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Area law for gapless states from local entanglement thermodynamics
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We demonstrate an area law bound on the ground state entanglement entropy of a wide class of gapless
quantum states of matter using a strategy called local entanglement thermodynamics. The bound depends only on
thermodynamic data, actually a single exponent, the hyperscaling violation exponent θ . All systems in d spatial
dimensions obeying our scaling assumptions and with θ < d − 1 obey the area law, while systems with θ = d − 1
can violate the area law at most logarithmically. We also discuss the case of frustration-free Hamiltonians and
show that to violate the area law more than logarithmically these systems must have an unusually large number
of low energy states. Finally, we make contact with the recently proposed s-source framework and argue that θ

and s are related by s = 2θ .
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I. INTRODUCTION

When a quantum many-body system is at or near zero
temperature, quantum entanglement between the constituents
leads to qualitatively new phenomena (for a review and
references, see e.g. [1,2]). Although direct measurement of
many-body entanglement awaits advances in quantum state
engineering, it is already an invaluable theoretical tool for
diagnosing the physics of quantum many-body systems. An
important role is played by the entanglement entropy of
a spatial region, which quantifies the amount of bipartite
entanglement between the region and its complement.

Here we demonstrate that the ground state entanglement
entropy obeys an area law for a wide variety of gapless and
scale invariant phases of matter. While the area law is widely
believed to hold for gapped phases ( e.g. [3]), certain gapless
phases are definite exceptions, notably conventional metals
[4–8] and conformal field theories (CFTs) in 1 + 1 dimensions
[9]. In addition to demonstrating an area law, our results expose
a deep connection between thermodynamic properties and
entanglement properties in scale invariant phases of matter, and
provide an extension of the s-sourcery program of Ref. [10] to
gapless states. Such a connection brings entanglement closer
to experimentally accessible probes. Previous work relating
the scaling of geometric entanglement to thermodynamics and
energy fluctuations includes [11,12].

Given a bipartite quantum state |ψAĀ〉 we study the reduced
state of the A subsystem, ρA = trĀ(|ψAĀ〉〈ψAĀ|), and in
particular its entanglement entropy, S(A) = −trA(ρA log(ρA)).
When |ψAĀ〉 is the ground state of a local Hamiltonian the
entanglement entropy often obeys an area law, S(A) ∼ |∂A|,
meaning the entropy is proportional to the size of the boundary
of A. An area law’s worth of entanglement always appears
due to short-distance correlations, but to have more than
an area law’s worth of entanglement intuitively requires
some long-range structure in the quantum state. For example,
conventional metals with their Fermi surface of low energy
electronic excitations violate the area law with a multiplicative
logarithmic correction [4–7]. The intuition for this violation is
that metals have a great many spatially extended low energy
excitations and this plethora of low energy modes leads to a
plentitude of long-range entanglement in the ground state. It

is the purpose of this paper to make this intuition more precise
and to extend it to other kinds of scale invariant states of matter.

The argument appeals to ordinary thermodynamic prop-
erties of the state of matter to quantify the number of low
energy excitations. The connection between thermodynamics
and entanglement then proceeds by recasting the entanglement
entropy problem as a problem of local thermodynamics, that is,
thermodynamics with a locally varying temperature. In fact,
given a state ρA arising from a scale invariant ground state,
there is another state σA of a local thermodynamic form, whose
entropy bounds that of ρA.

Assuming the thermal entropy scales with temperature like
s(T ) ∼ T

d−θ
z , with θ the hyperscaling violation exponent and

z the dynamical exponent, we show that the corresponding
ground state obeys the area law when θ < d − 1 and z is
positive and finite. The case θ = d − 1 (which occurs for
conventional metals) is marginal and leads to a multiplicative
logarithmic violation to the area law. The main tool is local
thermodynamics within a derivative expansion; the precise
assumptions are stated just below.

II. PROBLEM SETUP

Consider the ground state |g〉 = |ψAĀ〉 of a local d-
dimensional Hamiltonian H = ∑

x Hx defined on Ld sites
(energy scale J , range �) with a 1/poly(L) gap which supports
scale-invariant physics. We do not require strict translation
invariance, but will assume that length scales associated with
any breaking of translation invariance drop out of the scale-
invariant low-energy physics. We will refer to this assumption
as “weak translation invariance.” Let ρA = trĀ(|g〉〈g|) be the
reduced density matrix of region A, and let σA denote the
maximum entropy state consistent with the expectation values
of all the Hx contained in A. In other words, σA is the state of
maximum entropy which gives the same expectation values as
ρA for all the terms in the Hamiltonian contained in region A.

Since ρA is consistent with its own local data, it follows
that S(σA) � S(ρA). Furthermore, σA is a local Gibbs state:

σA = exp
(−∑

x∈A Hx/T (x)
)

Z
, (1)

2469-9950/2016/93(20)/205120(8) 205120-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.205120


BRIAN SWINGLE AND JOHN MCGREEVY PHYSICAL REVIEW B 93, 205120 (2016)

where again the Hx denote the terms in the local Hamiltonian
and the T (x) are constants adjusted so that tr(ρAHx) =
tr(σAHx). This local Gibbs form arises from maximizing the
entropy subject to the constraint that local data is correctly
reproduced [13,14], just as in the Bayesian derivation of the
Boltzmann weight.

Let HA denote the restriction of H to region A. HA is a
sum of local terms residing within A,HA = ∑

x∈A Hx . Let
J ≡ ||Hx || (J is a measure of the coupling strength; if Hx has
bounded variation with x, we take J to be the maximum over
x) and let � be the diameter of the support of Hx . Then the
locality of H implies that tr(HAρA) is within J |∂A|� of the
ground state energy of HA. The bound arises because the lost
terms in H are localized at the boundary ∂A, so ρA is a ground
state of HA up to excitations near the boundary.

As a local Gibbs state, σA is essentially a thermal state of
HA with a position dependent temperature T (x). The form of
T (x) is tightly constrained since the expectation value of Hx is
independent of x in the ground state and thus in the state σA as
well. Furthermore, the local temperature must approach zero
away from the boundary in order to ensure that the expected
excitation energy above the ground state of HA is localized
near the boundary of A. Hence a picture emerges wherein the
entropy of σA is concentrated near ∂A. We now make this idea
sharp.

The crucial observation is that we can estimate the scaling
of the energy and entropy of σA using local (intensive)
thermodynamic expressions. In other words, if e(T ) and s(T )
are the bulk thermodynamic energy and entropy densities,
respectively, then for purposes of studying the scaling with
region size, we may make the replacements

tr(HAσA) ∼ Eg,A +
∫

ddx e(T (x)) (2)

and

−tr(σA log(σA)) ∼
∫

ddx s(T (x)), (3)

where T (x) is the local temperature [inverse of the local coef-
ficient of Hx in − log(σA)]. We emphasize that these relations
should be understood as an equality of scaling forms. As far as
bounding the entropy is concerned, local thermodynamics is a
good approximation because neglecting correlations between
distant regions (that is, treating the system locally) should only
increase the effective entropy. Below we give a more careful
justification of the assumption of local thermodynamics, and
we estimate the error in Appendix A.

To use this assumption we must specify the thermody-
namic properties of the scale invariant phase. The relevant
thermodynamic scaling data are the dynamical exponent z

and the hyperscaling violation exponent θ . z relates energy to
momentum as ω ∼ kz. θ controls the scaling of the entropy
density with length: T − 1

z is a length and s is assumed to scale
as d − θ powers of inverse length, so s(T ) ∼ T

d−θ
z . θ controls

the extent to which the naive scaling with density fails for the
entropy (and other thermodynamic quantities), hence its name.
In systems where θ is nonzero, other fixed microscopic length
scales make up the units of the entropy density. In the example
of a Fermi surface, the units are made up by θ = d − 1 powers

of the Fermi momentum. The scaling of the energy density is
determined by thermodynamics to be e(T ) ∼ T s(T ).

An important aspect of the resulting theory of entanglement
thermodynamics is that it is characterized by the scaling
exponents z,θ of the fixed point H itself. In particular, the
effective temperature T (x) must vary smoothly with x in a way
controlled by z and θ to give a translation invariant expectation
value for Hx (although oscillations with other fixed length
scales when θ �= 0 are not ruled out). Remember also that if
the subregion A grows to encompass the total system then the
exact ground state is recovered [13,14], so it must be true that
T (x) decays as x moves away from the boundary of A. For
future reference, note that for frustration-free Hamiltonians the
above analysis further simplifies since T (x) = 0 identically.

III. ENTANGLEMENT ENTROPY BOUND

Now we estimate the entropy in a simple geometry. (See
Fig. 1.) Suppose A is a half-space in d dimensions with
translation invariance in d − 1 transverse dimensions. We
compactify these transverse directions to have size R. Our
weak translation invariance assumption implies that T (x)
depends only on x, the distance from the boundary. We also
introduce a short distance cutoff, a, which could be the lattice
spacing, and a long-distance cutoff, w, which could be the
width of the half-space (making it actually a long strip of length
R � w). The scaling of energy with momentum (inverse
length) and the absence of any other scale determines the local
temperature T (x) to be

T (x) ∼ x−z. (4)

In fact, two other solutions consistent with scale invariance
are T = 0 and T = ∞, and while T = ∞ can be ruled out
(too much energy), T = 0 is actually relevant in the context
of frustration-free Hamiltonians as discussed below. For the
special case of Lorentz-invariant systems, this relation is
rigorous, since the entanglement Hamiltonian for a half-space

FIG. 1. Strip geometry used to derive the entanglement entropy
bound. The inset is intended as a reminder that the geometric scales
are much larger than the lattice spacing.
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(≡ − log ρhalf-space) is a boost generator [15–20]. The scaling
form for T (x) is further justified in the Appendixes. Assuming
this form for T (x), the energy density is

e(T (x)) ∼ x−z+θ−d (5)

and the entropy density is

s(T (x)) ∼ xθ−d . (6)

Integrating the energy density gives

tr(HAσA) ∼ Eg,A + Rd−1
∫ w

a

dx x−z−d+θ , (7)

which converges as the long-distance cutoff w is taken to
infinity provided z + d > 1 + θ . For example, any relativistic
CFT has θ = 0 and z = 1, so the integral converges for all d in
this case. Since we must have tr(HAσA) � Eg,A + J |∂A|� we
see that any local theory which obeys our assumptions must
have z + d > 1 + θ .

Turning to the entropy density, we have

−tr(σA log(σA)) ∼ Rd−1
∫ w

a

dx x−d+θ , (8)

so that the integral converges provided d > 1 + θ , independent
of the value of z. Since (8) is an upper bound on SA, all phases
of matter with θ < d − 1 therefore obey the area law. This is
our main result. The case θ = d − 1, realized in Fermi liquids,
is marginal and gives a logarithmic divergence with w. Since
we are upper bounding the entropy, it does not follow that
phases with θ = d − 1 must violate the area law. To violate
the area law worse than logarithmically, a phase must have
θ > d − 1 (or have a large number of ground states).

Such an inequality was previously deduced [21] for the
special case of systems with a classical gravity dual.

IV. VALIDITY OF THE LOCAL APPROXIMATION

We now give a detailed justification for the assumption of
local thermodynamics. The main idea is to make the local
approximation better by going to higher “temperature.” A
similar construction was used for other purposes in [22]. Define

H̃A by the equation σA = e−H̃A

Z
and then define

σA(τ ) = e−H̃A/τ

Z(τ )
, (9)

with Z(τ ) ≡ tre−H̃A/τ . τ is a fictitious temperature such that
τ = 1 is the original maximum entropy state σA. Ordinary
thermodynamics for the local Hamiltonian H̃A implies that the
entropy of σA(τ ) is a monotonic function of τ . Furthermore,
as τ grows, the local approximation becomes better and
better because the correlation length becomes shorter (modulo
encountering a classical phase transition1).

1It would be fascinating to find models where one is forced
to encounter such a classical phase transition upon raising the
temperature, and hence where local thermodynamics need not apply.

Returning to our entropy estimate above, we now have
T (x) ∼ τx−z and the local approximation gives

S(σA(τ )) = τ
d−θ

z S(σA) ∼ τ
d−θ

z Rd−1
∫ w

a

dx x−d+θ . (10)

Thus for any large but R- and w-independent τ,S(τ ) scales
with R and w the same way as the local approximation for S(1)
and we expect smaller error from the local approximation.

To give a precise characterization of validity of the local
thermodynamic approximation, we make use of a derivative
expansion argument familiar from hydrodynamics. The local
applicability of thermodynamics follows if all perturbations
vary slowly on the scale of the correlation length: if this
is so, then the system responds locally to the perturbation
because the memory of distant regions is effectively washed
out. In an interacting scale invariant system, the correlation
length at finite temperature scales as ξ (T ) ∼ T −1/z. Note that
free theories, e.g., Goldstone bosons [23,24], may not develop
such a correlation length at finite temperature, but being free
theories, we may independently establish the area law (or
lack thereof). Since the spatially varying temperature is the
only perturbation, the validity of local thermodynamics in the
derivative expansion rests on the condition

δ ≡ ξ
|∇T |

T
� 1. (11)

In the half-space geometry with τ = 1 we argued that
T (x) ∼ x−z, so we have ξ ∼ x and the left-hand side of the
derivative expansion condition is of order one, δ ∼ 1. Hence
the derivative expansion is not obviously well controlled in this
case. However, we can improve the situation by introducing
a large but system size independent τ � 1. Then because the
derivative expansion condition is inhomogeneous in T we have
the modified condition

δ(τ ) = ( x

τ 1/z

)
︸ ︷︷ ︸

ξ

z

x︸︷︷︸
|∇T |

T

= z

τ 1/z
� 1. (12)

In the last step, we assumed 0 < z < ∞. Thus within a
formal derivative expansion the large τ state should obey local
thermodynamics.2

In the Appendixes we give two additional results related to
the validity of the local approximation. The conclusion in all
cases is the same—local thermodynamics captures the correct
scaling behavior—but these results give us better control over
the corrections to the local approximation and may be of
independent interest.

V. FRUSTRATION-FREE HAMILTONIANS

Here we briefly discuss the very interesting case of
frustration-free gapless Hamiltonians. This study is motivated

2For an extensive quantity f the derivative expansion implies a
correction of the form f = flocal(1 + O(e−1/δ)) with the corrections
being due to higher derivative terms which are irrelevant and thus
do not change the scaling of the entropy. Paranoid readers may take
1/δ ∼ log(R) to fully suppress the corrections at the expense of a
weaker bound (unphysical log corrections).
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in part by [25], which presented an interesting frustration-free
Hamiltonian defined on a segment of length L with the
property that the gap above the unique ground state was

1
poly(L) and the entanglement entropy of one-half of the segment
∼ log(L). Reference [26] solves another model that violates
the area law more than logarithmically, in fact as

√
L.

Consider a frustration-free Hamiltonian H with a unique
ground state |g〉. Recall that HA denotes the Hamiltonian
restricted to A and ρA the state restricted to A. By assumption,
H is frustration free, so it can be written as a sum of
local operators H = ∑

x Hx where each Hx is positive and
annihilates the ground state. Thus we have

tr(ρAHA) = 0 (13)

since every term in HA independently annihilates the ground
state. Hence ρA lies within the ground state manifold of HA,
and as such, its entropy must be less than the maximum entropy
state in the ground state, the uniform mixture of all ground
states. Hence we have S(ρA) � log(G(HA)), where G(HA) is
the ground state degeneracy of HA.

It is interesting to note that the maximum entropy state
consistent with the local terms in HA is the (normalized)
projector onto the ground state of HA,

ρmax = 1

G(HA)
PHA=0.

Since we may write the ground state projector as

PHA=0 = lim
β→∞

e−βHA, (14)

we see that in this case we have a very sharp notion of
entanglement thermodynamics where the temperature T is
uniform and zero.

Now suppose that ρA violates the area law. Then it must
be the case that G(HA) � eS(A), so HA has an enormous
ground state degeneracy which grows with system size. Indeed,
Ref. [25] showed precisely this fact for the model with log(L)
entropy. Hence we see that these models must have peculiar
thermodynamic properties with many low-lying states. This is
a precise sense in which the frustration-free models deviate
from the “reasonable” criteria of Ref. [27]. We hasten to
add that this in no way undermines the interestingness of
the frustration-free models; we simply understand better now
how these models differ from the familiar examples of scale
invariant states. CFTs on an interval, for example, do not have
a large ground state degeneracy. In particular, in the models
of [25,26], the thermal to entanglement crossover function
discussed in Ref. [27] must take an unusual form.3

VI. RELATION TO s-SOURCE THEORY

The above considerations show that the thermodynamic
exponent θ plays a crucial role in the ground state entanglement
properties. This connection can be clearly displayed by
appealing to the notion of s source RG fixed points defined in

3We note that [26] describes a modification of these models which
is not frustration-free but exhibits similar entanglement phenomena;
this too must have a large density of low-lying states.

[10]. The idea is to classify ground states based on how much
entanglement is necessary to create them. Briefly, a phase is
an s source fixed point if s copies of the ground state at linear
size L are necessary to produce one copy of the ground state
at linear size 2L by a local unitary map.

All s source fixed points obey the entropy bound S(2R) �
sS(R) + kRd−1, and we generally expect the bound to be
saturated. Assuming the bound is saturated, we can apply the
entropy recursion formula to the half-space region discussed
above assuming that the ground state is entangled at all length
scales shorter than w (the IR cutoff, a correlation length). The
entropy is then

S(R) = k
Rd−1

ad−1

log(w/a)∑
n=0

sn

(2d−1)n

= k
Rd−1

ad−1

(
1 − (s/2d−1)log(w/a)

1 − (s/2d−1)

)
. (15)

Although the coefficients may not be correctly reproduced,
this expression should correctly predict the scaling structure—
including the scaling structure of subleading terms. Taking the
logarithm base two and writing s = 2log(s) the subleading term
scales like

Ssub ∼ Rd−1

ad−1

ad−1−log(s)

wd−1−log(s)
. (16)

Going back to Eq. (8), the local thermodynamic calculation
also predicts a subleading term of the form Rd−1

wd−1−θ . Although
Eq. (8) applies to the maximum entropy locally consistent
state σA, the scaling structure of subleading terms in the
entropy should be identical to those in the entropy of the actual
subsystem state ρA. This claim amounts to assuming that there
is no phase transition encountered in going from ρA to σA to
σA(τ ) (where the local approximation is justified). Demanding
that the subleading terms match gives log(s) = θ or

s = 2θ . (17)

This is a strong result which establishes an intimate connec-
tion between thermodynamic and entanglement properties. It
should be noted, however, that this result may not apply to
frustration-free Hamiltonians since their local entanglement
temperature is T = 0. It also remains to construct the unitary
transformation performing the mapping from L to 2L; we
have only shown that the entanglement scaling is consistent
with being an s source fixed point with s = 2θ . Examples of
explicit RG circuits for gapless states are provided in [28].

VII. DISCUSSION

We gave an argument for the area law in a wide class
of scale invariant phases of matter. The argument worked
by mapping to the problem of bounding the entanglement
entropy to a problem of estimating the entropy of a local
thermodynamic state. The key piece of thermodynamic data
is the hyperscaling violation exponent θ , while the dynamical
exponent z played little role. This result firmly establishes the
intuition that highly entangled states of matter must have many
low lying spatially extended excitations. We also discussed
the analogous statement for the special class of frustration-
free Hamiltonians and showed that they must possess an
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anomalously large number of low lying excitations in order to
violate the area law. Finally, we related our considerations to
the recently introduced s-source theory and provided another
way to quantify the amount of entanglement in the ground
state by relating the parameter s to θ .

The formalism accounts for the entanglement properties
of all experimentally realized states of matter known to us
which are stable and reach equilibrium. It also accounts for
the entanglement properties of several infinite families of
candidate states (like conformal field theories in general and
critical Fermi surfaces) that might describe as-yet-mysterious
experimental systems. Requiring stability seems essential
since one can concoct fine-tuned or pathological Hamiltonians
with highly entangled ground states (the frustration-free
case likely being an example of this). On the other hand,
glassy physics and other examples of failures to come to
equilibrium are ruled out not because the present formalism
necessarily fails (although it might), but because those cases
deserve a separate and careful exposition. Among the states
of matter that do fall into the present discussion, a number
of interesting examples are displayed in Table I. The point
of this (not exhaustive) table is to emphasize that a great
many experimentally realized quantum states of matter are
covered by the gapped analysis in [10] or the present gapless
analysis and plausibly fit within the s-source theory. For several
of these states (in particular, the spinon Fermi surface [29]
and the diffusive metal [30,31]), the scaling behavior of the
entanglement entropy is a reasonable conjecture supported by
numerics, which is confirmed by our results. We include the
case of random-singlet fixed points [32–35] to illustrate the
importance of the assumption of finite z in our argument.

To elaborate on an interesting case, Refs. [30,31] recently
argued convincingly that the entanglement entropy of a

TABLE I. Notation: SSB = spontaneous symmetry breaking;
I/F QHE = integer/fractional quantum Hall effect; QCP = quantum
critical point; QED = quantum electrodynamics; QCD = quantum
chromodynamics. QCD is listed as s = 1∗ because, although the
theory is ultimately gapped, the correlation length diverges in units
of a hypothetical short-distance cutoff length which is taken to zero.
Some representative calculations and further references can be found
in [2–7,9,10,22–24,29–36].

State of matter z s θ EE

Insulators, etc. Gap 0 n/a Area
SSB, discrete Gap 0 n/a Area
IQHE (invertible) Gap 1 n/a Area
FQHE Gap 1 n/a Area
Topological states Gap 1 n/a Area
SSB, continuous (d > 1) 1 1 0 Area
QCP (conformal), d = 1 1 1 0 Area*Log
QCP (conformal), d > 1 1 1 0 Area
Quadratic band touching 2 � 1 0 Area
Fermi liquids 1 2d−1 d − 1 Area*Log
Spinon Fermi surface 3/2? 2d−1 d − 1 Area*Log
Random-singlet fixed points ∞ ? ? Area*Log
Diffusive metal, d = 3 2 2d−2 d − 2 Area
QED 1 1 0 Area
QCD Gap 1∗ 0 Area

diffusive metal (meaning a metal in the presence of static
disorder with a diffusion pole in the density-density correlator)
obeys the area law, unlike its clean cousin, the Fermi liquid.
This is visible in the present framework as follows. The low
energy density of states is not strongly modified by disorder,
so the thermal entropy still scales like s ∼ T . However, the
metal is now diffusive rather than ballistic, so energy scales
with wave number like ω ∼ k2 and hence z = 2. Requiring
s ∼ T (d−θ)/z ∼ T forces θ = d − 2, which is below the area
law violation threshold. Note that this is an example of
where the weak translation invariance assumption is required.
Convincing evidence for the validity of this assumption for the
diffusive metal was found in [30,31], where the localization
length was seen to drop out of the entanglement scaling.

A more complicated application of the formalism is
provided by the exciton Bose liquid state of [37]. This state
of matter defined in d = 2 has a peculiar dispersion relation
which resembles ω2 ∼ k2

xk
2
y near k = 0. This dispersion

relation naively suggests z = 2 and θ = 0, but this is only
part of the story. Because the dispersion is zero for all kx

when ky = 0 (and vice versa) the state also possesses lines of
zero energy states. The ky = 0 line has z = 1 with a variable
velocity depending on kx and effectively has θ = 1. Thus
although the thermal entropy goes like s ∼ T log(1/T ) the
entanglement is dominated by the θ = 1 zero energy lines and
yields a simple logarithmic violation. This violation has been
seen explicitly in [38] which realizes the counting argument
of [7].

Hyperscaling violation necessitates the presence of an
extra length scale � in the density of states, for example
in order that the entropy density have units of length−d :
s(T ) = T

d−θ
z �−θ . In the case of metals, this length scale is

the Fermi wavelength. We have assumed in various places,
in particular in claiming that in the half-plane geometry
ξ = x, and that this microscopic length scale does not enter.
This assumption is physically sensible and accords with all
examples we are aware of; a further general argument is
presented in the Appendixes.

The derivative expansion was carefully justified by intro-
ducing the fictitious temperature parameter τ in σA(τ ). This
trick gives most directly a bound on the entropy of the state
of interest, but unless a phase transition is encountered as a
function of τ , one concludes that the entropy of σA(τ = 1)
has the same scaling structure as the entropy of σA(τ � 1).
Similarly, although the entropy of σA is only guaranteed to
bound the entropy of ρA, one again expects the entropies to
share the same scaling structure. This is because if A were the
entire system then σA would equal ρA, so we expect that as A is
made larger the local approximation captures more and more
of the entropy of ρA. This can be explicitly checked in some
cases, e.g., in Lorentz-invariant systems because − log(ρA) is
local near the boundary of A for any region A (and this is where
most of the entropy arises according to the thermodynamic
argument).

The framework developed here, besides yielding a strong
argument for the area law in scale invariant quantum states of
matter, is of broader interest. Similar arguments have been used
successfully for gapped phases of matter [10] (there the analog
of θ turns out to be the ground state degeneracy). It would
be interesting to develop further the idea of entanglement
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thermodynamics into a full fledged theory of entanglement
hydrodynamics, e.g., in dynamical settings. For example,
does the state σ obey a simple dynamical equation? If so,
this would be interesting since this equation would naturally
include dissipation as information is lost into the exponential
complexity of the quantum state.
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APPENDIX A: FURTHER RESULTS ON
THE LOCAL APPROXIMATION

Consider a translation invariant system with thermal en-
tropy density s(T ). The total entropy of a volume V at
temperature T is thus V s(T ). Now consider the same system
with a position-dependent temperature, so that the state of the
system is

ρ({T (x)}) =
exp

( − ∑
x

Hx

T (x)

)
Z({T (x)}) . (A1)

Suppose now that the temperature T (x) is approximately
constant, T (x) = T + δT (x) with δT (x) � T . Then the state
of the system is close to the translation invariant thermal state.
The first order correction is

δρ = ρ({T (x)}) − ρ(T ) ≈
(∑

x

(Hx − 〈Hx〉)δT (x)

T 2

)
ρ(T ).

(A2)
We have not been careful about the operator ordering, but we
will only use this expression within a trace so no harm can
arise to first order in δT /T .

The change in the entropy is

δS = S(ρ({T (x)}) − S(ρ(T )) ≈ −tr(δρ log(ρ)). (A3)

This expression reduces to a two-point function of Hx ,

δS ≈ 1

T 3

∑
x,y

(〈HxHy〉 − 〈Hx〉〈Hy〉)δT (x). (A4)

Translation invariance in the uniform temperature state implies
that the connected two-point function 〈HxHy〉 − 〈Hx〉〈Hy〉
depends only on x − y. Thus after the sum over y is performed,
the change in the entropy is simply

δS = 1

V T 3
(〈H 2〉 − 〈H 〉2)

∑
x

δT (x), (A5)

where H = ∑
x Hx .

Now compare this expression with the expression from
local thermodynamics,

δS ≈
∑
x∈V

s(T (x)) − V s(T ) ≈
∑

x

∂T s(T )δT (x). (A6)

T ∂T s(T ) = c(T ) is the heat capacity, which is in turn related
to energy fluctuations by

c(T ) = 1

V T 2
(〈H 2〉 − 〈H 〉2). (A7)

We conclude that to first order

S(ρ({T (x)})) =
∑

x

s(T (x)), (A8)

where s(T ) is the translation invariant entropy density.
We wish to argue for a stronger statement, namely that

S(ρ({T (x)})) ≈
∑

x

s(T (x)), (A9)

whenever T (x) varies slowly on the scale of the local corre-
lation length. This is the content of the derivative expansion
discussed in the main paper. To quantify the validity of the
derivative approximation it is useful to look at the derivatives
of the entropy with respect to T (x). It will be useful to
distinguish two averages, 〈· · · 〉 over the full nonuniform state,
and 〈· · · 〉T (x) over the uniform state with uniform temperature
T (x).

Computing f1 = ∂T (x)S(ρ({T (x)})) gives

f1 =
〈

Hx − 〈Hx〉
T (x)2

∑
y

Hy

T (y)

〉
=

∑
y

〈HxHy〉 − 〈Hx〉〈Hy〉
T (x)2T (y)

.

(A10)
Similarly, computing f2 = ∂T (x)

∑
y s(T (y)) gives

f2 = c(T (x))

T (x)
=

∑
y

〈HxHy〉T (x) − 〈Hx〉T (x)〈Hy〉T (x)

T (x)3
.

(A11)
Comparing these two expressions gives a quantitative condi-
tion. The connected two-point function of the Hamiltonian
“density” must be approximately equal in the two states.
Assuming this connected correlation function is exponentially
decaying (due to the finite correlation length) and also
exponentially insensitive to distant properties of the system
(again, the correlation length), one concludes that the entropy
of the temperature dependent state is well approximated by
the sum of the translation invariant entropy density evaluated
at the local temperature.

APPENDIX B: FURTHER JUSTIFICATION OF EFFECTIVE
TEMPERATURE SCALING

On general scaling grounds the effective temperature in
σA was assumed to go like T (x) ∼ 1/xz. The only other
possibility is T = 0 which is realized in frustration-free
systems and which we do not consider in the appendix.
However, this argument is slightly subtle when θ �= 0 since
dimensional analysis implies that at least one additional length,
call it �, does not decouple in the low energy limit. Perhaps the
effective temperature only scales like T (x) ∼ f (x/�)/xz with
f an undetermined scaling function?

The first argument in favor of f = 1 begins with the
observation that the (momentum) dimension of the energy
density is d − θ + z. In the presence of an infrared length
scale x (like the distance to a boundary), the energy density
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should be modified by an additive shift of the form δ e/xd−θ+z.
This is exactly what is obtained above when T (x) ∼ 1/xz.

The second argument doesn’t directly constrain f but says
that either the entropy bound is good or translation invariance
of the local data must be broken. If f = 1 then the analysis
above goes through and the entropy is bounded by an area law
for θ < d − 1. Suppose now that f goes to zero as x → ∞.
Then a quick calculation confirms that the derivative expansion
will not be valid as the system is approaching the ground state
too rapidly as x → ∞. However, the effective temperature is
much lower than in the case f = 1, so the entropy of a state
with decaying f will be upper bounded by the entropy of a
state with f = 1 so that the entropy bound is still valid. Finally,
suppose f goes to infinity as x → ∞. Then the derivative
expansion will be arbitrarily good as x increases, but then it
will be possible to detect a failure of translation invariance in
the local data. This is so because a correlation length much
smaller than x will imply that the boundary at x = 0 is not
observable and thus the expectation value of Hx will depend
on x.

The third and final argument proceeds by analyzing energy
fluctuations and directly shows f = 1 given the assumption
that energy fluctuations in the maximum entropy state scale the
same way as in the true state. This assumption is again made
plausible by the fact that the true ground state is recovered
when A is the total system. The argument begins by observing
that there are two ways to compute energy fluctuations: by
directly integrating the connected energy-energy correlation
function and by integrating the heat capacity over all space.

Let H denote the spatial scaling dimension of the energy
density (this dimension can be different from d − θ + z, which
is better understood as a temporal scaling dimension). Then
the connected two-point function 〈HxHy〉 will decay like |x −
y|2H and the energy fluctuations (fluctuations of HA) of a

strip will have a UV finite term going like

H 2
A ∼ Ld−1

w2H −d−1
. (B1)

H may be determined from ordinary thermodynamics by
observing that energy fluctuations are given by T 2c(T ),
where c(T ) ∼ T (d−θ)/z is the heat capacity. At temperature
T the energy fluctuations are obtained from the k = 0 limit
of the Fourier transform of the equal time energy-energy
two-point function. Scaling again determines that 〈HH 〉(k →
0) ∼ T (2H −d)/z, where the −d is from the integral over space
defining the Fourier transform. Setting the two expressions
for the energy fluctuations equal gives 2H = 2d + 2z − θ .
Note a hidden assumption here that all directions in space
scale the same way; this assumption can be violated, e.g., in
a two-dimensional (2D) array of decoupled 1D wires, but a
more general analysis can be performed in such cases leading
to the same overall conclusion.

Turning now to the local thermodynamic calculation for
the strip in the ground state, one sees that if and only if
T ∼ 1/xz will the energy fluctuations obtained by integrating
T (x)2c(T (x)) be equal to those obtained from the double
integral of 〈HxHy〉 over A. Hence requiring that the scaling of
energy fluctuations be reproduced forces T (x) ∼ 1/xz.

As a final note, T (x) may also contain terms which oscillate
at a wavelength set by �. Since � is a microscopic length these
oscillations are far too rapid for the local approximation to be
applicable on that scale. This is in fact why such oscillations
are allowed (otherwise the local approximation would lead to
badly nontranslation invariant local data). If such oscillating
terms are subleading compared to the dominant scaling of
T (x) then all is fine. An envelope to the oscillation decaying
slower than 1/xz is again ruled out because it would lead to
nontranslation invariant local data.
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