 2l and k′ = 2l′ wires, where
l and l′ are positive integers. We then use the direct-product
decomposition U(2k) × U(2k′), where any one the two unitary
groups is decomposed according to the rule U(2k) = U(4l) =
U(1) × SU(4l) and similarly for k → k′. We impose on SU(4l)
the conformal embedding corresponding to SU(2) × SU(2) ×
SU(l), where the first SU(2) is generated by the spin-1/2 of
the electron. By assumption, this sector is strongly gapped.
Thus we may ignore it in the low-energy sector of the theory.
We then proceed with the sectors U(1) × SU(2) × SU(l) as
we did in Secs. III C and Sec. III D 1. To duplicate III D 2,
we furthermore introduce the doubling S̃U(2) that we may

FIG. 12. A single “hole” in a one-dimensional array of N

quantum wires. Electron tunneling between consecutive wires is
prohibited across the diameter of the hole.

interpret as assuming that l = 2o and l′ = 2o′ with o and
o′ positive integers. Finally, we observe one can also use
the U(1) charge sector or the U(1) sector for rotations about
the spin-1/2 quantization axis to gap the bulk while leaving
gapless boundaries [21,97,120,121].
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APPENDIX A: REVERSAL OF TIME

1. Complex fermions

a. Spinless case

Denote the fermion annihilation and creation field operators
as ψ̂

†
A(t,x) and ψ̂A(t,x), respectively. The index A belongs to

a countable set. A point in time is denoted by t . A point
in space is denoted by x. The only nonvanishing equal-time
anticommutators are

{ψ̂A(t,x),ψ̂†
A′ (t,x ′)} = δAA′ δ(x − x ′). (A1a)

For the spinless case,

A = R,L, (A1b)

i.e., the collective index A takes the value R and L with “R”
standing for a right mover and “L” standing for a left mover.

Reversal of time is the antilinear transformation on the
∗ algebra generated by the quantum fields (A1) with the
fundamental rule

ψ̂R(t,x) �→ ψ̂L(−t,x), ψ̂L(t,x) �→ ψ̂R(−t,x). (A2)

Exchange of particle and hole is the linear transformation on
the ∗ algebra generated by the quantum fields (A1) with the
fundamental rule

ψ̂R(t,x) �→ ψ̂
†
R(t,x), ψ̂L(t,x) �→ ψ̂

†
L(t,x). (A3)
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b. Spin-1/2 case

Denote the spin-1/2 Dirac field operator as ψ̂A(t,x). The
index A belongs to a countable set. A point in time is denoted
by t . A point in space is denoted by x. The only nonvanishing
equal-time anticommutators are

{ψ̂A(t,x),ψ̂†
A′ (t,x ′)} = δAA′ δ(x − x ′). (A4a)

For the spin-1/2 case,

A = (R,+),(R,−),(L,+),(L,−), (A4b)

i.e., the collective index A enumerates right and left movers
with an helicity index σ = ± that can be interpreted as the
projection of a spin-1/2 quantum number along the Fermi
wave vector.

Reversal of time is the antilinear transformation on the
∗ algebra generated by the quantum fields (A4) with the
fundamental rule

ψ̂R,+(t,x) �→ +ψ̂L,−(−t,x),

ψ̂R,−(t,x) �→ −ψ̂L,+(−t,x),

ψ̂L,+(t,x) �→ +ψ̂R,−(−t,x),

ψ̂L,−(t,x) �→ −ψ̂R,+(−t,x).

(A5)

Exchange of particle and hole is the linear transformation
on the ∗ algebra generated by the quantum fields (A4) with the
fundamental rule

ψ̂A(t,x) �→ ψ̂
†
A(t,x) (A6)

for A = (R,+),(R,−),(L,+),(L,−).

2. Real fermions

a. Spinless case

We start from the ∗ algebra defined from Eq. (A1). We write

ψ̂A(t,x) ≡ 1√
2

[χ̂A,1(t,x) + iχ̂A,2(t,x)] (A7a)

and demand that

χ̂
†
A,1(t,x) = χ̂A,1(t,x), χ̂

†
A,2(t,x) = χ̂A,2(t,x), (A7b)

holds together with the equal-time algebra

{χ̂A,a(t,x),χ̂A′,a′ (t,x ′)} = δAA′ δaa′ δ(x − x ′), (A7c)

for A,A′ = R,L and a,a′ = 1,2.
Reversal of time is the antilinear transformation on the

∗-algebra generated by the quantum fields (A7) with the
fundamental rule

χ̂R,a(t,x) �→ (−1)a−1 χ̂L,a(−t,x),

χ̂L,a(t,x) �→ (−1)a−1 χ̂R,a(−t,x),
(A8)

for a = 1,2. The multiplicative negative sign when a = 2
arises because of the antilinearity. Here, reversal of time
squares to the identity.

Exchange of particle and hole is the linear transformation
on the ∗ algebra generated by the quantum fields (A7) with the
fundamental rule

χ̂A,1(t,x) �→ χ̂A,1(t,x), χ̂A,2(t,x) �→ −χ̂A,2(t,x), (A9)

for A = R,L. Exchange of particle and hole squares to the
identity here.

b. Spin-1/2 case

We start from ∗ algebra defined from Eq. (A4). We write

ψ̂A(t,x) ≡ 1√
2

[χ̂A,1(t,x) + iχ̂A,2(t,x)] (A10a)

and demand that

χ̂
†
A,1(t,x) = χ̂A,1(t,x), χ̂

†
A,2(t,x) = χ̂A,2(t,x), (A10b)

holds together with the equal-time algebra

{χ̂A,a(t,x),χ̂A′,a′ (t,x ′)} = δAA′ δaa′ δ(x − x ′), (A10c)

for A,A′ = (R,+),(R,−),(L,+),(L,−) and a,a′ = 1,2.
Reversal of time is the antilinear transformation on the

∗-algebra generated by the quantum fields (A10) with the
fundamental rule

χ̂R,+,a(t,x) �→ +(−1)a−1 χ̂L,−,a(−t,x),

χ̂R,−,a(t,x) �→ −(−1)a−1 χ̂L,+,a(−t,x),

χ̂L,+,a(t,x) �→ +(−1)a−1 χ̂R,−,a(−t,x),

χ̂L,−,a(t,x) �→ −(−1)a−1 χ̂R,+,a(−t,x),

(A11)

for a = 1,2. Here, reversal of time squares to minus the
identity.

Exchange of particles and holes can be implemented in
two ways. One may choose the linear transformation on the
∗ algebra generated by the quantum fields (A10) with the
fundamental rule

χ̂A,a(t,x) �→ (−1)a−1 χ̂A,a(t,x) (A12)

for A = (R,+),(R,−),(L,+),(L,−) and a = 1,2. This trans-
formation squares to the identity.

One may choose the linear transformation on the ∗-algebra
generated by the quantum fields (A10) with the fundamental
rule

χ̂α,+,a(t,x) �→ (−1)a−1 χ̂α,−,a(t,x),

χ̂α,−,a(t,x) �→ −(−1)a−1 χ̂α,+,a(t,x),
(A13)

for α = R,L and a = 1,2. This transformation squares to
minus the identity.

APPENDIX B: NON-ABELIAN BOSONIZATION FOR
THE SYMMETRY CLASSES C, A, AND AII

1. The symmetry class C

The simplest model for an array of quantum wires in the
symmetry class C to realize a topological gapped phase is
defined in two steps. First, the superscript (DIII) is replaced by
(C) in Eq. (2.44). Second, we impose the linear transformation
defined by the fundamental rule

χR,+,I (t,x) �→ +χR,−,I (t,x),

χR,−,I (t,x) �→ −χR,+,I (t,x),

χL,+,I (t,x) �→ +χL,−,I (t,x),

χL,−,I (t,x) �→ −χL,+,I (t,x),

(B1)
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for I = 1, . . . ,N [122]. Transformation (B1) squares to minus
the identity. Even though reversal of time (2.45c) is a symmetry
of the partition function Z

(C)
0 , we shall not impose invariance

under reversal of time (2.45c) for a generic representative of
the symmetry class C.

Any partition function Z(C) for the array of quantum wires is
said to belong to the symmetry class C if Z(C) is invariant under
the following transformations. There is the symmetry (B1).
There is the symmetry under the linear transformation (fermion
parity) with the fundamental rule

χα,f,I �→ −χα,f,I (B2)

for any α = R,L, f = ±, and I = 1, . . . ,N . Both symmetries
generate the symmetry under the linear O(2) transformation

χα,f,I �→ Off′ χα,f′,I (B3)

for any α = R,L, f = ±, and I = 1, . . . ,N . Here, the sum-
mation convention over the repeated indices f′ = ± is implied
and the 2 × 2 matrix (Off′) is real-valued and orthogonal.

We seek a local single-particle perturbation L(C)
mass that

satisfies three conditions when added to the Lagrangian density
L(C)

0 .
Condition C.1. It must be invariant under the transforma-

tions (B1) and (B2).
Condition C.2. It must gap completely the theory with the

partition function Z
(C)
0 if we impose the periodic boundary

conditions

χα,f,I (t,x) = χα,f,I+N (t,x) (B4)

for α = R,L, f = ±, and I = 1, . . . ,N .
Condition C.3. The partition function Z(C) with the La-

grangian densityL(C)
0 + L(C)

mass must be a theory with the central
charge

c(C) = 1 (B5)

if open boundary condition are imposed.
Conditions C.1, C.2, and C.3 imply that we may assign wire

I = 1 the right-chiral central charge 1 and wire I = N the
left-chiral central charge 1, for wires I = 1 and I = N both
support a degenerate pair of right- or left-moving Majorana
edge modes, respectively.

We make the ansatz

L(C)
mass :=

N−1∑
I=1

iλ (χL,−,I χR,+,I+1 − χL,+,I χR,−,I+1) (B6)

with λ a real-valued coupling. Condition C.1 is met by con-
struction. To establish that the ansatz (B6) meets Conditions
C.2 and C.3, we use non-Abelian bosonization. We choose
the non-Abelian bosonization scheme by which the partition
function is given by the path integral

Z(C) =
∫

D[G] eiS(C)
. (B7a)

The field G ∈ O(2N ) is a matrix of bosons. The measureD[G]
is constructed from the Haar measure on O(2N ). The action

FIG. 13. Pictorial representation for the selected backscattering
in the symmetry class C. Each yellow box represents a quantum
wire composed of four-Majorana degrees of freedom. The wires are
enumerated by I = 1, . . . ,N in ascending order from left to right.
For any I , the Majorana modes are denoted by χR,+,I , χL,+,I , χR,−,I ,
and χL,−,I reading from left to right, respectively.

S(C) is the sum of the actions S
(C)
0 and S(C)

mass. The action S
(C)
0 is

S
(C)
0 = 1

16π

∫
dt

∫
dx tr (∂μG ∂μG−1)

+ 1

24π

∫
B

d3y L(C)
WZW, (B7b)

where

L(C)
WZW = εijk tr [(Ḡ−1∂iḠ) (Ḡ−1∂j Ḡ)(Ḡ−1∂kḠ)]. (B7c)

(Recall that Ḡ denotes the extension of G to the solid 3-ball.)
The action S(C)

mass stems from the Lagrangian density

L(C)
mass =

N−1∑
I=1

λ (G(−,I ),(−,I+1) + G(+,I+1),(+,I ))

≡ λ tr (M (C) G). (B7d)

The second equality is established by using the non-Abelian
bosonization formula (2.24) (we have set the mass parameter
muv = 1). The 2N × 2N matrices M (C) is represented by

M (C) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
B 0 0 0 0 0 · · ·
0 B 0 0 0 0 · · ·
0 0 B 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B7e)

in the basis for which B is the 2 × 2 matrix

B :=

⎛⎜⎜⎝
(−,+)︷︸︸︷
−1

(−,−)︷︸︸︷
0

0︸︷︷︸
(+,+)

1︸︷︷︸
(+,−)

⎞⎟⎟⎠. (B7f)

For any N > 2, the 2N × 2N matrices M (C) defined by (B7e)
has two vanishing and 2 × (N − 1) nonvanishing eigenvalues.

The quadratic perturbation (B7d) thus reduces the central
charge c

(C)
0 = 2 × N/2 by the amount 2 × (N − 1)/2, i.e., the

central charge for the theory with the partition function Z(C) is

c(C) = 2 × N

2
− 2 × (N − 1)

2
= 1. (B8)

We have constructed a topological superconductor with the
gapless and singlet pair of Majorana modes (χR,+,I ,χR,−,I )I=1
propagating along edge I = 1 and the gapless and singlet pair
of Majorana modes (χL,+,I ,χL,−,I )I=N propagating along edge
I = N . This construction is summarized by Fig. 13.
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The symmetry class C has the Z topological classification
for the following reason. If one takes an arbitrary integer
number ν of copies of the gapless edge theory, these ν

copies remain gapless. The stability of the 2ν gapless edge
modes within either wire 1 or wire N is guaranteed because
backscattering among gapless chiral edges modes of the same
chirality is not allowed kinematically within either wire 1 or
wire N .

2. The symmetry class A

The symmetry class A preserves the total number of
complex fermions that can be built out of an even number
M of flavors for the Majorana fermions. The simplest model
for an array of quantum wires in the symmetry class A to
realize a topological gapped phase assumes

M = 2, χα,f,I (t,x), (B9a)

for α = R,L, f = 1,2, and I = 1, . . . ,N . We have thus
assigned four Majorana fermions to each wire I = 1 · · · N . If
so, we can interpret

ψ∗
α,I (t,x) ≡ 1√

2
[χα,1,I (t,x) − iχα,2,I (t,x)],

ψα,I (t,x) ≡ 1√
2

[χα,1,I (t,x) + iχα,2,I (t,x)],

(B9b)

for α = R,L and I = 1, . . . ,N as the Grassmann representa-
tion of a pair of creation and annihilation fermion operators.

The simplest model for an array of quantum wires in the
symmetry class A to realize a topological gapped phase is
defined in two steps. First, the superscript (DIII) is replaced
by (A) in Eq. (2.44). There follows the partition function Z

(A)
0 .

Second, we shall represent reversal of time with the antilinear
transformation defined by the fundamental rule [see Eq. (A8)]

χR,f,I (t,x) �→ (−1)f−1 χL,f,I (−t,x),

χL,f,I (t,x) �→ (−1)f−1 χR,f,I (−t,x),
(B10)

for f = 1,2 and I = 1, . . . ,N . Contrary to the reversal of time
defined by Eq. (2.45c), transformation (B10) squares to the
identity. Even though reversal of time (B10) is a symmetry
of the partition function Z

(A)
0 , we shall not impose invariance

under reversal of time (B10) for a generic representative of
the symmetry class A. A symmetry of the partition function
Z

(A)
0 that we shall keep is the O(2) symmetry under the

transformation (B11b) that is parametrized by the angle
0 � θ < 2π .

The theory with the partition function Z
(A)
0 is critical, for

there are 4N decoupled massless Majorana modes that are
dispersing in (1 + 1)-dimensional Minkowski space and time.
Hence the central charge for the partition function Z

(A)
0 is

c
(A)
0 = N. (B11a)

The partition function Z
(A)
0 is invariant under any local linear

transformation from OR(2N ) × OL(2N ) of the form (2.45b).
For any 0 � θ < 2π , Z

(A)
0 is also invariant under the contin-

uous global linear transformation with the fundamental rule

χα,1,I (t,x) �→ cos θ χα,1,I (t,x) − sin θ χα,2,I (t,x),

χα,2,I (t,x) �→ sin θ χα,1,I (t,x) + cos θ χα,2,I (t,x),
(B11b)

for α = R,L and I = 1, . . . ,N . This transformation imple-
ments the U(1) fermion-number conservation law that follows
from the symmetry under the global U(1) transformation

ψ∗
α,I (t,x) �→ ψ∗

α,I (t,x) e−iθ ,

ψα,I (t,x) �→ e+iθ ψα,I (t,x),
(B11c)

for any 0 � θ < 2π , α = R,L, and I = 1, . . . ,N .
Any partition function Z(A) for the array of quantum wires is

said to belong to the symmetry class A if Z(A) is invariant under
the global linear O(2) transformation (B11b). Even though the
O(2) symmetry in the simplest model for an array of quantum
wires in the symmetry, class A has a very different origin from
that in the minimal model for an array of quantum wires in the
symmetry class C, we may still borrow the analysis of Sec. B 1
below Eq. (B3) verbatim. This construction of a topological
phase in the symmetry class A is summarized by Fig. 14.

The symmetry class A has the Z topological classification
for the following reason. If one takes an arbitrary integer
number ν of copies of the gapless edge theory, these ν copies
remain gapless. The stability of the 2ν Majorana gapless edge
modes within either wire 1 or wire N is guaranteed for two
reasons. First, the O(2) conservation law allows to group two
Majorana fermions into one complex chiral fermion. Second,
all Majorana modes within either wire 1 or wire N share the
same chirality, backscattering among gapless edges modes is
not allowed kinematically within either wire 1 or wire N .

3. The symmetry class AII

Fermion-number conservation and a time-reversal symme-
try squaring to minus the identity must hold in the symmetry
class AII. The time-reversal symmetry is that of spin-1/2.
The minimal model in the symmetry class AII for an array of
quantum wires must thus accommodate twice as many degrees
of freedom as that in the symmetry class A in order to realize
a topological insulating phase.

The simplest model for an array of quantum wires in the
symmetry class AII to realize a topological gapped phase
assumes

M = 4, χα,σ,a,I (t,x), (B12a)

with the right- and left-mover labels α = R,L, the helicity
labels σ = ±, the complex fermion labels a = 1,2, and the

FIG. 14. Pictorial representation for the selected backscattering
in the symmetry class A. Each yellow box represents a quantum
wire composed of four-Majorana degrees of freedom. The wires are
enumerated by I = 1, . . . ,N in ascending order from left to right.
For any I , the Majorana modes are denoted by χR,1,I , χL,1,I , χR,2,I ,
and χL,2,I reading from left to right, respectively.
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wire index I = 1, . . . ,N . This is to say that four complex
fermions are represented by

ψA(t,x) ≡ 1√
2

[χA,1(t,x) + iχA,2(t,x)] (B12b)

with the collective label A = (R,+),(R,−),(L,+),(L,−). We
define the action

S
(AII)
0 :=

∫
dt

∫
dx L(AII)

0 (B12c)

with

L(AII)
0 := i

2

N∑
I=1

∑
σ=±

∑
a=1,2

[χR,σ,a,I (∂t + ∂x)χR,σ,a,I

+χL,σ,a,I (∂t − ∂x)χL,σ,a,I ]. (B12d)

We also define the Grassmann partition function

Z
(AII)
0 :=

∫
D[χ ] e+iS(AII)

0 . (B12e)

The theory with the partition function Z
(AII)
0 is critical,

for there are 8N decoupled massless Majorana modes that
are dispersing in (1 + 1)-dimensional Minkowski space and
time. Hence the central charge for the theory with the partition
function Z

(AII)
0 is

c
(AII)
0 = 2N. (B13a)

The partition function Z
(AII)
0 is invariant under any local

transformation (O(R),O(L)) ∈ OR(4N ) × OL(4N ) defined by

χR(t − x) �→ O(R)(t − x) χR(t − x),

χL(t + x) �→ O(L)(t + x) χL(t + x).
(B13b)

It is also invariant under the antilinear transformation with the
fundamental rules

χR,+,a,I (t,x) �→ +(−1)a−1 χL,−,a,I (−t,x),

χR,−,a,I (t,x) �→ −(−1)a−1 χL,+,a,I (−t,x),

χL,+,a,I (t,x) �→ +(−1)a−1 χR,−,a,I (−t,x),

χL,−,a,I (t,x) �→ −(−1)a−1 χR,+,a,I (−t,x),

(B13c)

for a = 1,2 that implement reversal of time in such a way that
reversal of time squares to minus the identity (see Appendix A).
Finally, it is invariant under the linear transformation with the
fundamental rule

χA,1,I (t,x) �→ cos θ χA,1,I (t,x) − sin θ χA,2,I (t,x),

χA,2,I (t,x) �→ sin θ χA,1,I (t,x) + cos θ χA,2,I (t,x),
(B13d)

that implements the global U(1) transformation

ψ∗
A,I (t,x) �→ ψ∗

A,I (t,x) e−iθ ,

ψA,I (t,x) �→ e+iθ ψA,I (t,x),
(B13e)

for A = (R,+),(R,−),(L,+),(L,−) and any 0 � θ < 2π .
Any partition function Z(AII) for the array of quantum wires is
said to belong to the symmetry class AII if Z(AII) is invariant
under the transformations (B13c) and (B13d).

We seek a local single-particle perturbation L(AII)
mass that

satisfies three conditions when added to the Lagrangian
density (B12d).

Condition AII.1. It must be invariant under the transforma-
tions (B13c) and (B13d).

Condition AII.2. It must gap completely the theory with the
partition function Z

(AII)
0 if we impose the periodic boundary

conditions

χα,f,a,I (t,x) = χα,f,a,I+N (t,x) (B14)

for α = R,L, f = ±, a = 1,2, and I = 1, . . . ,N .
Condition AII.3. The partition function Z(AII) with the

Lagrangian density L(AII)
0 + L(AII)

mass must be a theory with the
central charge

c(AII) = 2 (B15)

if open boundary condition are imposed.
Conditions AII.1, AII.2, and AII.3 imply that we may assign

wire I = 1 the central charge 1 and wire I = N the central
charge 1, for wires I = 1 and I = N both support a single
Kramers degenerate pair of edge modes, whereby each mode
carries the sharp (complex) fermion number of one.

We make the ansatz

L(AII)
mass :=

N−1∑
I=1

iλ(χL,+,1,I χR,+,2,I+1 − χL,+,2,I χR,+,1,I+1

+χR,−,1,I χL,−,2,I+1 − χR,−,2,I χL,−,1,I+1) (B16)

with λ a real-valued coupling. Condition AII.1 is met by con-
struction. To establish that the ansatz (B16) meets Conditions
AII.2 and AII.3, we use non-Abelian bosonization. We choose
the non-Abelian bosonization scheme by which the partition
function is given by the path integral

Z(AII) =
∫

D[G] e+iS(AII)
. (B17a)

The field G ∈ O(4N ) is a matrix of bosons. The measureD[G]
is constructed from the Haar measure on O(4N ). The action
S(AII) is the sum of the actions S

(AII)
0 and S(AII)

mass . The action
S

(AII)
0 is

S
(AII)
0 = 1

16π

∫
dt

∫
dx tr (∂μG ∂μG−1)

+ 1

24π

∫
B

d3y L(AII)
WZW, (B17b)

where

L(AII)
WZW = εijk tr [(Ḡ−1∂iḠ) (Ḡ−1∂j Ḡ)(Ḡ−1∂kḠ)]. (B17c)

The action S(AII)
mass stems from the Lagrangian density

L(AII)
mass =

N−1∑
I=1

λ (G(−,I ),(−,I+1) + G(+,I+1),(+,I ))

≡ λ tr (M (AII) G). (B17d)

The second equality is established by using the non-Abelian
bosonization formula (2.24) (we have set the mass parameter
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muv = 1). The 4N × 4N matrices M (AII) is represented by

M (AII) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 B 0 0 0 0 · · ·
−BT 0 B 0 0 0 · · ·

0 −BT 0 B 0 0 · · ·
0 0 −BT 0 B 0 · · ·
0 0 0 −BT 0 B · · ·
0 0 0 0 −BT 0 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B17e)

in the basis for which B is the 4 × 4 matrix

B :=

⎛⎜⎜⎝
(+,−)︷︸︸︷

0

(+,+)︷︸︸︷
0

−iτ2︸︷︷︸
(−,−)

0︸︷︷︸
(−,+)

⎞⎟⎟⎠, − iτ2 =

⎛⎜⎜⎝
(1,1)︷︸︸︷
0

(1,2)︷︸︸︷
−1

1︸︷︷︸
(2,1)

0︸︷︷︸
(2,2)

⎞⎟⎟⎠. (B17f)

For any N > 0, the 4N × 4N matrices M (AII) defined
by (B17e) has four vanishing and 4 × (N − 1) nonvanishing
eigenvalues.

The quadratic perturbation (B17d) thus reduces the central
charge c

(AII)
0 = 4 × N/2 by the amount 4 × (N − 1)/2, i.e.,

the central charge for the theory with the partition function
Z(AII) is

c(AII) = 4 × N

2
− 4 × (N − 1)

2
= 2. (B18)

We have constructed a topological insulator with the
gapless and Kramers degenerate pairs of Majorana modes
(χR,+,1,I ,χL,−,1,I )I=1 and (χR,+,2,I ,χL,−,2,I )I=1 propagating
along edge I = 1 and the gapless and Kramers degen-
erate pairs of Majorana modes (χL,+,1,I ,χR,−,1,I )I=N and
(χL,+,2,I ,χR,−,2,I )I=N propagating along edge I = N . This
construction is summarized by Fig. 15.

The symmetry class AII supports a Z2 topological classi-
fication. This can be shown along the same lines as was done
for the symmetry class DIII.

APPENDIX C: ONE-LOOP RENORMALIZATION
GROUP FLOWS

In this appendix, we outline how to obtain the one-loop
renormalization group (RG) flows for the current-current
interactions from Sec. III.

1. Warmup

We start with a SU(N ) current-current interaction that
breaks the local SUR(N ) × SUL(N ) symmetry at the SU(N )

FIG. 15. Pictorial representation for the selected backscattering
in the symmetry class AII. Each yellow box represents a quantum
wire composed of four-Majorana degrees of freedom. The wires are
enumerated by I = 1, . . . ,N in ascending order from left to right. For
any I , the Majorana modes are denoted by χR,+,1,I , χL,+,1,I , χR,−,1,I ,
χL,−,1,I , χR,+,2,I , χL,+,2,I , χR,−,2,I , and χL,−,2,I reading from left to
right, respectively.

WZW critical point with the Lagrangian density L0. We
require that these interactions preserve the Lorentz symmetry
of S0. This assumption insures that the speed of “light,”
the Fermi velocity, is not renormalized. Imposing Lorentz
symmetry allows to focus solely on perturbations that open
a spectral gap.

We recall that under a Lorentz boost parametrized by the
rapidity β ∈ R, the light-cone coordinates transform as

t − x �→ e−β(t − x), t + x �→ e+β(t + x), (C1)

while the right- and left-moving SU(N ) currents transform as

J a
R → e+β J a

R , J a
L → e−β J a

L , (C2)

for a = 1, . . . ,N2 − 1. Hence the requirement of Lorentz
invariance imposes that the current-current interactions involve
products of left- and right-moving currents with the number of
left-moving generators equal to the number of right-moving
generators. To quadratic order in the currents, the most
general perturbing Lagrangian density that is quadratic in the
generators of SU(N ) is

Lint := −
N2−1∑
a,b=1

J a
R λab J b

L , (C3)

where λab = λba are real-valued.
The partition function is

Z :=
∫

a

D[ψ∗,ψ] e+i(S0+Sint), (C4a)

where both the measure for the fields and the actions

S0 =
∫

dz̄dz

2π i
L0, Sint =

∫
dz̄dz

2π i
Lint (C4b)

depend on a short-distance cutoff a. The integral in the partition
function is over the fields chosen to represent the Lagrangian
densities. The integrals in the actions are over two-dimensional
Minkowski space.

The renormalization of the couplings entering the La-
grangian density consists in doing first the expansion

Z =
∫

a

D[ψ∗,ψ] e+iS0

(
1 + iSint + i2

2
S2

int + · · ·
)

. (C5a)

The short-distance cutoff a is implied by the limits on the
path integral. Second, high-energy degrees of freedom are
integrated over,

Z =
∫

ed� a

D[ψ∗,ψ] exp

(
+i
∫

dz̄dz

2π i
(L0 + δL)

)
, (C5b)

where d� is a positive infinitesimal and δL is to be calculated
to any given order in perturbation theory. The short-distance
cutoff ed� a is implied by the limits on the path integral. Third,
the RG flows follow from demanding that L0 + δL has the
same form as L0 + Lint.

Now, the first nonvanishing term on the right-hand side of
Eq. (C5a) is

δZ ≡
∫

D[ψ∗,ψ] e+iS0
i2

2
S2

int, (C6)

for the Lorentz symmetry would be broken otherwise.
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Without loss of generality, we may perform the one-loop
renormalization of the partition function after performing a
Wick rotation from the two-dimensional Minkowski space to
two-dimensional Euclidean space.

The term (the summation convention over repeated indices
is implied)

S2
int

2
= 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i
λaa′

λbb′
J a

R(w) J a′
L (w̄)

× J b
R(z) J b′

L (z̄).

(C7)

is evaluated in three steps. First, the SU(N ) counterparts

J a
R(w) J b

R(z) = if abc J c
R(z)

w − z
+ 1

2

tr(T a T b)

(w − z)2
, (C8a)

J a
L (w̄) J b

L (z̄) = if abc J c
L(z̄)

w̄ − z̄
+ 1

2

tr(T a T b)

(w̄ − z̄)2
, (C8b)

J a
R(w) J b

L (z̄) = J a
L (w̄) J b

R(z) = 0, (C8c)

to the OPE (2.14) are inserted into Eq. (C7). Because Lorentz
invariance of S0 is not broken spontaneously, the leading field-
dependent contribution is given by

S2
int

2
≈ 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i
λaa′

λbb′

×
[

i2 f abc f a′b′c′

|z − w|2 J c
R(z) J c′

L (z̄) + · · ·
]
. (C9)

Second, the two-dimensional integration
∫

dw̄ dw
2π i is logarith-

mically divergent unless the second-order pole of the integrand
at w = z is regulated by restricting the integration over it to a
ring of inner radius a > 0 and of outer radius ed� a > a with
d� a positive infinitesimal,

δS = − 2π d�

2

∫
dz̄dz

2π i
λaa′

λbb′
f abc f a′b′c′

J c
R(z) J c′

L (z̄).

(C10)

Third, the one-loop RG equations

dλcc′

d�
= π f abc f a′b′c′

λaa′
λbb′

(C11)

follow for c,c′ = 1, . . . ,N2 − 1 under the rescaling a �→ (1 +
d�) a of the short-distance characteristic length a.

For SU(N ) symmetric interaction, λab = λ δab with a,b =
1, . . . ,N2 − 1, the one-loop RG equations (C11) become

dλ

d�
= πNλ2 (C12a)

if the convention

N2−1∑
b,c=1

f abc f a′bc = N δaa′
(C12b)

for a,a′ = 1, . . . ,N2 − 1 is chosen for the quadratic Casimir
eigenvalue. For λ positive, the flow is to strong coupling and
is interpreted as the opening of a gap in the SU(N ) sector
of the theory by the left-right non-Abelian current-current
interaction.

We specialize to two Lie groups from now on. There is
the semisimple Lie group SU(2) × SU(2) whose generators
JA with A = 1, . . . ,6 are defined in Eqs. (3.33a) and (3.33b).
There is the diagonal subgroup SU(2) of SU(2) × SU(2) whose
generators KB are defined in Eq. (3.33c).

2. Derivation of the one-loop RG flows for Sec. III C

To calculate the one-loop RG flows obeyed by the coupling
constants entering the current-current interaction (3.33d), we
start from the square of the action (3.33d), as we did in (C7),

S2
int

2
= 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i

[
λ
A1
m1 λ

A2
m2 JA1

L,m1
(w̄)JA1

R,m1+1(w)

×JA2
L,m2

(z̄)JA2
R,m2+1(z) + υ

B1
m1 υ

B2
m2 K

B1
L,m1

(w̄)

×KB1
R,m1

(w)KB2
L,m2

(z̄)KB2
R,m2

(z) + 2λA
m1

υB
m2
JA

L,m1
(w̄)

×JA
R,m1+1(w)KB

L,m2
(z̄)KB

R,m2
(z)

]
. (C13)

Repeated indices will always be summed over, unless stated
otherwise.

We are going to use three types of OPE. First, we need the
OPE for the semisimple Lie algebra su(2) ⊕ su(2). They are

JA1
R,m1

(w)JA2
R,m2

(z) =
if A1A2A3 JA3

R,m1
(z)

w − z
δm1m2 + · · · , (C14a)

where the fact that the structure constants f A1A2A3 are those
for the semisimple Lie algebra su(2) × su(2) is implied by the
use of the caligraphic label A = 1, . . . ,6. Second, we need the
OPE for the simple Lie algebra su(2). They are

KB1
R,m1

(w)KB2
R,m2

(z) = if B1B2B3 KB3
R,m1

(z)

w − z
δm1m2 + · · · , (C14b)

where the fact that the structure constants f B1B2B3 reduce
to those for the simple Lie algebra su(2) is implied by the
use of the caligraphic label B = 1,2,3. Finally, we need the
OPE between the generators of su(2) ⊕ su(2) and its diagonal
subalgebra su(2). They are

KB1
R,m1

(w)JA2
R,m2

(z) = if B1A2A3 JA3
R,m1

(z)

w − z
δm1m2 + · · · . (C14c)

Because the diagonal subalgebra su(2) is not an ideal, the last
entry of the structure constant is a calligraphic A3 = 1, . . . ,6.
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Insertion of the OPEs (C14) into the square bracket on the right-hand side of Eq. (C13) gives[
λ
A1
m λ

A2
m

i2 f A1A2A3 f A1A2A4

|z − w|2 JA3
L,m(z̄)JA4

R,m+1(z) + υ
B1
m υ

B2
m

i2 f B1B2B3 f B1B2B4

|z − w|2 KB3
L,m(z̄)KB4

R,m(z)

+ 2λA
m υB

m

i f ABA′

w̄ − z̄
JA′

L,m(z̄)JA
R,m+1(w)KB

R,m(z) + 2λA
m υB

m+1

i f ABA′

w − z
JA

L,m(w̄)KB
L,m+1(z̄)JA′

R,m+1(z) + · · ·
]
. (C15)

The third and fourth terms in the integrand involves products with different numbers of right- and left-moving currents. We can
ignore such contributions since operators with nonvanishing conformal spin do not affect the beta functions, given the Lorentz
invariance of the critical point. Integrating the second-order poles at w and w̄ over a ring with the inner radius a and the outer
radius (1 + d�) a gives

δS := −2π d�

2

∫
dz̄dz

2π i

[
λ
A1
m λ

A2
m f A1A2A3 f A1A2A4 JA3

L,m(z̄)JA4
R,m+1(z) + υ

B1
m υ

B2
m f B1B2B3 f B1B2B4 KB3

L,m(z̄)KB4
R,m(z)

]
. (C16)

For any given A = 1, . . . ,6 and any given m = 1, . . . ,n − 1, the one-loop RG equations

dλA
m

d�
= π f AA′ A′′

f AA′ A′′
λA′
m λA′′

m (C17a)

follow for the current-current interactions with the generators from the semisimple su(2) ⊕ su(2) algebra. For any given
B = 1, . . . ,3 and any given m = 1, . . . ,n, the one-loop RG equations

dυB
m

d�
= π f BB′ B′′

f B B′ B′′
υB′
m υB′′

m (C17b)

follow for the current-current interactions with the generators from the diagonal su(2) subalgebra.

3. Derivation of the one-loop RG flows for Sec. III D 1

The following manipulations on the explicit form of Lint(κ) defined by Eq. (3.44) are useful. Indeed

Lint(κ) := 1 − κ

2

[
−

n−1∑
m=1

6∑
A=1

λA
m JA

L,m JA
R,m+1 −

n∑
m=1

3∑
B=1

υB
m KB

L,m KB
R,m

]

+ 1 + κ

2

[
−

n−1∑
m=1

6∑
A=1

λA
m JA

R,m JA
L,m+1 −

n∑
m=1

3∑
B=1

υB
m KB

R,mKB
L,m

]

= − 1 − κ

2

n−1∑
m=1

6∑
A=1

λA
m JA

L,m JA
R,m+1 − 1 + κ

2

n−1∑
m=1

6∑
A=1

λA
m JA

R,m JA
L,m+1 −

n∑
m=1

3∑
B=1

υB
m KB

R,mKB
L,m (C18)

shows that the couplings of the current-current interactions with the generators K from the diagonal subalgebra su(2) are
independent of the interpolating real-valued parameter κ . At this stage, it is convenient to introduce the couplings

λA
LR,m := 1 − κ

2
λA
m , λA

RL,m := 1 + κ

2
λA
m , A = 1, . . . ,6, m = 1, . . . ,n − 1, (C19a)

and the interaction

Lint := −
n−1∑
m=1

6∑
A=1

λA
LR,m JA

L,m JA
R,m+1 −

n−1∑
m=1

6∑
A=1

λA
RL,m JA

R,m JA
L,m+1 −

n∑
m=1

3∑
B=1

υB
m KB

R,mKB
L,m. (C19b)

As was the case in Appendix C 2, the one-loop RG equations obeyed by the couplings υB
m with B = 1,2,3 and m = 1, . . . ,n

decouple from the one-loop RG equations obeyed by the couplings λA
LR,m and λA

RL,m with A = 1, . . . ,6 and m = 1, . . . ,n − 1. The
one-loop RG equations obeyed by the couplings υB

m that enter the current-current interaction (C18) are given by Eq. (C17b).
Now, to calculate the one-loop RG equations for the coupling constants in the J sector of the current-current interaction (C18),

we only need to treat the J -dependent contribution

Lint,J (κ) := −
n−1∑
m=1

6∑
A=1

λA
LR,m JA

L,m JA
R,m+1 −

n−1∑
m=1

6∑
A=1

λA
RL,m JA

R,m JA
L,m+1 (C20)
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to the Lagrangian density (C18). Expansion of the Boltzmann weight with the action corresponding to the Lagrangian
density (C20) gives the second-order contribution

S2
int

2
= 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i

[
λ
A1
LR,m1

λ
A2
LR,m2

JA1
L,m1

(w̄)JA1
R,m1+1(w)JA2

L,m2
(z̄)JA2

R,m2+1(z)

+ λ
A1
RL,m1

λ
A2
RL,m2

JA1
R,m1

(w)JA1
L,m1+1(w̄)JA2

R,m2
(z)JA2

L,m2+1(z̄)

+ 2 λ
A1
LR,m1

λ
A2
RL,m2

JA1
L,m1

(w̄)JA1
R,m1+1(w)JA2

R,m2
(z)JA2

L,m2+1(z̄)
]
.

(C21)

Insertion of the OPEs (C14) into the square bracket on the right-hand side of Eq. (C21) gives[
λ
A1
LR,m λ

A2
LR,m

i2 f A1A2A3 f A1A2A4

|z − w|2 JA3
L,m(z̄)JA4

R,m+1(z) + λ
A1
RL,m λ

A2
RL,m

i2 f A1A2A3 f A1A2A4

|z − w|2 JA3
R,m(z)JA4

L,m+1(z̄) + · · ·
]
. (C22)

We note that the contribution from the OPEs from the third term inside the bracket on the right-hand side of Eq. (C21) vanishes
because δm1,m2+1 and δm1+1,m2

cannot be met simultaneously. Integrating the second-order poles at w and w̄ over a ring with the
inner radius a and the outer radius (1 + d�) a gives

δS = − 2π d�

2

∫
dz̄dz

2π i

[
λ
A1
LR,m λ

A2
LR,m f A1A2A3 f A1A2A4 JA3

L,m J
A4

R,m+1 + λ
A1
RL,m λ

A2
RL,m f A1A2A3f A1A2A4JA3

R,m J
A4

L,m+1

]
. (C23)

For any given A = 1, . . . ,6 and any given m = 1, . . . ,n −
1, there follows the pair of one-loop RG equations

dλA
LR,m

d�
= π f AA′ A′′

f AA′ A′′
λA′

LR,m λA′′
LR,m (C24a)

with the initial conditions

λA
LR,m(� = 0) = 1 − κ

2
λA
m (C24b)

on the one hand, and

dλA
RL,m

d�
= π f AA′ A′′

f AA′ A′′
λA′

RL,m λA′′
RL,m (C24c)

with the initial conditions

λA
RL,m(� = 0) = 1 + κ

2
λA
m (C24d)

on the other hand. We conclude that (i) Eqs. (C24a) and (C24b)
are decoupled from Eqs. (C24c) and (C24d) to one loop, (ii)
dλA

LR,m/d� (dλA
RL,m/d�) are positive when all λA

LR,m (λA
RL,m)

share the same sign, and (iii) all λA
LR,m (λA

RL,m) are marginally
irrelevant when all λA

LR,m (λA
RL,m) are nonvanishing and negative

[i.e., κ < −1 (κ > +1) and λA
m > 0].

For any m = 1, . . . ,n − 1, their (formal) solutions for the
SU(2) × SU (2) symmetric initial conditions

λA
m ≡ λm, A = 1, . . . ,6, (C25a)

are given by

λLR,m(�) =
(

1−κ
2

)
λm

1 − c
(

1−κ
2

)
λm �

(C25b)

on the one hand, and

λRL,m(�) =
(

1+κ
2

)
λm

1 − c
(

1+κ
2

)
λm �

(C25c)

on the other hand. The positive numerical constant c is here
defined by

c := π

6∑
A′,A′′=1

(f AA′ A′′
)2. (C25d)

The standard interpretation of the poles at

e−� = e
− 1

c( 1∓κ
2 ) λm (C26)

is that they signal an instability of the unperturbed ground state
to the interacting channel with the bare coupling constant(

1 ∓ κ

2

)
λm > 0, λm > 0. (C27)

The dominant instability is defined by

sup

{(
1 − κ

2

)
λm,

(
1 + κ

2

)
λm

∣∣∣∣m = 1, . . . ,n − 1

}
. (C28)

Following this line of reasonning, the competition between the
interactions LL→R

int and LR→L
int in Eq. (3.44) is won by LL→R

int
when −1 < κ < 0 and LR→L

int when 0 < κ < +1. When κ �
−1, LR→L

int is marginally irrelevant while LL→R
int is marginally

relevant. When 1 � κ , LL→R
int is marginally irrelevant while

LR→L
int is marginally relevant.

4. Derivation of the one-loop RG flows for Sec. III D 2

We proceed by computing the one-loop RG flow equations
for the couplings λA

m and υB
m in (3.55a). The following

manipulation on the explicit form ofLint defined by Eq. (3.55a)
is useful:

Lint := −
n−1∑
m=1

6∑
A=1

λA
m

(
JA

L,m JA
R,m+1 + J̃ A

R,m J̃ A
L,m+1

)
−

n∑
m=1

3∑
B=1

υB
m

(
KB

L,m KB
R,m + K̃B

R,m K̃B
L,m

)
. (C29)
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As was the case in Appendix C 2, the one-loop RG equations
obeyed by the couplings υB

m with B = 1,2,3 and m = 1, . . . ,n
decouple from the one-loop RG equations obeyed by the
couplings λA

m with A = 1, . . . ,6 and m = 1, . . . ,n − 1. We
may thus derive the one-loop RG equations for the coupling
constants in the J sector and in the K sector of the current-
current interaction (C29) separately.

First, we look at the J -dependent contribution

Lint,J := −
n−1∑
m=1

6∑
A=1

λA
m

(
JA

L,m JA
R,m+1 + J̃ A

R,m J̃ A
L,m+1

)
(C30)

to the Lagrangian density (C29). Expansion of the Boltzmann
weight with the action corresponding to the Lagrangian
density (C30) gives the second-order contribution

S2
int

2
= 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i

[
λ
A1
m1 λ

A2
m2 JA1

L,m1
(w̄)

×JA1
R,m1+1(w)JA2

L,m2
(z̄)JA2

R,m2+1(z)

+ λ
A1
m1 λ

A2
m2 J̃ A1

R,m1
(w) J̃ A1

L,m1+1(w̄) J̃ A2
R,m2

(z) J̃ A2
L,m2+1(z̄)

+ 2 λ
A1
m1 λ

A2
m2 JA1

L,m1
(w̄)JA1

R,m1+1(w) J̃ A2
R,m2

(z) J̃ A2
L,m2+1(z̄)

]
.

(C31)

Insertion of the OPEs (C14) into the square bracket on the
right-hand side of Eq. (C31) gives[

λ
A1
m λ

A2
m

i2 f A1A2A3 f A1A2A4

|z − w|2 JA3
L,m(z̄)JA4

R,m+1(z) + λ
A1
m λ

A2
m

× i2 f A1A2A3 f A1A2A4

|z − w|2 J̃ A3
R,m(z) J̃ A4

L,m+1(z̄) + · · ·
]
. (C32)

We note that the contribution from the OPEs from the third
term inside the bracket on the right-hand side of Eq. (C31)
vanishes because there are no OPEs between J and J̃ , for J
and J̃ belong to the pair of commuting algebras su(2) ⊕ su(2)
and s̃u(2) ⊕ s̃u(2), respectively. Integrating the second-order
poles at w and w̄ over a ring with the inner radius a and the
outer radius (1 + d�) a gives

δS = −2π d�

2

∫
dz̄dz

2π i
λ
A1
m λ

A2
m f A1A2A3 f A1A2A4

×(JA3
L,m J

A4
R,m+1 + J̃ A3

R,m J̃
A4

L,m+1

)
. (C33)

For any given A = 1, . . . ,6 and any given m = 1, . . . ,n − 1,
the one-loop RG equations

dλA
m

d�
= π f AA′ A′′

f AA′ A′′
λA′
m λA′′

m (C34)

follow for the current-current interactions with the generators
from the semisimple (su(2) ⊕ su(2)) ⊕ (s̃u(2) ⊕ s̃u(2)) alge-
bra.

Second, we turn our attention to the K-dependent contribu-
tion

Lint,K := −
n∑

m=1

3∑
B=1

υB
m

(
KB

L,m KB
R,m+1 + K̃B

R,m K̃B
L,m+1

)
(C35)

to the Lagrangian density (C29). Expansion of the Boltzmann
weight with the action corresponding to the Lagrangian

density (C35) gives the second-order contribution

S2
int

2
= 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i

[
υ
B1
m1 υ

B2
m2 K

B1
L,m1

(w̄)KB1
R,m1

(w)

×KB2
L,m2

(z̄)KB2
R,m2

(z)

+υ
B1
m1 υ

B2
m2 K̃

B1
R,m1

(w) K̃B1
L,m1

(w̄) K̃B2
R,m2

(z) K̃B2
L,m2

(z̄)

+ 2 υ
B1
m1 υ

B2
m2 K

B1
L,m1

(w̄)KB1
R,m1

(w) K̃B2
R,m2

(z) K̃B2
L,m2

(z̄)
]
.

(C36)

Insertion of the OPEs (C14) into the square bracket on the
right-hand side of Eq. (C36) gives[

υ
B1
m υ

B2
m

i2 f B1B2B3 f B1B2B4

|z − w|2 KB3
L,m(z̄)KB4

R,m(z) + υ
B1
m υ

B2
m

× i2 f B1B2B3 f B1B2B4

|z − w|2 K̃B3
R,m(z) K̃B4

L,m(z̄) + · · ·
]
. (C37)

We note that the contribution from the OPEs from the third
term inside the bracket on the right-hand side of Eq. (C36)
vanishes because there are no OPEs between K and K̃, for
K and K̃ belong to the pair of commuting subalgebras su(2)
and s̃u(2), respectively. Integrating the second-order poles at
w and w̄ over a ring with the inner radius a and the outer radius
(1 + d�) a gives

δS = −2π d�

2

∫
dz̄dz

2π i
υ
B1
m υ

B2
m f B1B2B3 f B1B2B4

×(KB3
L,m K

B4
R,m + K̃B3

R,m K̃
B4
L,m

)
. (C38)

For any given B = 1, . . . ,3 and any given m = 1, . . . ,n, the
one-loop RG equations

dυB
m

d�
= π f B B′ B′′

f B B′ B′′
υB′
m υB′′

m
(C39)

follow for the current-current interactions with the generators
from the diagonal su(2) ⊕ s̃u(2) subalgebra.

For the sake of completeness, we should also compute
the one-loop RG equations for the couplings λA

boundary,1 and
υB

boundary,1 in the case of a single domino, i.e., for the interaction
[recall Eq. (3.58)]

Lint := −
3∑

B=1

υB
boundary,1

(
KB

L,1 KB
R,1 + K̃B

R,1 K̃B
L,1

)
−

6∑
A=1

λA
boundary,1 JA

L,1 J̃ A
R,1. (C40)

As was the case in Appendix C 2, the one-loop RG equations
obeyed by the couplings υB

boundary,1 with B = 1,2,3 decouple
from the one-loop RG equations obeyed by the couplings
λA

boundary,1 with A = 1, . . . ,6. The one-loop RG equations
obeyed by the couplings υB

boundary,1 that enter the current-
current interaction (C40) are given by [recall Eq. (C39)]

dυB
boundary,1

d�
= π f B B′ B′′

f B B′ B′′
υB

boundary,1 υB
boundary,1 . (C41)

Now, to calculate the one-loop RG equations for the
coupling constants in the J sector of the current-current
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interaction (C40), we only need to treat the J -dependent
contribution

Lint,J := −
6∑

A=1

λA
boundary,1 JA

L,1 J̃ A
R,1 (C42)

to the Lagrangian density (C40). Expansion of the Boltzmann
weight with the action corresponding to the Lagrangian
density (C42) gives the second-order contribution

S2
int

2
= 1

2

∫
dz̄dz

2π i

∫
dw̄dw

2π i
λ
A1
boundary,1 λ

A2
boundary,1

×JA1
L,1(w̄) J̃ A1

R,1(w)JA2
L,1(z̄) J̃ A2

R,1(z) . (C43)

Insertion of the OPEs (C14) into the square bracket on the
right-hand side of Eq. (C43) gives[
λ
A1
boundary,1 λ

A2
boundary,1

i2 f A1A2A3 f A1A2A4

|z − w|2 JA3
L,1(z̄) J̃ A4

R,1(z)· · ·
]
.

(C44)

Integrating the second-order poles at w and w̄ over a ring with
the inner radius a and the outer radius (1 + d�) a gives

δS = −2π d�

2

∫
dz̄dz

2π i

[
λ
A1
boundary,1 λ

A2
boundary,1

×f A1A2A3 f A1A2A4 JA3
L,1 J̃

A4
R,1

]
. (C45)

For any given A = 1, . . . ,6 the one-loop RG equations

dλA
boundary,1

d�
= π f AA′ A′′

f AA′ A′′
λA′

boundary,1 λA′′
boundary,1

(C46)

follow for the current-current interactions with the genera-
tors from the semisimple (su(2) ⊕ su(2)) ⊕ (s̃u(2) ⊕ s̃u(2))
algebra.

APPENDIX D: STABILITY ANALYSIS OF THE COSET
WZW THEORY WITH THE CENTRAL CHARGE (3.56)

We consider the first bundle in Fig. 8. With open boundary
conditions, this bundle supports the strongly interacting critical
theory with the central charge (3.57). The same strongly
interacting critical theory is supported by the bundle from
Fig. 9(a). For simplicity but without loss of generality, we
shall ask under what conditions is the strongly interacting
critical theory supported by the bundle from Fig. 9(a) stable to
one-body interactions. A detailed answer is given in Sec. D 1
for one-body mass terms in the fermion representation. We
repeat this exercise in Sec. D 2 in the bosonized representation.
We always assume that the (charge) U(1) and SU(k + k′)
sectors in the Fock space corresponding to Fig. 9(a) are gapped
in such a way that the strongly interacting critical theory with
the central charge (3.57) is in the (charge) U(1) and SU(k + k′)
singlet sectors of the Fock space.

1. Stability to mass terms in the fermion representation

Prior to introducing the current-current interactions, the
bundle from Fig. 9(a) is fully described by the single-particle

Hamiltonian

H0 := −i∂x X3000, (D1a)

where we are using the notation

Xμ1μ2μ3c := τμ1
⊗ σμ2

⊗ ρμ3
⊗ Tc (D1b)

with μ1,μ2,μ3 = 0,1,2,3 and c = 0,1, . . . ,(k + k′)2 − 1. All
matrices with the label 0 are unit matrices of dimensions two
for μ1,μ2,μ3 = 0 and k + k′ for c = 0. The triplet of matrices
τ are the Pauli matrices acting on the left- and right-moving
indices. The triplet of matrices σ are the Pauli matrices
acting on the down and up projections on the quantization
axis of the electronic spin 1/2. The triplet of matrices ρ are
the Pauli matrices acting acting on the doublets defined by
Eq. (3.49). The matrices Tc with c = 0,1, . . . ,(k + k′)2 − 1
generate the unitary group U(k + k′). They are chosen to be in
the fundamental representation of U(k + k′).

The single-particle Hamiltonian (D1) obeys two symme-
tries. It is invariant under

X1210 H∗
0 X1210 = H0. (D2a)

We interpret

T := X1210 K, (D2b)

where K denotes complex conjugation, as representing reversal
of time. It is also invariant under

X0030 H0 X0030 = H0. (D3a)

We interpret

ϒ3 := X0030 (D3b)

as the diagonal generator of the SU(2) group that mixes
the SU(2) and S̃U(2) sectors entering the conformal embed-
ding (3.51). In other words, the U(1) group with the elements

exp(iθ ϒ3) (D4)

for 0 � θ < 2π is the counterpart to the U(1) transforma-
tion (3.60).

By assumption, the critical theory with the central
charge (3.57) is in the singlet sectors of (charge) U(1) and
SU(k + k′). Hence we seek all the matrices

Mμ1μ2μ3c := τμ1
⊗ σμ2

⊗ ρμ3
⊗ Tc (D5)

with μ1,μ2,μ3 = 0,1,2,3 and c = 0,1, . . . ,(k + k′)2 − 1 that
obey the mass condition

Mμ1μ2μ3c H0 Mμ1μ2μ3c = −H0, (D6)

the time-reversal symmetry condition

T Mμ1μ2μ3c T −1 = Mμ1μ2μ3c (D7)

for any μ1,μ2,μ3 = 0,1,2,3 and c = 0,1, . . . ,(k + k′)2 − 1,
and the SU(k + k′)-singlet condition

c = 0. (D8)
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One finds the twelve mass matrices

M1000, M1010, M1020, M1130, M1230, M1330,

M2000, M2010, M2020, M2130, M2230, M2330.
(D9)

Of these, only four are off-diagonal with respect to the group
SU(2) that mixes the SU(2) and S̃U(2) sectors entering the
conformal embedding (3.51).

Now, if we demand that the mass matrices (D9) commute
with the diagonal generator (D3b), we are left with the
eight time-reversal-, SU(k + k′)-, and U(1)-symmetric mass
matrices

M1000, M1130, M1230, M1330,

M2000, M2130, M2230, M2330.
(D10)

These eight masses are all diagonal with respect to the group
SU(2) that mixes the SU(2) and S̃U(2) sectors entering the
conformal embedding (3.51). It follows that their action on
the strongly interacting critical coset theory with the central
charge (3.57) is reducible. Any one of these eight masses can
only mix states from the strongly interacting critical chiral
coset theory with the central charge (3.34b). However, such
mixing is impossible since any one of these eigth masses
is off-diagonal with respect to the right- and left-moving
degrees of freedom. Hence none of these eight masses can
gap the strongly interacting critical theory with the central
charge (3.57).

2. Stability to mass terms in the bosonized representation

It is instructive to move from the first-quantized represen-
tation (D1) to the second-quantized representation implied by
the path integral (3.47). From the Lagrangian density (3.47a),
we deduce the Hamiltonian density represented by

Ĥ0 := − i
2∑

α=1

k+k′∑
A=1

(ψ̂†
R,α,A ∂x ψ̂R,α,A − ψ̂

†
L,α,A ∂x ψ̂L,α,A)

− i
2∑

α=1

k+k′∑
A=1

( ˆ̃ψ†
R,α,A ∂x

ˆ̃ψR,α,A − ˆ̃ψ†
L,α,A ∂x

ˆ̃ψL,α,A),

(D11a)

in the operator formalism. The operator-valued Dirac spinors
obey the equal-time anticommutators

{ψ̂η,α,A(x),ψ̂†
η′,α′,A′(x ′)} = δη,η′ δα,α′ δA,A′δ(x − x ′),

{ ˆ̃ψη,α,A(x), ˆ̃ψ†
η′,α′,A′(x ′)} = δη,η′ δα,α′ δA,A′ δ(x − x ′),

(D11b)

with η,η′ = R,L, α,α′ =↑ , ↓≡ 1,2, and A,A′ = 1, . . . ,k +
k′.

The phenomenon of spin-charge separation is not manifest
in the fermionic representation. It becomes manifest by
the conformal embedding (3.51), according to which the

decomposition

Ĥ0 = Ĥ0[û(2k)1]+Ĥ0[û(2k′)1]+Ĥ0[ ˆ̃u(2k)1]+Ĥ0[ ˆ̃u(2k′)1]

= Ĥ0[û(1)] + Ĥ0[ŝu(2)k] + Ĥ0[ŝu(k)2]

+ Ĥ0[û(1)] + Ĥ0[ŝu(2)k′] + Ĥ0[ŝu(k′)2]

+ Ĥ0[ ˆ̃u(1)] + Ĥ0[ ̂̃su(2)k] + Ĥ0[ ̂̃su(k)2]

+ Ĥ0[ ˆ̃u(1)] + Ĥ0[ ̂̃su(2)k′] + Ĥ0[ ̂̃su(k′)2]
(D12a)

holds. Here [recall Eq. (3.22)],

Ĥ0[û(1)] := π

2k
[ĵR ĵR + ĵL ĵL], (D12b)

Ĥ0[ŝu(2)k] := 2π

k + 2

3∑
c=1

[ĵ c
R ĵ c

R + ĵ c
L ĵ c

L], (D12c)

Ĥ0[ŝu(k)2] := 2π

2 + k

k2−1∑
c=1

[Ĵc
R Ĵc

R + Ĵc
L Ĵc

L], (D12d)

for Ĥ0[û(2k)1] and

Ĥ0[ ˆ̃u(1)] := π

2k
[ ˆ̃jR

ˆ̃jR + ˆ̃jL
ˆ̃jL], (D12e)

Ĥ0[ ̂̃su(2)k] := 2π

k + 2

3∑
c=1

[ ˆ̃J c
R

ˆ̃J c
R + ˆ̃J c

L
ˆ̃J c
L], (D12f)

Ĥ0[ ̂̃su(k)2] := 2π

2 + k

k2−1∑
c=1

[ˆ̃Jc
R

ˆ̃Jc
R + ˆ̃Jc

L
ˆ̃Jc

L], (D12g)

for Ĥ0[ ˆ̃u(2k)1], and similarly for Ĥ0[û(2k′)1] and Ĥ0[ ˆ̃u(2k′)1].
The currents are defined in Eqs. (3.23) and (3.52) and similarly
for the k′ wires.

We seek the Abelian-bosonized representation of the
Hamiltonian density (D11). To this end, we use the following
chiral Abelian bosonization rules. For any α = 1,2 and A =
1, . . . ,k,

ψ̂R,α,A(x) = 1√
2πa

e+i
√

4π φ̂R,α,A(x),

ψ̂L,α,A(x) = 1√
2πa

e−i
√

4π φ̂L,α,A(x),

ˆ̃ψR,α,A(x) = 1√
2πa

e+i
√

4π ˆ̃φR,α,A(x),

ˆ̃ψL,α,A(x) = 1√
2πa

e−i
√

4π ˆ̃φL,α,A(x).

(D13a)
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For any α = 1,2 and A = k + 1, . . . ,k + k′,

ψ̂R,α,A(x) = 1√
2πa

e+i
√

4π ϕ̂R,α,A(x),

ψ̂L,α,A(x) = 1√
2πa

e−i
√

4π ϕ̂L,α,A(x),

ˆ̃ψR,α,A(x) = 1√
2πa

e+i
√

4π ˆ̃ϕR,α,A(x),

ˆ̃ψL,α,A(x) = 1√
2πa

e−i
√

4π ˆ̃ϕL,α,A(x).

(D13b)

The length scale a denotes the short-distance cutoff. By
imposing the equal-time commuation relations

[φ̂R,α,A(x),φ̂R,α′,A′ (x ′)] = + i

4
δα,α′ δA,A′ sgn(x − x ′),

[φ̂L,α,A(x),φ̂L,α′,A′(x ′)] = − i

4
δα,α′ δA,A′ sgn(x − x ′),

[φ̂R,α,A(x),φ̂L,α′,A′(x ′)] = + i

4
δα,α′ δA,A′ ,

(D14a)

for any α,α′ = 1,2 and A,A′ = 1, . . . ,k, and

[ϕ̂R,α,A(x),ϕ̂R,α′,A′ (x ′)] = + i

4
δα,α′ δA,A′ sgn(x − x ′),

[ϕ̂L,α,A(x),ϕ̂L,α′,A′ (x ′)] = − i

4
δα,α′ δA,A′ sgn(x − x ′),

[ϕ̂R,α,A(x),ϕ̂L,α′,A′ (x ′)] = + i

4
δα,α′ δA,A′, (D14b)

for any α,α′ = 1,2 and A,A′ = k + 1, . . . ,k + k′, it follows
that the equal-time fermionic algebra (D11b) is fulfilled.

We first focus on the sector

û(2k)1 = û(1) ⊕ ŝu(2)k ⊕ ŝu(k)2. (D15)

For the special case of k = 1, we have the conformal
embedding

û(2)1 = û(1) ⊕ ŝu(2)1. (D16)

This conformal embedding is nothing but the phenomenon
of spin-charge separation in one-dimensional space. We
specialize to the case of k = 1.

We can define the “charge” and “spin” fields [recall that
α = 1 ≡↑ ,α = 2 ≡↓]

φ̂R,c := 1√
2

(φ̂R,↑ + φ̂R,↓), φ̂R,s := 1√
2

(φ̂R,↑ − φ̂R,↓),

φ̂L,c := 1√
2

(φ̂L,↑ + φ̂L,↓), φ̂L,s := 1√
2

(φ̂L,↑ − φ̂L,↓).

(D17)

The û(1) current (3.23a) obeys the Abelian-bosonized repre-
sentation

ĵR = 1√
π

∂x(φ̂R,↑ + φ̂R,↓) =
√

2

π
∂xφ̂R,c, (D18a)

ĵL = 1√
π

∂x(φ̂L,↑ + φ̂L,↓) =
√

2

π
∂xφ̂L,c. (D18b)

The ŝu(2)1 currents (3.23b) obey the Abelian-bosonized
representation

ĵ 3
R = 1√

2π
∂xφ̂R,s, ĵ±

R = 1

2πa
e∓i2

√
2πφ̂R,s ,

ĵ 3
L = 1√

2π
∂xφ̂L,s, ĵ±

L = 1

2πa
e±i2

√
2πφ̂L,s ,

(D18c)

where

ĵ±
R := ĵ 1

R ± iĵ 2
R, ĵ±

L := ĵ 1
L ± iĵ 2

L. (D18d)

Similarly, we can do the replacements

φ̂ → ˆ̃φ, (D19a)

φ̂ → ϕ̂, (D19b)

φ̂ → ˆ̃ϕ (D19c)

in Eq. (D18) to derive the bosonized currents entering the
conformal embeddings

ˆ̃u(2k)1 = ˆ̃u(1) ⊕ ̂̃su(2)k ⊕ ̂̃su(k)2, (D20a)

û(2k′)1 = û(1) ⊕ ŝu(2)k′ ⊕ ŝu(k′)2, (D20b)

ˆ̃u(2k′)1 = ˆ̃u(1) ⊕ ̂̃su(2)k′ ⊕ ̂̃su(k′)2, (D20c)

respectively.
The noninteracting Hamiltonian density (D11) for k = k′ =

1 has the bosonized representation

Ĥ0 = (∂xφ̂R,c)2 + (∂xφ̂R,s)
2 + (R → L)

+ (∂x
ˆ̃φR,c)2 + (∂x

ˆ̃φR,s)
2 + (R → L)

+ (∂xϕ̂R,c)2 + (∂xϕ̂R,s)
2 + (R → L)

+ (∂x
ˆ̃ϕR,c)2 + (∂x

ˆ̃ϕR,s)
2 + (R → L).

(D21)

This noninteracting Hamiltonian density is nothing but four
copies of the noninteracting spin-1/2 Tomonaga-Luttinger
model. The phenomenon of spin-charge separation is manifest
in the bosonized representation of the noninteracting limit.

It is convenient to define the following nonchiral charge
and spin fields from Eq. (D17)

φ̂c := φ̂L,c + φ̂R,c, φ̂s := φ̂L,s + φ̂R,s, (D22a)

together with their “duals”

θ̂c := φ̂L,c − φ̂R,c, θ̂s := φ̂L,s − φ̂R,s. (D22b)

They obey the equal-time commutators

[φ̂c(x),∂x ′ θ̂c(x ′)] = iδ(x − x ′),

[φ̂s(x),∂x ′ θ̂s(x
′)] = iδ(x − x ′),

[φ̂c(x),φ̂s(x
′)] = [θ̂c(x),θ̂s(x

′)] = 0.

(D23)

The spatial derivative of the dual field is the canonical
conjugate to the field. We may proceed similarly to define
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the six dual pairs

ˆ̃φc,
ˆ̃θc, (D24)

ˆ̃φs,
ˆ̃θs, (D25)

ϕ̂c, ϑ̂c, (D26)

ϕ̂s, ϑ̂s, (D27)

ˆ̃ϕc,
ˆ̃ϑc, (D28)

ˆ̃ϕs,
ˆ̃ϑs. (D29)

In terms of these charge and spin fields, we can rewrite the
noninteracting many-body Hamiltonian (D21) as

Ĥ0 = 1

2
[(∂xφ̂c)2 + (∂xθ̂c)2] + 1

2
[(∂xφ̂s)

2 + (∂xθ̂s)
2]

+ 1

2
[(∂x

ˆ̃φc)2 + (∂x
ˆ̃θc)2] + 1

2
[(∂x

ˆ̃φs)
2 + (∂x

ˆ̃θs)
2]

+ 1

2
[(∂xϕ̂c)2 + (∂xϑ̂c)2] + 1

2
[(∂xϕ̂s)

2 + (∂xϑ̂s)
2]

+ 1

2
[(∂x

ˆ̃ϕc)2 + (∂x
ˆ̃ϑc)2] + 1

2
[(∂x

ˆ̃ϕs)
2 + (∂x

ˆ̃ϑs)
2].

(D30)

This is the canonical representation of four copies of the
noninteracting spin-1/2 Tomonaga-Luttinger liquid.

The following Abelian-bosonized representation of various
electron one-body operators is useful [123]. For any α = 1,2,

and A = 1, . . . ,k + k′, denote with

�̂R,f=1,α,A ≡ ψ̂R,α,A, �̂R,f=2,α,A ≡ ˆ̃ψR,α,A, (D31)

and with

�̂L,f=1,α,A ≡ ψ̂L,α,A, �̂L,f=2,α,A ≡ ˆ̃ψL,α,A, (D32)

having or not having the tilde symbol. The label f = 1,2 is a
two-valued flavor that can also be intrepreted as distinguishing
the upper part (layer) from the lower part (layer) in any domino
from Fig. 8.

There are the fermionic bilinears

ÔCDW
RL,f,A :=

∑
α=↑,↓

�̂
†
R,α,f,A �̂L,α,f,A

= 1

πa
cos(

√
2π �̂s,f,A) e−i

√
2π �̂c,f,A

(D33a)

that encode a charge-density wave (CDW) for any f = 1,2 and
A = 1, . . . ,k + k′.

There are the fermion bilinears

Ô
(3),SDW
RL,f,A :=

∑
α,α′=↑,↓

�̂
†
R,α,f,A σ 3

αα′ �̂L,α′,f,A,

= −i

πa
sin(

√
2π �̂s,f,A) e−i

√
2π �̂c,f,A ,

(D33b)

and

Ô
(±),SDW
RL,f,A :=

∑
α,α′=↑,↓

�̂
†
R,α,f,A σ±

αα′ �̂L,α′,f,A,

= 1

πa
e±i

√
2π �̂s,f,A e−i

√
2π �̂c,f,A ,

(D33c)

that encode a spin-density wave (SDW) for any f = 1,2 and
A = 1, . . . ,k + k′. For any f = 1,2 and A = 1,2 (i.e., k =
k′ = 1), the pair of bosonic fields entering the trigonometric
functions on any one of the lines (D33a), (D33b), and (D33c)
is unique. This pair is to be chosen from

�̂c,f,A ∈ {φ̂c,
ˆ̃φc,ϕ̂c,

ˆ̃ϕc},
�̂s,f,A ∈ {φ̂s,

ˆ̃φs,ϕ̂s,
ˆ̃ϕs},

�̂c,f,A ∈ {θ̂c,
ˆ̃θc,ϑ̂c,

ˆ̃ϑc},
�̂s,f,A ∈ {θ̂s,

ˆ̃θs,ϑ̂s,
ˆ̃ϑs},

(D33d)

with the rule that the choice �̂s,f,A = φ̂s implies that �̂c,f,A =
ˆ̃φc for Eq. (D33a), say.

The Abelian bosonization of the twelve mass matrices (D9)
can be organized as follows.

(1) There are two CDW mass matrices

M1000, M2000. (D34a)

(2) There is the triplet of SDW mass matrices

M1330, M1130, M1230, (D34b)

obeying the spin-1/2 algebra.
(3) There is the triplet of SDW mass matrices

M2330, M2130, M2230, (D34c)

obeying the spin-1/2 algebra.
(4) There is the pair of layer-mixing mass matrices

M1010, M1020, (D34d)

obeying the raising and lowering SU(2) algebra.
(5) There is a second pair of layer-mixing mass matrices

M2010, M2020, (D34e)

obeying the raising and lowering SU(2) algebra.
The most general mass Hamiltonian density is

Ĥmass :=
2∑

μ1=1

3∑
μ2=0

3∑
μ3=0

(k+k′)2−1∑
c=0

mμ1μ2μ3c �̂
†
η,α,f,A

(
τμ1

)
ηη′

× (σμ2
)αα′

(
ρμ3

)
ff′ (Tc)AA′ �̂η′,α′,f′,A′ , (D35)

where mμ1μ2μ3c is a real number for any μ1 = 1,2, μ2,μ3 =
0,1,2,3, and c = 0, · · · ,(k + k′)2 − 1 and the summation
convention over the repeated indices η,η′ = 1,2, α,α′ =
1,2, f,f′ = 1,2, and A,A′ = 1, . . . ,k + k′ is implied. Time-
reversal symmetry restricts the nonvanishing masses that are
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SU(k + k′) singlet to be the ones with the real-valued couplings

m1000, m1330, m1130, m1230, m1010, m1020, (D36a)

and

m2000, m2230, m2330, m2130, m2010, m2020. (D36b)

The most general mass Hamiltonian density that preserves time-reversal symmetry is thus

Ĥ TRS
mass = m1000 Ĥ1000 + m1330 Ĥ1330 + m1130 Ĥ1130 + m1230 Ĥ1230 + m1010 Ĥ1010 + m1020 Ĥ1020

+m2000 Ĥ2000 + m2330 Ĥ2330 + m2130 Ĥ2130 + m2230 Ĥ2230 + m2010 Ĥ2010 + m2020 Ĥ2020. (D37a)

The eight contributions

Ĥ1000 := +2

πa
[cos(

√
2π φ̂s) cos(

√
2π φ̂c) + cos(

√
2π ϕ̂s) cos(

√
2π ϕ̂c)

+ cos(
√

2π ˆ̃φs) cos(
√

2π ˆ̃φc) + cos(
√

2π ˆ̃ϕs) cos(
√

2π ˆ̃ϕc)], (D37b)

Ĥ2000 := −2

πa
[cos(

√
2π φ̂s) sin(

√
2π φ̂c) + cos(

√
2π ϕ̂s) sin(

√
2π ϕ̂c)

+ cos(
√

2π ˆ̃φs) sin(
√

2π ˆ̃φc) + cos(
√

2π ˆ̃ϕs) sin(
√

2π ˆ̃ϕc)], (D37c)

Ĥ1330 := −2

πa
[sin(

√
2π φ̂s) sin(

√
2π φ̂c) + sin(

√
2π ϕ̂s) sin(

√
2π ϕ̂c)

− sin(
√

2π ˆ̃φs) sin(
√

2π ˆ̃φc) − sin(
√

2π ˆ̃ϕs) sin(
√

2π ˆ̃ϕc)], (D37d)

Ĥ2330 := −2

πa
[sin(

√
2π φ̂s) cos(

√
2π φ̂c) + sin(

√
2π ϕ̂s) cos(

√
2π ϕ̂c)

− sin(
√

2π ˆ̃φs) cos(
√

2π ˆ̃φc) − sin(
√

2π ˆ̃ϕs) cos(
√

2π ˆ̃ϕc)], (D37e)

Ĥ1130 := +2

πa
[cos(

√
2π θ̂s) cos(

√
2π φ̂c) + cos(

√
2π ϑ̂s) cos(

√
2π ϕ̂c)

− cos(
√

2π ˆ̃θs) cos(
√

2π ˆ̃φc) − cos(
√

2π ˆ̃ϑs) cos(
√

2π ˆ̃ϕc)], (D37f)

Ĥ1230 := +2

πa
[sin(

√
2π θ̂s) cos(

√
2π φ̂c) + sin(

√
2π ϑ̂s) cos(

√
2π ϕ̂c)

− sin(
√

2π ˆ̃θs) cos(
√

2π ˆ̃φc) − sin(
√

2π ˆ̃ϑs) cos(
√

2π ˆ̃ϕc)], (D37g)

Ĥ2130 := −2

πa
[cos(

√
2π θ̂s) sin(

√
2π φ̂c) + cos(

√
2π ϑ̂s) sin(

√
2π ϕ̂c)

− cos(
√

2π ˆ̃θs) sin(
√

2π ˆ̃φc) − cos(
√

2π ˆ̃ϑs) sin(
√

2π ˆ̃ϕc)], (D37h)

and

Ĥ2230 := −2

πa
[sin(

√
2π θ̂s) sin(

√
2π φ̂c) + sin(

√
2π ϑ̂s) sin(

√
2π ϕ̂c)

− sin(
√

2π ˆ̃θs) sin(
√

2π ˆ̃φc) − sin(
√

2π ˆ̃ϑs) sin(
√

2π ˆ̃ϕc)], (D37i)

are diagonal in the flavor index f = 1,2, i.e., they do not mix the bosonic fields without and with the symbol tilde. Any one of
these eight contributions couple the charge to the spin sectors. Each cosine carries the scaling dimension one in the sector of the
theory on which it acts. Consequently, any one of these eight contributions gap the noninteracting critical theory with the four
independent critical sectors, each of which carries the central charge two. The remaining four contributions

Ĥ1010 := +2

πa
[cos(

√
2π (φ̂R,s + ˆ̃φL,s)) cos(

√
2π (φ̂R,c + ˆ̃φL,c)) + cos(

√
2π ( ˆ̃φR,s + φ̂L,s)) cos(

√
2π ( ˆ̃φR,c + φ̂L,c))

+ cos(
√

2π (ϕ̂R,s + ˆ̃ϕL,s)) cos(
√

2π (ϕ̂R,c + ˆ̃ϕL,c)) + cos(
√

2π ( ˆ̃ϕR,s + ϕ̂L,s)) cos(
√

2π ( ˆ̃ϕR,c + ϕ̂L,c))], (D37j)

Ĥ1020 := −2

πa
[cos(

√
2π (φ̂R,s + ˆ̃φL,s)) sin(

√
2π (φ̂R,c + ˆ̃φL,c)) − cos(

√
2π ( ˆ̃φR,s + φ̂L,s)) sin(

√
2π ( ˆ̃φR,c + φ̂L,c))

+ cos(
√

2π (ϕ̂R,s + ˆ̃ϕL,s)) sin(
√

2π (ϕ̂R,c + ˆ̃ϕL,c)) − cos(
√

2π ( ˆ̃ϕR,s + ϕ̂L,s)) sin(
√

2π ( ˆ̃ϕR,c + ϕ̂L,c))], (D37k)
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Ĥ2010 := −2

πa
[cos(

√
2π (φ̂R,s + ˆ̃φL,s)) sin(

√
2π (φ̂R,c + ˆ̃φL,c)) + cos(

√
2π ( ˆ̃φR,s + φ̂L,s)) sin(

√
2π ( ˆ̃φR,c + φ̂L,c))

+ cos(
√

2π (ϕ̂R,s + ˆ̃ϕL,s)) sin(
√

2π (ϕ̂R,c + ˆ̃ϕL,c)) + cos(
√

2π ( ˆ̃ϕR,s + ϕ̂L,s)) sin(
√

2π ( ˆ̃ϕR,c + ϕ̂L,c))], (D37l)

and

Ĥ2020 := +2

πa
[cos(

√
2π (φ̂R,s + ˆ̃φL,s)) cos(

√
2π (φ̂R,c + ˆ̃φL,c)) − cos(

√
2π ( ˆ̃φR,s + φ̂L,s)) cos(

√
2π ( ˆ̃φR,c + φ̂L,c))

+ cos(
√

2π (ϕ̂R,s + ˆ̃ϕL,s)) cos(
√

2π (ϕ̂R,c + ˆ̃ϕL,c)) − cos(
√

2π ( ˆ̃ϕR,s + ϕ̂L,s)) cos(
√

2π ( ˆ̃ϕR,c + ϕ̂L,c))], (D37m)

couple the spin and charge sectors as well as the sector U(2k) × U(2k′) with the sector Ũ(2k) × Ũ(2k′), where we recall that
k = k′ = 1.

The strongly interacting critical theory with the central charge (3.57) results from adding non-Abelian current-current
interaction between the sector SU(2k) × SU(2k′) and the sector S̃U(2k) × S̃U(2k′) to the noninteracting critical theory with central
charge c = 8. Although we do not know how to represent the strongly interacting critical theory with the central charge (3.57)
by a local Hamiltonian density, we may safely infer that the projection of any one of the eight contributions (D37b)–(D37i) onto
the strongly interacting critical theory with the central charge (3.57) must be vanishing, since movers with opposite chiralities
carry dictinct eigenvalues of the generator X0030. This argument fails for any one of the four contributions (D37j)–(D37m), since
the eigenvalues of the generator X0030 are not anymore good quantum numbers. Imposing the U(1) symmetry generated by X0030
forbids the presence of the four contributions (D37j)–(D37m). Imposing the U(1) symmetry generated by X0030 guarantees the
stability of the strongly interacting critical theory with the central charge (3.57) to the eight one-body masses (D37b)–(D37i).

We close this Appendix by representing the transformation
law (3.60) on the chiral bosonic fields introduced in Eq. (D13).
They are

φ̂R,α,A �→ φ̂R,α,A + 1√
4π

θ, ˆ̃φR,α,A �→ ˆ̃φR,α,A − 1√
4π

θ,

(D38a)

for the right-moving bosonic fields and

φ̂L,α,A �→ φ̂L,α,A − 1√
4π

θ, ˆ̃φL,α,A �→ ˆ̃φL,α,A + 1√
4π

θ,

(D38b)

for the left moving bosonic fields. Here, 0 � θ < 2π . One
verifies the following facts.

First, the eight one-body masses (D37b)–(D37i) are invari-
ant under the transformation law (D38).

Second, all trigonometric functions depending on the
bosonic fields with the spin label that enter the four one-body
masses (D37j)–(D37m) are invariant under the transformation

law (D38). For example, the function

cos(
√

2π (φ̂R,s + ˆ̃φL,s))

= cos(
√

π(φ̂R,↑ − φ̂R,↓ + ˆ̃φL,↑ − ˆ̃φL,↓))

�→ cos(
√

2π (φ̂R,s + ˆ̃φL,s)) (D39)

from Ĥ1010 is unchanged under the transformation law (D38)
for arbitrary 0 � θ < 2π .

Third, all trigonometric functions depending on the bosonic
fields with the charge label that enter the four one-body
masses (D37j)–(D37m) are not invariant under the transfor-
mation law (D38). For example, the function

cos(
√

2π (φ̂R,c + ˆ̃φL,c))

= cos(
√

π (φ̂R,↑ + φ̂R,↓ + ˆ̃φL,↑ + ˆ̃φL,↓))

�→ cos(
√

2π (φ̂R,s + ˆ̃φL,s) + 2θ ) (D40)

from Ĥ1010 is not invariant for arbitrary 0 � θ < 2π . More-
over, the right-hand side does not match any one of the trigono-
metric functions entering the four one-body masses (D37j)–
(D37m). This is why the U(1) symmetry (D38) suffices to
prevent the layer-mixing masses from gapping the strongly
interacting critical theory with the central charge (3.57).
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[9] J. Fröhlich and P. A. Marchetti, Nucl. Phys. B 356, 533
(1991).

205123-37

http://dx.doi.org/10.1142/S0217979291001541
http://dx.doi.org/10.1142/S0217979291001541
http://dx.doi.org/10.1142/S0217979291001541
http://dx.doi.org/10.1142/S0217979291001541
http://dx.doi.org/10.1103/PhysRevLett.96.060601
http://dx.doi.org/10.1103/PhysRevLett.96.060601
http://dx.doi.org/10.1103/PhysRevLett.96.060601
http://dx.doi.org/10.1103/PhysRevLett.96.060601
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1103/PhysRevLett.49.957
http://dx.doi.org/10.1142/S0129055X90000107
http://dx.doi.org/10.1142/S0129055X90000107
http://dx.doi.org/10.1142/S0129055X90000107
http://dx.doi.org/10.1142/S0129055X90000107
http://dx.doi.org/10.1016/0550-3213(91)90378-B
http://dx.doi.org/10.1016/0550-3213(91)90378-B
http://dx.doi.org/10.1016/0550-3213(91)90378-B
http://dx.doi.org/10.1016/0550-3213(91)90378-B


HUANG, CHEN, GOMES, NEUPERT, CHAMON, AND MUDRY PHYSICAL REVIEW B 93, 205123 (2016)

[10] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[11] X. G. Wen, Phys. Rev. Lett. 66, 802 (1991).
[12] A. Kitaev, Ann. Phys. 321, 2 (2006).
[13] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[14] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

AIP Conf. Proc. 1134, 10 (2009).
[15] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[16] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[17] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,

New J. Phys. 12, 065010 (2010).
[18] T. Neupert, C. Chamon, C. Mudry, and R. Thomale, Phys.

Rev. B 90, 205101 (2014).
[19] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[20] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[21] T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, Phys.

Rev. B 84, 165107 (2011).
[22] B. Scharfenberger, R. Thomale, and M. Greiter, Phys. Rev. B

84, 140404 (2011).
[23] I. Affleck, Nucl. Phys. B 336, 517 (1990).
[24] I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 352, 849 (1991).
[25] I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 360, 641 (1991).
[26] E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744

(1992).
[27] T. M. Rice, S. Gopalan, and M. Sigrist, Europhys. Lett. 23, 445

(1993).
[28] M. Fabrizio, Phys. Rev. B 48, 15838 (1993).
[29] E. Dagotto and T. M. Rice, Science 271, 618 (1996).
[30] L. Balents and M. P. A. Fisher, Phys. Rev. B 53, 12133 (1996).
[31] H.-H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B 56,

6569 (1997).
[32] E. W. Carlson, D. Orgad, S. A. Kivelson, and V. J. Emery,

Phys. Rev. B 62, 3422 (2000).
[33] F. H. L. Essler and A. M. Tsvelik, Phys. Rev. B 65, 115117

(2002).
[34] A. A. Nersesyan and A. M. Tsvelik, Phys. Rev. B 67, 024422

(2003).
[35] O. A. Starykh and L. Balents, Phys. Rev. Lett. 93, 127202

(2004).
[36] A. Jaefari, S. Lal, and E. Fradkin, Phys. Rev. B 82, 144531

(2010).
[37] D. Poilblanc, G. Montambaux, M. Héritier, and P. Lederer,
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