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Friedel oscillations as a probe of fermionic quasiparticles
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When immersed in a sea of electrons, local impurities give rise to density modulations known as Friedel
oscillations. In spite of the generality of this phenomenon, the exact shape of these modulations is usually
computed only for noninteracting electrons with a quadratic dispersion relation. In actual materials, Friedel
oscillations are a viable way to access the properties of electronic quasiparticles, including their dispersion
relation, lifetime, and pairing. In this work we analyze the signatures of Friedel oscillations in STM and x-ray
scattering experiments, focusing on the concrete example of cuprate superconductors. We identify signatures
of Friedel oscillations seeded by impurities and vortices, and explain experimental observations that have been
previously attributed to a competing charge order.
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I. INTRODUCTION

In the study of strongly correlated materials, one of
the common themes is the appearance of competing and/or
intertwined orders (see for example Refs. [1–3] for a review).
Recently this subject received considerable attention due to the
experimental observation of incommensurate charge modula-
tions that coexist with high-temperature superconductivity in
cuprates [4–12]. These modulations were originally observed
on the surface of BSCCO via scanning tunneling spectroscopy
(STM) [13–16], and recently found in the bulk of YBCO and
other materials by x-ray scattering experiments [4–9]. It is
commonly believed that these modulations are adiabatically
connected to the long-ranged charge order observed at large
magnetic fields by quantum oscillations [17,18] and nuclear
magnetic resonance (NMR) [19]. In our earlier work [20]
we proposed an alternative interpretation: the modulations
observed at small magnetic fields can be understood as Friedel
oscillations due to the scattering of quasiparticles with a short
lifetime, rather than as the evidence of a competing order.

Friedel oscillations are density modulations generated by
local impurities acting on mobile charges, such as electrons
in a metal. At the lowest order of perturbation theory, these
modulations are proportional to the static density-density
response function of the unperturbed (homogeneous) system.
For free electrons in three dimensions, this function can be
analytically computed and its Fourier transform is peaked at
twice the Fermi wave vector (see Ref. [21] for a review).
As a consequence, Friedel oscillations can be exploited to
directly measure the electron density [22,23]. In more complex
materials the shape of Friedel oscillations is determined by the
band structure of fermionic quasiparticles, their lifetime, and
the presence of a pairing gap. We suggest that the observation
of Friedel oscillations is therefore a viable tool for studying the
properties of quasiparticles in strongly correlated materials.

In this paper we theoretically analyze signatures of Friedel
oscillations in x-ray and STM experiments, focusing on
the specific example of superconducting cuprates. The band
structures of these materials have been extensively studied by
angle-resolved photoemission spectroscopy (ARPES). In the
normal phase, these materials have a single Fermi surface,
whose phenomenological parameters are well known. This

information allows us to make quantitative predictions for the
expected shape of the Freidel oscillations. At low tempera-
tures, the presence of a superconducting gap challenges the
main assumption of Friedel oscillations, namely the presence
of an underlying Fermi liquid. As we will see below, Friedel
oscillations can occur in a paired state as well, with some
important differences. In particular, in a superconductor,
Friedel oscillations can be seeded by both local modulations
of the chemical potential (as in normal metal) and local
modulations of the pairing gap.

In the following we first present the theoretical framework
used to analyze Friedel oscillations (Sec. II) and then discuss
its implications for recent experiments in cuprates (Sec. III).
The Appendixes explain in detail several technical details of
the calculations and in particular how to perform an ensemble
average over static impurities (Appendix A 1); how to derive
the formalism of resonant elastic scattering using Green’s
functions (Appendix A 2) and how to relate it to the Lindhard
susceptibility (Appendix A 3); and how to quantify the effects
of the spin-orbit coupling (Appendix A 4) and of the light-field
polarization (Appendix A 5).

II. THEORETICAL FRAMEWORK

A. Lindhard susceptibility

We open our theoretical description of Friedel oscillations
by considering (hard) x-ray scattering experiments. This probe
was used to detect Friedel oscillations in vanadium-doped
blue bronze [24], a charge density wave (CDW) material. For
this material, accurate x-ray scattering experiments revealed
two distinct incommensurate diffraction peaks. These peaks
were respectively identified with the CDW wave vector, and
with Friedel oscillations at twice the Fermi wave vector. In a
nonresonant x-ray experiment the intensity of the scattered
light is proportional to the zero-frequency density-density
response function [25]

χ (q) =
∫ ∞

0
dt

∫
dxeiq·x〈[ρ(x,t),ρ(x,0)]〉, (1)

where [·,·] is the commutation relation and ρ(x,t) =
ψ†(x,t)ψ(x,t) is the charge density. For quasiparticles with a

2469-9950/2016/93(20)/205117(15) 205117-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.205117


DALLA TORRE, BENJAMIN, HE, DENTELSKI, AND DEMLER PHYSICAL REVIEW B 93, 205117 (2016)

dispersion relation εk and a finite lifetime �, Eq. (1) becomes

χ (q) =
∑

k

nk − nk+q

εk − εk+q + 2i�
, (2)

where nk = {1 + exp[(εk − μ)/T ]}−1 is the Fermi-Dirac dis-
tribution function, and T is the temperature. By neglecting
interactions between quasiparticles, Eq. (2) disregards possible
collective modes such as spin waves and paramagnons. In
the case of free electrons (with εk = k2/2m and � → 0+)
and at T = 0, Eq. (2) can be evaluated analytically [21]. In
two dimensions χ (q) is momentum independent for q < 2kF ,
and decays algebraically for q > 2kF , where kF is the Fermi
momentum [26]. In actual materials, the dispersion relation is
more complex and an exact analytical evaluation of Eq. (2)
is generically not possible. We therefore resort to a numerical
evaluation of this expression. As we will see in Sec. III A, this
calculation leads to sharp peaks in χ (q). When such peaks are
observed in experiments, they may be interpreted as evidence
of static charge density waves (CDW).

B. Local density of states

In contrast to hard x-ray measurements, STM and REXS
temporarily change the number of electrons in the conduction
band and couple to the density of states, rather than to the
density-density response function [27]. Specifically, at zero
temperature the STM differential conductivity dI (r)/dV is
proportional to the local density of states g(r,ω = V ), given
by the imaginary part of the retarded Green’s function:

g(r,ω) = Im[G(r,ω)] (3)

= Im

[∫ ∞

0
dte−iω(t−t ′)〈[ψ†(r,t),ψ(r,t ′)]〉

]
. (4)

For disordered materials, g(r,ω) varies in space and is in
general unpredictable. It is therefore common to compute the
two-dimensional Fourier transform of the signal at a fixed
voltage [23]

g(q,ω) =
∫

ddreiq·rg(r,ω). (5)

As we will explain in detail below, the absolute value of g(q,ω)
depends on the types of scatterers present in the material, but
not on their position (assuming that the sample is large enough
to enable self-averaging of the scatterers’ position).

Resonant elastic x-ray scattering (REXS) offers an alter-
native way to measure the local density of states g(q,ω).
As pointed out by Abbamonte et al. [27], STM and REXS
describe analogous processes: in STM electrons tunnel to the
sample’s conduction band from an atomic-size tip, while in
REXS they are coherently pumped from a local core level (see
Fig. 1). Based on this analogy, Abbamonted et al. modeled the
intensity of the REXS signal (at zero temperature) by

IREXS(q,ω) =
∣∣∣∣A

∫ ∞

0
dω′GR

c (ω − ω′)g(q,ω′)
∣∣∣∣
2

. (6)

Here GR
c (ω) = [(ω + i�c)]−1 is the retarded Green’s function

of the core level and �c is its lifetime. In Appendix A 2 we
provide a derivation of Eq. (6) based on the Keldysh Green’s
function formalism, which allows us to extend this expression

Conduc�on 
band (d)

Core level (c)

Conduc�on 
band (d)

Core level (c)

k
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photon

k+q

Outgoing 
photon

(a) (b)

FIG. 1. Schematic diagram of a typical REXS experiment, in
which x-ray photons scatter electrons from a core level to the
conduction band (a) and vice versa (b).

to finite temperatures. Furthermore, in Appendix A 3 we show
that in the limit of nonresonant scattering (�c → ∞) from a
Fermi sea, Eq. (6) reduces to the Lindhard susceptibility (2).
Notably, Eq. (6) neglects the effects of the core-hole potential
on the evolution of the conduction band. This effect is funda-
mental to understand resonant inelastic scattering (RIXS) [28]
processes, but can probably be neglected in the case of REXS.

The prefactor A in Eq. (6) describes the transition amplitude
for the excitation of a single core hole. As shown in
Appendix A 4, this quantity does not depend on the details
of the core orbital and, in particular, is unaffected by the
spin-orbit coupling. In the absence of magnetic impurities,
the dipole approximation results into

A ∝ 〈d|(η̂i · r)(η̂∗
o · r)|d〉, (7)

where |d〉 denotes the orbital wave function of the electrons
forming the conduction band, r is displacement vector in this
state, and η̂i/o is the polarization of the incoming/outgoing
photon. Equation (7) is used in Appendix A 5 to compare the
theoretical predictions of the present single-band model with
the experimental results of Comin et al. [29].

C. Wannier functions and Bragg peaks

We now consider the effects of nontrivial Wannier
functions on the Fourier-transformed local density of states
g(q,ω). To achieve this goal, we first express Eq. (5)
in terms of the Fourier-transformed fermionic operators
ψk(t) = ∫

ddreik·rψ(r,t) and their retarded Greens function
G(k,k + q,t) = ∫ ∞

0 dte−iωt 〈[ψ(k,t),ψ†(k + q,t)]〉 as

g(q,ω) = Im
∑

k

G(k,k + q,ω). (8)

To derive Eq. (8) we assumed the system to be symmetric under
r → −r. This symmetry allowed us to invert the order of the∫

ddk and Im operators (see SI-2 of Ref. [30]). This assumption
is valid for example in the presence of a single scatterer at
the origin of the axis. In the presence of several scatterers at
random locations the present analysis applies to the absolute
value of the measured quantity (see Appendix A 1).

For a single-band model, the operator ψ(r,t) is related to
the annihilation of an electron (quasiparticle) on a single site
ci through the Wannier function W (r − ri),

ψ(r,t) =
∑

i

W (r − ri)ci . (9)
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Combining Eqs. (8) and (9) we arrive at the expression [30–33]

g(q,ω) = Im
∑

k

W ∗
k Glattice(k,k + q,ω)Wk+q, (10)

where W (k) = ∫
ddreik·rW (r), Glattice(k,k+q,ω) =∫ ∞

0 dte−iωt

〈[c(k,t),c†(k + q,t)]〉, and ck = ∑
i e

ik·xi ci . Note that by
definition, Glattice(k,k + q,ω) is a periodic function of k
and q with a period given by the Bravais lattice vec-
tors G. In the absence of impurities Glattice(k,k + q,ω) =
G(k,ω)

∑
G δ(q − G), where G(k,ω) = G(k,k,ω). This ex-

pression gives rise to well-defined Bragg peaks in g(q,ω),
whose intensity is determined by the width of the Wannier
function.

Cuprates posses a nontrivial Wannier function with d-wave
symmetry [34]. As explained in Ref. [35], this shape affects the
phase and intensity of the Fourier-transformed STM signal at a
large wave vector (beyond the central Brillouin zone), leading
to subtle correlations that were interpreted as evidence of a
competing order with d-form factor [10–12]. In this paper we
focus on the central Brillouin zone, where the precise shape of
the Wannier function is not very important. For convenience,
we then approximate W (k) as a Gaussian wave function with
width σk = 1.8(2π/a), where a is the lattice constant.

D. Scattering from local impurities

In actual materials, as a consequence of disorder, the
Fourier-transformed density of states g(q,ω) is nonzero even
for wave vectors that do not correspond to a lattice vector.
Performing a first-order perturbation theory in the scattering
potential (Born approximation) one finds [36]

G(k,k + q,ω) = G(k,ω)
∑

G

δ(q − G)

+ G(k,ω)T (k,q)G(k + q,ω), (11)

where G(k,ω) = G(k,k,ω), and T (k,q) describes the scatter-
ing of quasiparticles from momentum k to momentum k + q.

One of the main goals of this paper is to consider the
effects of different types of impurities, defined through their
scattering matrices T . We consider here only perturbations
that are static and quadratic in the quasiparticles’ creation and
annihilation operators. Any such perturbation can be described
by the Hamiltonian

Hpert = Vi,j c
†
i cj =

∑
k,q

T (k,q)c†kck+q, (12)

where T (k,q) = ∑
i,j Vi,j (eiq·xj eik·(xi−xj ) + eiq·xi eik·(xj −xi )).

If the scatterer acts on a single site (or on the bonds linked
to a single site), the scattering amplitude is given by the sum
of two terms, which depend respectively on the momentum
of the incoming and outgoing quasiparticles only: T (k,q) =
Tk + Tk+q. Combining this expression with Eq. (8) we find

g(q,ω) =
∑

k

Im
[
W ∗

k G(k,ω)Wk+q
]∑

G

δ(q − G)

+
∑

k

Im[W ∗
k G(k,ω)(Tk+Tk+q)G(k + q,ω)Wk+q].

(13)

FIG. 2. Schematic representation of the diagrams considered
in the present analysis. Our approach is based on the first-order
perturbation theory in the strength of the disorder and does not include
the effects of interactions among quasiparticles. The function g(q,ω)
is the Fourier-transformed local density of states.

Equation (13) is at the basis of the present analysis: the first
line corresponds to the density of states in an ideal lattice,
while the second line describes the effects of the impurities
(see also Fig. 2). In what follows we will mainly consider this
latter contribution.

E. Impurities in a paired state

The above-mentioned formalism can be easily extended to
include the effects of a spectral gap. For concreteness, we
describe underdoped cuprates in terms of a single spectral
gap, the paring gap �. Following Ref. [30], we propose that
the second energy scale observed in many experiments corre-
sponds to the quasiparticle’s lifetime �, rather than to a distinct
(competing) gap. This would explain the uncertainty in deter-
mining the precise value of the gap in underdoped samples,
varying roughly between � − � and � + �, depending on the
type of experiment [37]. The relatively large value of � [38]
in underdoped cuprates might be related to enhanced phase
fluctuations, which lead to a loss of global phase coherence
at the critical temperature Tc (see for example Refs. [39–47]).
Notably, the density of states is a gauge-invariant object and,
as such, depends only on the amplitude of � but not on its
phase. For simplicity, we assume the pairing gap to have
a pure d-wave form �k = (�0/2)(cos kx − cos ky), although
this assumption has little effect on the final result. Conforming
to the Born approximation, we assume �0 to be homogeneous
over the sample and independent on the impurities.

In the presence of a pairing gap, quasiparticles are con-
veniently represented as 2 × 2 matrices in Nambu space
(whose two entries are respectively particles and holes). In
this notation the retarded Green’s function of a quasiparticle
with momentum k and energy ω is given by

G−1(k,ω) =
(

ω − εk + μ + i� �k
�−k ω + ε−k − μ + i�

)
.

(14)

The dispersion relation εk, the pairing gap �0, and the
quasiparticles lifetime � relevant to superconducting cuprates
are provided in Sec. III and in Table I.

Static and quadratic perturbations can be divided into
two main categories, charge density waves (CDW) and
pairing wave (PS): the former conserves the total number
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TABLE I. Phenomenological band structures used in this paper. The parameters t0 − t5
correspond to hopping terms in a tight-binding model and are defined in Eq. (16). With
respect to the originally published band structures, the chemical potential has been shifted
to achieve the required doping p (through the Luttinger count). Additionally, the parameter
t5 has been added to the band structure of Y123(B) in order to cure a spurious backbanding
of the band structure (see SI-7 of Ref. [30]). � is the quasiparticle lifetime, used in Eqs. (2)
and (14), and �0 is the zero-temperature pairing gap used in (14). The values of these
parameters can be read from the voltage dependence of the Fourier-transformed STM
signal [6,10,29,30,38], or from ARPES experiments [54,55].

Bi2212 Bi2201 Y123(B)

Band structure [49] [52] [51] [50]

μ 0.0234 −0.148 −0.03 −0.1256
t0 −0.5951 −0.5280 −0.42 −1.1259
t1 0.1636 0.2438 0.1163 0.5540
t2 −0.0519 −0.0429 −0.0983 −0.1774
t3 −0.1117 −0.0281 −0.353 −0.0701
t4 0.0510 −0.0140 0 0.1286
t5 0 0 0 −0.1

Doping, p 0.04 0.11 pB = −0.04
(pA + pB )/2 = 0.12

Lifetime, � 0.004 0.020 0.002 0.001
Gap, �0 0.040 0.080 0.030 0.030

of quasiparticles [∼ c
†
i cj , see Eq. (12)], while the latter

does not (∼ cicj + c
†
i c

†
j ). These two types of impurities

are respectively referred to as diagonal and off-diagonal.
In this paper we restrict our analysis to three specific
types of impurities: two of them have a simple physical
interpretation and correspond to local modulations of the
chemical potential (sCDW) and of the pairing gap (dPW). The
third type (dCDW) corresponds to a local modulation of the
intra-unit-cell nematic order [48] and has d-wave symmetry.
These three types of impurities correspond to the real-
space Hamiltonians H sCDW = c

†
0,0c0,0, H dCDW = (c†0,0c1,0 +

c
†
0,0c−1,0) − (c†0,0c0,1 + c

†
0,0c0,−1) + H.c., and H dPW =

(c†0,0c
†
1,0 + c

†
0,0c

†
−1,0) − (c†0,0c

†
0,1 + c

†
0,0c

†
0,−1) + H.c.. The as-

sociated scattering matrices to be used in Eq. (13) are

T sCDW
k =

(
1 0
0 −1

)
,

T dCDW
k =

(
dk 0
0 −dk

)
, (15)

T dPW
k =

(
0 dk
dk 0

)
,

where dk = cos kx − cos ky . The Fourier transformed density
of states g(q,ω) is obtained by numerically integrating Eq. (13)
with G(k,ω) and Tk respectively defined by Eqs. (14) and (15).
As we will see, a comparison between the resulting plots and
the experimental findings suggests a coexistence of sCDW and
dPW, but rules out the presence of dCDW local modulations.

III. EXPERIMENTS ON CUPRATES

A. X ray: Effects of the band structure

As mentioned in Sec. II A, x-ray experiments couple to
the density-density response function and can be used to

directly measure Friedel oscillations. To employ the Lindhard
formula (2) it is necessary to know the dispersion relation εk,
the chemical potential μ, and the quasiparticles’ lifetime �.
In the case of superconducting cuprates, these parameters can
be directly read from accurate angle-resolved photoemission
spectroscopy (ARPES) experiments. Following the common
approach, we assume electrons to move within isolated CuO
planes and map the conduction band in terms of the two-
dimensional dispersion relation

εk = t0

2
(cos kx + cos ky) + t1 cos kx cos ky + t2

2
(cos 2kx

+ cos 2ky) + t3

2
(cos 2kx cos ky + cos kx cos 2ky)

+t4 cos 2kx cos 2ky + t5

2
(cos 2kx cos kx + cos 2ky cos ky).

(16)

In this work we specifically refer to three distinct compounds:
Bi2Sr2xLaxCuO6+δ (Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212),
and YBa2Cu3O7−x (Y123), whose band structure were experi-
mentally determined by Norman et al. [49], Schabel et al. [50],
Pasani and Atkinson [51], and King et al. [52]. The relevant
parameters t0 − t6 are reproduced in Table I. Note that Y123
material has inequivalent bonding (B) and antibonding (A)
bands: Table I refers only to the former one.

The chemical potential μ is uniquely determined by the
charge doping through the Luttinger count. Following the
common convention, we denote by p the density of additional
holes with respect to half-filling:

p = 2x − 1, where x =
∑

k nk∑
k

, (17)

and k runs over the Brillouin zone. In the case of Y123,
we identify the nominal doping with the algebraic average
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FIG. 3. (a) Fermi surfaces resulting from the band structures
listed in Table I. (b) Lindhard response, Eq. (2), along the line
q = (2π/a) × (q,0) for the same materials.

of the doping of the bonding and antiboding bands p =
(pA + pB)/2. The resulting Fermi surfaces are plotted in
Fig. 3(a). As shown in the inset, the Fermi surfaces are not
circular, and display a significant amount of nesting at the
antinodes [53].

Using the phenomenological parameters listed in Table I,
we can directly evaluate the Lindhard susceptibility (2).
Figure 3(b) presents χ (q) along the direction (q,0), for the
three different materials. In all three cases, we observe a
pronounced peak at a wave vector ranging between 0.2 and
0.3. The exact position of the peak depends on the choice of
the chemical potential, and is roughly equal to the distance
between two adjacent antinodes. The width of the peak is of
order 0.03–0.1, leading to a correlation length of about 10–30
unit cells, or 40–120 A. Its value is mainly determined by
the amount of nesting at the antinodes [56]: Among the three
materials considered here, the sharpest peak is predicted in
Y123, where the amount of nesting is maximal. In contrast,
the Fermi surfaces of Bi2212 and Bi2201 involve a lower level
of nesting, resulting in broader peaks. This could explain why,
so far, (nonresonant) hard x-ray experiments have revealed
Friedel oscillations in Y123 only [5].

The specific choice of the band structure determines the
details of the predicted signal. In the case of Y123, Fig. 3(b)
compares the signal resulting from the band structure of Pasani
and Atkinson [51] (continuous blue curve) and of Shabel
et al. [50] (dashed blue curve). As shown in the inset of
Fig. 3(a), the latter band structure predicts a larger amount of
nesting, in agreement with the experiment by Okawa et al. [57].
When used to predict the intensity of the REXS signal, the band
structure by Ref. [51] predicts a peak at wave vector q = 0.28
with width δq ≈ 0.05, while the band structure by Ref. [50]
predicts a peak at q = 0.3 with δq ≈ 0.03. For comparison,
the experiment of Chang et al. [5] shows a peak with maximal
intensity at q = 0.31 and width δq ≈ 0.03, and is found to be
in quantitative agreement with the present calculations.

For completeness we mention that the peak observed in
x-ray scattering experiments could be additionally enhanced
by the affected that are not included in the present analysis. In
particular, the Linhard formula (2) disregards the effects of the
electron-phonon coupling. This coupling was instead found to
be relatively strong in Y123 at this wave vector, leading to a
significant phonon softening [58]. Electron-phonon coupling
will generically lead to a sharpening of the x-ray response
function, as well as to a renormalization of the position of
maximal intensity. It seems plausible that the combination of
the band structure of Ref. [51] with electron-phonon coupling
could deliver a quantitative agreement with the experiments
as good as the one obtained from the band structure of
Ref. [50]. As a side remark, we also note that the two
predicted Lindhard responses for Y123 differ by an overall
multiplicative factor [see continuous and dashed blue curves
in Fig. 3(b)]. This difference can be traced back to the different
bandwidth predicted by the two models (∼0.3 eV in Ref. [51]
and ∼1 eV in Ref. [50]). Current experiments involve an
unknown normalization factor and are therefore not sufficient
to measure the actual value of χ (q) and distinguish between
these two scenarios. Different experiments, and in particular
resonant inelastic scattering (RIXS), might be able to fill in
this information (see for example Ref. [59]).

We now consider the full Lindhard susceptibility as a
function of the two-dimensional wave vector q = (2π/a) ×
(qx,qy). Figure 4 represents the results for Bi2212 (whose
band structure is known to the highest degree of precision)
and displays three inequivalent local maxima. The global
maximum occurs around the wave vector qπ,π = (2π/a) ×
(±0.5, ± 0.5). This peak occurs in the other two materials as
well (not shown) and its position is found to be independent
on the doping level. Interestingly, qπ,π corresponds to the
wave vector of the antiferromagnetic order observed in the
parent compound. Because the Lindhard formula describes
both spin and charge susceptibility, the predicted scatter-
ing enhancement around qπ,π is a precursor of the long-
ranged spin order achieved in the absence of doping (Mott
insulator).

A second broad peak appears at q = (2π/a) × (±0.25,

±0.25). The exact position of this peak is material dependent
and ranges between |qx | = |qy | = 0.2 and |qx | = |qy | = 0.3
depending on the details of the band structure and the doping
level, in analogy to the qy = 0 cut shown in Fig. 3(b). Notably,
this peak might easily escape experimental probes: due to its
broadness, it seems to merge with the stronger peak at qπ,π ,
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FIG. 4. Lindhard response Eq. (2) as a function of q = (2π/a) ×
(qx,qy) for Bi2212. The response of the other materials is qualitatively
similar (although the peak position is shifted away from q = 0.25).

especially if only the cut along the line qx = qy is available. We
will come back to this point in Sec. III C. Finally, the third local
maximum occurs at q = (±0.25, ± 0.1): the wave vector q =
(2π/a) × (±0.25,0) is predicted to be a saddle point sitting
between these local maxima. We note that a similar behavior
was observed in recent experiments by Thampy et al. [60], who
found sharp peaks at q = (2π/a) × (0.25, ± 0.015), separated
by a saddle point at q = (2π/a) × (0.25,0) [61].

B. STM: Dispersive vs nondispersive peaks

We now proceed to discuss STM experiments, by first
offering a brief summary of the main results of Ref. [30].
Specifically, in that paper we related the emergence of
nondispersive peaks in underdoped cuprates to their relatively
large inverse quasiparticle lifetime �. In materials where �

is small (such as overdoped cuprates), the STM probe excites
quasiparticles with an energy that precisely corresponds to
the tip-sample voltage. In this case, energy and momentum
conservation leads to the well-known “octet model” [62]. This
model predicts the emergence of seven inequivalent dispersive
peaks, which can be found by connecting points on the Fermi
surface where the pairing gap is equivalent to the tip-sample
voltage. As shown for example by Nowadnick et al. [36], these
peaks are indeed reproduced by Eq. (13) in the limit of � → 0.
In contrast, for a finite �, the argument leading to the octet
model does not apply because the quasiparticles’ energy is not
conserved. In this case, a numerical evaluation of Eq. (13) is
necessary. As shown in Ref. [30] these calculations lead to
nondispersive peaks around the wave vectors connecting the
antinodes. These scattering wave vectors are enhanced at all
voltages for two reasons: (i) Any scattering is enhanced at the
antinodes due to the Fermi surface nesting (in analogy to the
analysis of Sec. III A); and (ii) the modulations of the pairing
gap T dPW

k in Eq. (15) are proportional to the pairing gap �k
and are therefore enhanced at the antinodes, where the latter
is maximal.

The effect of � on the calculated STM maps is highlighted
in Fig. 5, where � varies from 1 meV [Fig. 5(a)] to 20 meV

(a) Γ=1meV

qx
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eV
]
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(b) Γ=20meV

qx

0 0.25 0.5
0

10

20

30

40

min

max

FIG. 5. STM spectra g(q,ω) along the line q = (qx,0) × 2π for
Bi2212 (see Table I) and T = T dPW. A long quasiparticle’s lifetime
[(a) � = 1 meV] leads to dispersive peaks, while a short lifetime [(b)
� = 20 meV] leads to nondispersive peaks.

[Fig. 5(b)], while all other parameters are kept fixed. The
former plot displays dispersive peaks, while the latter mainly
nondispersive ones. Importantly, the temperature dependence
of � can explain the transition between dispersive peaks
(at low temperatures) and nondispersive peaks (at higher
temperatures) reported in Ref. [63].

C. STM and x ray: Identifying the impurities

To further clarify the nature of the main source of disorder
(sCDW, dCDW, or dPW), we now consider the STM and
REXS experiments of Comin et al. [6]. Their two-dimensional
Fourier-transformed STM signal is reproduced in Fig. 6(e).
The intensity of the signal is maximal in a cross-shaped region,
oriented in the (±q,0) and (0, ± q) directions. Figures 6(a)–
6(c) represent our theoretical calculations for the three types
of impurities defined in Eq. (15). The correct shape of the
signal is reproduced only by local modulations of the pairing
gap [dPW, Fig. 6(b)], suggesting that this is the dominant
sources of disorder. A similar conclusion was reached by the
independent analysis of Nunner et al. [64]. The experimental
REXS measurement of the same material is reproduced in
Fig. 7(e). It shows a pronounced peak in the (q,0) direction, and
a monotonous behavior in the (q,q) direction. A comparison
with the theoretical curves, Figs. 7(a)–7(c), reveals that this
effect is reproduced only by local modulations of the chemical
potential [sCDW, Fig. 7(a)].

This analysis leads to an apparent inconsistency: STM
reveals local modulations of the d-wave pairing gap (dPW),
while REXS reveals local modulations of the chemical
potential (sCDW). The solution of this apparent paradox is
hidden in the intrinsic properties of the two probes: STM
measurements refer to low voltages and probe the scattering
of quasiparticles with small energy E � �0 ≈ 20 meV. In
contrast, REXS probes the scattering of quasiparticles with
energy E � �c ≈ 300 meV. Due to the coherence factors
appearing in Eq. (13), quasiparticles at different energies
are mainly affected by different sources of disorder: low-
energy quasiparticles are mainly affected by modulations of
the pairing gap, while high-energy quasiparticles are mainly
affected by modulations of the chemical potential (see also
SI-3 of Ref. [30]). This effect becomes evident in the present
calculation: the intensity of the STM signal is significantly
stronger for dPW [Fig. 6(c)] than for sCDW [Fig. 6(a)], while
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g(q,25meV)

(a) sCDW

g(q,25meV)

(b) dCDW

g(q,25meV)

(c) dPW

g(q,25meV)

(d) sCDW+dPW

0 0.17 0.33 0 0.13 0.25 0 0.31 0.63 0 0.5 1

FIG. 6. (a)–(d) Numerical evaluation of Fourier-transformed STM spectra, Eq. (13), for different types of impurities: local modulation of
the chemical potential (sCDW), local modulations of the intra-unit-cell nematic order (dCDW), and local modulations of the pairing gap (dPW).
Model details: see column Bi2201 of Table I. The black circles denote the Bragg peaks at q = (±2π/a,0) and (0, ±2π/a). (e) Experimental
measurement from Comin et al. [6]. Reprinted by permission from AAAS.

the intensity of REXS is stronger for sCDW [Fig. 1(a)] than
for dPW [Fig. 1(c)]. The experimental results are then best
reproduced by a superposition of both types of modulations
[Figs. 6(d) and 7(d)]. This result is in line with Jeljkovic
et al. [65], who found a strong correlation between local
perturbations of the pairing gap and of the chemical potential
(identified there as atypical oxygen vacancies). Notably, local
modulations of the intra-unit-cell nematic order (dCDW) are
inconsistent with the q dependence of both STM and REXS
signals.

Let us now discuss a theoretical prediction made in
Ref. [30], which appears to be in contradiction with the
experiment of Comin et al. [29]. Specifically, Ref. [30]
predicted the existence of a peak in the REXS signal at wave
vector (0.25,0.25). In contrast, the experimental measurements
of Ref. [29] [orange curve in Fig. 1(e)] does not show any
significant peak at (0.25,0.25). We believe that the absence of
the peak at (0.25,0.25) is due to its blending with the larger and
broader peak at (0.5,0.5) along the same direction [66]. This
phenomenon is clearly demonstrated in Fig. 8, showing the
predicted REXS intensity as a function of the two-dimensional
wave vector q. Note the close analogy with the results of the
Lindhard susceptibility shown in Fig. 4. We hope that future
experiments will be able to confirm our present prediction of
an increased scattering in the (q,q) direction.

D. X ray: c-axis correlations

Until this point we considered two-dimensional models
only and analyzed correlations along the a and b principal
directions only. Recently, Gerber et al. [67] found that the
c-axis correlations provide a clear distinction between the
short-ranged modulations observed at low magnetic fields
and the long-range modulations found at large magnetic
fields. Specifically, while the former is peaked around kz =
0.5 × (2π/c) (or equivalently has a period of two unit cells),
the latter is peaked at integer wave vectors. As we will now
explain, this observation is consistent with Friedel oscillations
seeded by an impurity sitting at the interface between two
unit cells. This situation is naturally realized in Y123, where
the CuO chains are the main source of disorder and are equal
spaces from the two neighboring CuO planes (see Ref. [68]
for a review).

If we neglect the tunneling of electrons in the c direction
(i.e., among planes belonging to distinct unit cells), we obtain
electronic bands that do not disperse in this direction. If we ad-
ditionally assume that the scattering matrix T and the Wannier
function W are separable functions of the spatial coordinates,
the qz dependence can be factored out from Eqs. (4), (13),
and (6), leading to IREXS(q) = |g(qz)|2IREXS(qx,qy,), where

gz(qz) =
∑

kz

W ∗
kz
T (kz,qz)Wkz+qz

, (18)
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FIG. 7. (a)–(d) Numerical evaluation of the REXS signal, Eq. (6), for different types of impurities (see caption of Fig. 6). In order to ease
the comparison with the experimental plot, the theoretical predictions in the (q,q) direction (orange diamonds) have been reduced by a factor
of 0.25 with respect to the (q,0) direction (green squares). Model details: see column Bi2201 of Table I and �c = 300 meV. (e) Experimental
measurement reproduced from Ref. [29]. The experimentally observed peak at q ≈ 0.25 in the (q,0) direction [and its absence in the (q,q)
direction] is correctly reproduced by our simple model of Friedel oscillations.
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FIG. 8. Two-dimensional plot of the predicted REXS signal.
Pronounced peaks are observed at q = (2π/a) × (0.25,0) and
q = (2π/a) × (0.5,0.5). Model details: Bi2201 with sCDW + dPW
impurities.

and IREXS(qx,qy) has been computed in the previous sections.
Equation (18) demonstrates that a nontrivial qz dependence
can be obtained due to the shapes of the impurity and of the
Wannier functions of the conduction-band electrons. The same
approach goes through for hard x-ray diffraction, where one
finds χ (q) = g(qz)χ (qx,qy), with χ (qx,qy) given by Eq. (3)
[see Eq. (A13) in Appendix A 3].

For simplicity we now focus on an impurities that act
(locally) on two neighboring CuO planes only (denoted by
“0” and “1”):

T ±
i = δi,0 ± δi,1. (19)

Here + (−) refers to a symmetric (antisymmetric) impurity,
the index i runs over the CuO layers, and c is the lattice vector
in the z direction. A more accurate description should take
into account the distinction between bonding and antibonding
bands, but we defer this point to a future study. The effects
of symmetric and antisymmetric impurities are schematically
plotted in Fig. 9. The Fourier-transformed scattering ampli-
tudes of symmetric and antisymmetric impurities are then
respectively given by

T +(kz,qz) = 2 cos

(
cqz

2

)
, (20)

T −(kz,qz) = 2 sin

(
cqz

2

)
. (21)

Note that for symmetric impurities the intensity of T is
peaked at integer kz(c/2π ) = 0, ±1, ±2, . . . , while for an-
tisymmetric impurities it is peaked at half-integer kz(c/2π ) =
±0.5, ±1.5, . . . . The intensities of the x-ray signals at low and
high magnetic fields are therefore respectively consistent with
antisymmetric and symmetric impurities. To reproduce the
experimental observations, we need to introduce trial Wannier
functions. For simplicity we again refer to Gaussian function
W (z) = e−z2/2c2

, which allow analytic evaluations of Eq. (18),
leading to

g+
z (qz) = π

c2
e−c2q2

z /2 cos2

(
cqz

2

)
(22)

FIG. 9. Crystal structure of two neighboring unit cells of YBCO.
A symmetric (antisymmetric) defect located at a CuO chain induces
the same (opposite) charge displacement on the CuO2 planes of
the two unit cells. Upward (downward) arrows indicate increased
(decreased) charge density. (Graphical representation from Ref. [18].)

and

g−
z (qz) = π

c2
e−c2q2

z /2 sin2

(
cqz

2

)
, (23)

respectively, for symmetric and antisymmetric impurities.
These curves are plotted in Fig. 10(b) which correctly repro-
duces the position and width of the experimentally observed
signal [67].

IV. SUMMARY AND OUTLOOK

In this paper we presented a theoretical modeling of
recent x-ray, REXS, and STM measurements of underdoped

q
z
 (c/2π)

-1 -0.5 0 0.5 1

|g
(q

z)|
2

0

0.5

1
(a) symmetric

q
z
 (c/2π)

-1 -0.5 0 0.5 1

|g
(q

z)|
2

0

0.5

1
(b) antisymmetric

FIG. 10. Intensity of x-ray scattering as a function of the c-
axis component of the wave vector qz for (a) symmetric and (b)
antisymmetric impurities, Eqs. (23) and (23). The latter curve is
similar to the signal observed by Gerber et al. [67] at small magnetic
fields and peaked around qz = ±1/2.
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cuprates, with specific attention to Ghiringhelli et al. [4],
Chang et al. [5], and Comin et al. [29]. To interpret their
experimental findings, these authors assumed the existence
of a competing order, distinct from superconductivity, and
associated with the spontaneous breaking of translational
symmetry. The pseudogap energy scale could then correspond
to the excitation gap required to restore the translational
invariance. The association between the charge ordering and
the pseudogap phase is however undermined by recent x-ray
experiments revealing the same type of charge ordering in
electron-doped cuprates [69], where a pseudogap phase is not
expected to subsist. In addition, the experiment by Gerber
et al. [67] showed that the oscillations observed at small
magnetic fields have different c-axis correlations than those
observed at large magnetic field [67], indicating that these are
two distinct effects. Similarly, recent measurements of the Hall
conductivity [70] show that long-range-ordered modulations
appear only for magnetic fields that are larger than a critical
value Hc ≈ 20 T.

Following Ref. [30] we propose here that the modulations
observed at small magnetic fields are simply due to Friedel
oscillations around local sources of disorder. Because our
interpretation is based on the Born approximation (first-order
perturbation theory in the impurity strength) and we consider
each scatterer independently, we expect the correlation length
of the modulations to be independent on the concentration of
impurities. This prediction has been now confirmed by two
experimental observations: (i) Achkar et al. [71] modified the
amount of disorder in Y123 through a thermal quench and
observed that the correlation length of the observed oscillations
was unchanged. (ii) The analysis of materials with similar
band structure and different amount of intrinsic disorder (such
as Bi2201 [6,7], Bi2212 [8], and Hg1201 [9]) revealed an
approximately constant correlation length. These findings are
not consistent with theories of competing orders, in which the
predicted correlation length should be directly related to the
amount of external disorder [72].

By considering the scattering of short-lived quasiparticles
from local impurities, we can quantitatively reproduce all the
experimental findings: Our model correctly predicts the wave
vector and correlation length of the spatial modulations that
were observed in x-ray [Figs. 3(b) and 4], STM (Fig. 5),
and REXS (Fig. 7) experiments. The wave vector is similar
(but not identical) to the distance between adjacent antinodes,
where the Fermi surface is often quite nested. Our approach
reproduces experimental observations that were interpreted
as evidence for the d-wave symmetry of the oscillations
(Fig. 7, see also Ref. [35] for an in-depth analysis of the phase
correlations observed by Fujita et al. [10]). Finally, it naturally
accounts for the nontrivial c-axis correlations observed in x-ray
experiments (Fig. 10).

To reproduce the experimental results, we introduced
different models of local impurities and found that the
most dominant type corresponds to local modulations of
the chemical potential and of the pairing gap. In STM maps,
the former contribution is generically dominant along the
(q,q) direction, while the latter is dominant along the (0,q)
direction (see Fig. 6). The interplay between these two sources
of disorder connects to the earlier analysis of STM data in the
presence of a magnetic field performed by Hanaguri et al. [73]

T

p

H

SC

PG

CDW

T

H
SC

PG

CDW

FIG. 11. Proposed phase diagram of BSCCO and YBCO com-
pounds, following Ref. [76]: the long-range-ordered CDW phase
observed at high magnetic field is distinct from the pseudogap (PG)
phase, characterized by an incoherent pairing gap of preformed pairs.
The inset refers to doping levels p ≈ 0.1, where a direct transition
between the superconducting (SC) and CDW phases is observed [76].

and He et al. [74]. These authors found that the ratio between
the (q,q) and (0,q) components generically increases with
magnetic field [75].

This effect can be understood by noting that in type-II super-
conductors external magnetic fields generate isolated vortices,
in whose core the pairing gap is locally suppressed [19,78,79].
Vortices are then similar to other types of local impurities,
and generate Friedel oscillations around their center. This
effect was predicted by Simonucci et al. [80], who found
Friedel oscillations around magnetic vortices in the self-
consistent solution of the BCS equations in the presence of a
vortex.

When the density of vortices reaches a critical value, they
can depin from local defects and give rise to a long-range-
ordered phase. Following the proposal of Wu et al. [19,79],
we believe this effect to be responsible for the formation
of a long-range-ordered phase at large magnetic fields that
was observed by quantum oscillations [17], NMR [19,79],
and sound velocity [81] experiments. Indeed, the measured
critical field ∼20T corresponds to an average distance between
vortices of d = √

φ0/B ∼ 100 A, which is comparable with
the correlation length of Friedel oscillations. The CDW phase
observed in cuprates would then be analogous to the field-
induced spin density waves (FISDW) observed for example
in Bechgaard salts (see Ref. [82] for a review). Because
the correlation length of Friedel oscillations depends on the
amount of nesting at the antinodes, it is natural to expect
the magnetic phase to be enhanced around p = 0.1, where
the antinodes are maximally nested. The resulting phase
diagram is plotted in Fig. 11, and highlights our claim that the
long-range ordered CDW phase is distinct from the pseudogap
(PG) phase observed at zero magnetic field.

We now discuss how to utilize STM maps to further
compare the effects of magnetic fields, temperature, and
doping. Figure 12 shows that approaching the pseduogap
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(a) small H

(b) large H (d) large T (f) small p (h) dominant direction

(c) small T (e) large p (g) dominant direction

FIG. 12. Fourier-transformed STM measurements of different materials: (a) and (b) Ca2xNaxCuO2Cl2 (Tc = 28 K) at low and high magnetic
field. From Hanaguri et al. [73]. Reprinted by permission from AAAS. (c) and (d) Bi2212 (Tc = 37 K) at low and high temperature. Adapted
from Ref. [77]. (e) and (f) Pb-Bi2201 at large and small hole doping. From He et al. [74]. Reprinted by permission from AAAS. (g) Deep in
the superconducting phase the main source of scattering is along the (1,1) and (1,−1) directions. (h) When approaching the pseudogap phase
the scattering is mainly along the (0,1) and (1,0) directions, signaling the presence of phase inhomogeneities.

phase (by increasing the temperature or decreasing the doping)
generically leads to an increase of scattering in the (0,q)
direction, which is associated with local modulations of the
pairing gap. This observation is in agreement with recent muon
spin rotation (μSR) [83] and NMR [76] experiments, which
detected enhanced static inhomogeneities in the pseudogap
phase. A similar conclusion was reached in Ref. [84], where
the effects of disorder were found to be similar to the effects
of temperature and magnetic fields (see also Ref. [85], where
a pseudogap phase was found in disordered thin films).
Inhomogeneities of the pairing gap are naturally accompanied
by a reduction of the long-range coherence: the transition to
the pseudogap phase may be due to a loss of coherence of the
pairing gap [42], rather than to its disappearance.

From the prospective of fermionic quasiparticles, the
transition to the pseudogap phase is generically associated with
an increase of the inverse lifetime �. The role of this quantity
on ARPES measurement is well known and offers a simple
explanation for the “Fermi arcs” observed in underdoped
cuprates [30,86,87]. STM [30,38] and transport [88] measure-
ments show that the inverse quasiparticle lifetime � is strongly
enhanced in underdoped cuprates and probably diverges at the
transition to the Mott insulator. This observation suggests a
possible relation between � and the critical temperature of
cuprates [30]. Measuring the temperature dependence of �

would allow us to distinguish between the effect of disorder
(elastic scattering, which exists down to zero temperature)
from the effects of interactions (inelastic scattering, which
is supposed to disappear at zero temperature). Surprisingly,

although the inverse quasiparticle lifetime � is commonly
used in fitting virtually any experimental spectroscopic data,
a systematic study of this quantity as a function of doping,
temperature, and magnetic field has not been performed yet.
We hope that the present work will motivate a new analysis of
existing data along these lines.
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APPENDIX A: TECHNICAL DETAILS

1. Average over impurities

In this Appendix we consider the effects of several identical
impurities, located at random positions. We find that the
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absolute value of g(q,ω) is independent on their position and
therefore is an intrinsic property of the system. In the text
[Eq. (8)] we assumed g(r,ω) to be symmetric under r → −r.
This approximation is valid in the presence of a single impurity
located at the origin of the axis [89]. To extend this treatment
to systems with several impurities, we first notice that within
the present framework (first-order perturbation theory in the
impurity strength) g(q �= G,ω) is given by a sum of terms,
each referring to the scattering of quasiparticles from a single
impurity: g(q,ω) = ∑

i gi(q,ω), where i runs over all the
impurities. To compute gi(q,ω) we first consider a coordinate
system whose origin is located at the center of the ith impurity,
where Eq. (13) applies. We then shift back gi(q,ω) to the com-
mon laboratory frame by the multiplication with eiq·ri , and sum
all the terms. In the case of N identical impurities we obtain

g(q,ω) =
N∑

i=1

eiq·ri g0(q,ω). (A1)

Here g0(q,ω) is the scattering amplitude from an isolated
impurity located at the axis origin, computed from Eq. (13).
In Eq. (A1) the phase of g(q,ω) is determined by the random
positions ri and is therefore not predictable. In contrast, its
absolute value averages to

〈|g(q,ω)|〉 = Ng0(q,ω). (A2)

Here we used the observation that by definition, g0(q,ω) is a
real function.

2. Green’s function approach to REXS

In this Appendix we derive Eq. (6) within the Keldysh
path-integral formalism. This approach allows us to extend
the results of Abbamonte et al. [27] to finite temperatures.
In REXS experiments x rays are scattered upon the material
to be examined at a frequency that allows the creation of a
core hole, i.e., the excitation of an inner orbital of the atom to
the conduction band (see Fig. 1). The action of the incoming
field can be described as Vin = Eine

iωt δ(t)d†c + H.c., where
Ein > 0 describes the amplitude of the incoming x rays, with
ω its frequency, and d and c are fermionic operators describing
electrons (quasiparticles), respectively, in the conduction band
(in cuprates formed by d orbitals) and in the core level. Shortly
after, an electron from the conduction band fills in the core
level and emits an x-ray photon, which is observed by the
experimental setup. This decay process can be described by the
operator Vout(t) = a

†
oute

−iωt c†d, where a
†
out creates an outgoing

photon and λ is the light-matter coupling. In perturbation
theory, the outgoing field is given by

Eout(t) = 〈aout〉 ≈ 〈c†de−iωt + H.c.〉, (A3)

where we assumed the initial state to be empty of outgoing
photons. Applying perturbation theory (and neglecting oscil-
lating terms), we obtain the Kubo formula

Eout(t) = iEin�(t)〈[d†(0)c(0),c†(t)d(t)]〉, (A4)

where �(t) is the Heaviside theta function and [. . . , . . . ] is the
commutation relation. In Keldysh notation, Eq. (A4) becomes
the sum of eight terms with an odd number of “classical”
fields c,d and of “quantum” fields ĉ,d̂ . Four of these terms

contain three quantum fields and their expectation values are
identically equal to zero. We are then left only with terms
containing three classical fields and one quantum field:

Eout(t) = i

2
Ein�(t)〈d̂∗(0)c(0)c∗(t)d(t)

+d∗(0)ĉ(0)c∗(t)d(t) + d∗(0)c(0)ĉ∗(t)d(t)

+d∗(0)c(0)c∗(t)d̂(t)〉. (A5)

For t > 0 only the first two terms are nonzero (and for t < 0 the
last two are nonzero). Equation (A5) can be further simplified
by introducing the retarded and Keldysh Green’s functions
GR

d = 〈d∗d̂〉 and GK
d = 〈d∗d〉:

Eout = iEin
[
GK

d (t)GR
c (t) + GK

c (t)GR
d (t)

]
. (A6)

Each of the two terms of Eq. (A6) corresponds to the product
of two Greens functions, evaluated at the same time, or
equivalently their convolution in the frequency domain:

Eout(ω) = i

2
Ein

∫ ∞

−∞
dω′[GK

d (ω − ω′)GR
c (ω′)

+GK
c (ω′)GR

d (ω − ω′)
]
. (A7)

At thermal equilibrium the Keldysh components satisfy
the fluctuation-dissipation theorem GK

d (ω) = 2Im[GR
d ] tanh

(ω/2T ) ≈ 2Im[GR
d ]sgn(ω) and GK

c =2Im[GR
c ] tanh((ω −

Eh)/2T ) ≈ −2Im[GR
c ]. In the limit of T → 0 we find

Eout(ω) = iEin

∫ ∞

−∞
dω′[Im[

GR
c

]
(ω − ω′)GR

d (ω′)

+ sgn(ω′)Im
[
GR

d

]
(ω′)GR

c (ω − ω′)
]
. (A8)

The real component of Eout (the component that is in phase
with Ein) has a particularly simple form

Re[Eout](ω) = 2Ein

∫ ∞

0
dω′Im

[
GR

c

]
(ω − ω′)Im

[
GR

d (ω′)
]
.

(A9)
Applying the Karmers-Kronig relation we then obtain

Eout(ω) = 2Ein

∫ ∞

0
dω′GR

c (ω − ω′)Im
[
GR

d (ω′)
]
. (A10)

For a featureless core level with response function GR
c (q,ω) =

[(ω + i�c)]−1, we recover exactly the same expression as in
Ref. [27] and Eq. (6) with A = 2Ein.

3. From REXS to Lindhard

In the main text we provided an expression for the intensity
of the REXS signal at zero temperature, Eq. (6). Here we show
that, in the case of nonresonant scattering from a Fermi gas, this
expression simply reduces to the Lindhard susceptibility (2).
The present derivation is a corollary of a more generic
relation between the nonresonant limit of resonant inelastic
scattering (RIXS) and density-density response functions (see
Ref. [28] for a review), and is brought here for completeness.
Nonresonant scattering can be described as a REXS process
in the limit of �c → ∞. In a Fermi gas with a local impurity,
G0(k,ω) = 1/(ω−εk + i0+), W (k) = 1, and T (k,k + q) = 1.
Under these conditions Eqs. (6) and (8) give IREXS → Ix ray =

205117-11



DALLA TORRE, BENJAMIN, HE, DENTELSKI, AND DEMLER PHYSICAL REVIEW B 93, 205117 (2016)

|(AC(q)/�c|2, with

C(q) =
∫ ∞

0
dω′ ∑

k

Im

[
1

ω′ − εk + i0+
1

ω′ − εk+q + i0+

]

= π

∫ ∞

0
dω′ ∑

k

δ(ω′ − εk+q)

ω′ − εk
+ δ(ω′ − εk)

ω′ − εk+q

= π

∫ ∞

0
dω′ ∑

k

δ(ω′ − εk+q)

εk+q − εk
+ δ(ω′ − εk)

εk − εk+q

= π
∑

k

nk

εk+q − εk
+ nk+q

εk − εk+q
. (A11)

Here in the transition from the first to the second line we used
1/(x + i0+) = 1/x − iπδ(x), and in the transition from the
third to fourth

∫ ∞
0 δ(ω − εk) = nk , where nk is the Fermi-Dirac

distribution at T = 0. We obtain

Ix ray =
∣∣∣∣∣
A

�c

∑
k

nk − nk+q

εk − εk+q

∣∣∣∣∣
2

=
∣∣∣∣ A

�c

χ (q)

∣∣∣∣
2

. (A12)

The present derivation can be extended to the case of nontrivial
Wannier functions, and scattering amplitudes of the form
T (k,k + q) = Tq leading to

Ix ray =
∣∣∣∣∣
A

�c

∑
k

WkTqW
∗
k+q

nk − nk+q

εk − εk+q

∣∣∣∣∣
2

. (A13)

4. Spin-orbit effects in REXS

In this Appendix we study the dependence of REXS scattering
on the polarization of the incoming (i) and outgoing (o)
photons. As an important result, we will show that in the
absence of magnetic impurities, the intensity of the REXS
signal is not affected by spin-orbit effects. For an isolated
atom, the REXS intensity I is given by the product of dipole
matrix elements for the absorption and the emission:

I (η̂i ,η̂o) ∝ (η̂∗
o · 〈ψi |r|ψn〉)(η̂i · 〈ψn|r|ψi〉), (A14)

where ψi is the initial (and final) core electron state and
ψn is a valence 3dx2−y2 orbital with spin σ at the same
site. In typical experiments one selects a resonance so that
only 2p core levels with total angular momentum j = 3/2
are excited to the valence band. Thus the total polarization-
dependent intensity is the sum over spin-orbit eigenstates
mj = −3/2, − 1/2,1/2,3/2:

I (η̂i ,η̂o) ∝
∑
mj

(
η̂∗

o · 〈
2p3/2

mj
|r|3dx2−y2 ,σ

〉)

× (
η̂i · 〈

3dx2−y2 ,σ |r|2p3/2
mj

〉)
. (A15)

To compute the dipole matrix elements, we introduce a unit
operator in the basis of separate spin and orbital angular-
momentum eigenstates |m�,ms〉,

I ∝
∑

mj ,m�,ms,m
′
�,m

′
s

(
η̂∗

o · 〈
2p3/2

mj

∣∣m�,ms

〉〈
m�,ms |r|3dx2−y2 ,σ

〉)

× (
η̂i · 〈

3dx2−y2 ,σ |r|m′
�,m

′
s

〉〈
m′

�,m
′
s

∣∣2p3/2
mj

〉)
(A16)

=
∑

mj ,m�,m
′
�

(
η̂∗

o · 〈
2p3/2

mj

∣∣m�,σ
〉〈
m�|r|3dx2−y2

〉)

× (
η̂i · 〈

3dx2−y2 |r|m′
�

〉〈
m′

�,σ |2p3/2
mj

〉)
. (A17)

The Clebsch-Gordan matrix elements vanish unless mj =
m� + σ = m′

� + σ , and hence we require m′
� = m�. We then

have the further simplification:

I ∝
∑

mj ,m�

∣∣〈2p3/2
mj

∣∣m�,σ
〉∣∣2

(η̂∗
o · 〈m�|r|3dx2−y2〉)

×(η̂i · 〈3dx2−y2 |r|m�〉). (A18)

If the Hamiltonian is spin independent, i.e., if there is no
spin-density wave, the amplitude is independent of the spin σ

of the photoelectron in the intermediate state and thus the two
spins contribute equally to the coherent sum over histories,
and we have

I ∝
∑
m�

⎡
⎣∑

mj ,σ

∣∣〈2p3/2
mj

∣∣m�,σ
〉∣∣2

⎤
⎦(η̂∗

o · 〈m�|r|3dx2−y2〉)

×(η̂i · 〈3dx2−y2 |r|m�〉). (A19)

Now
∑

mj ,σ
|〈2p

3/2
mj

|m�,σ 〉|2 is the probability that a core
electron with orbital angular momentum m� and unknown spin
is in a total spin-j = 3/2 state. By spherical symmetry this is
obviously independent of m�, since m� is coordinate dependent
but j is not. Since this is an m�-independent quantity, we obtain

I ∝
∑
m�

(η̂∗
o · 〈m�|r|3dx2−y2〉)(η̂i · 〈3dx2−y2 |r|m�〉) (A20)

=〈3dx2−y2 |(η̂i · r)(η̂∗
o · r)|3dx2−y2〉. (A21)

We now have a tensorial matrix element that is not modulated
by the spin-orbit effect except for the aforementioned constant
prefactor that represents the contribution to resonant scattering
only from j = 3/2 core states.

5. Polarization dependence of REXS

In this Appendix we study the dependence of the REXS
signal on the wavevector of the incoming photon k. This de-
pendence was experimentally measured by Comin et al. [29],
and used to identify the dominant type of charge modulations.
According to the present single-band approach, the predicted
k dependence is instead identical for all types of modulations:
Our model corresponds to the s-wave case considered by
Comin et al. This model is found to be in good agreement
with the experimental measurements (see Fig. 14).

Our starting point is Eq. (7). Because the outgoing beam is
not filtered according to its polarization, the measured signal
is proportional to the sum of the intensities of the two outgoing
polarizations:

IREXS ∝
∑

o=σ ′,π ′
|η̂o · M · η̂i |2, (A22)

where the tensor M is defined by Mα,β = 〈d|rαrβ |d〉, i = σ,π

is the incoming polarization, and o = σ ′,π ′ is the outgoing
polarization. We denote by F the diagonal matrix correspond-
ing to M in the principal axis of the lattice. Its three nonzero
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o

xyx
qz

x

sample

FIG. 13. Experimental setup of Ref. [29].

entries are Fx = 〈d|x2|d〉, Fy = 〈d|y2|d〉, and Fz = 〈d|z2|d〉.
The ratio between these quantities was measured in Ref. [29]
and found to be Fz/Fx ≈ Fz/Fy ≈ 0.15. The smallness of Fz

indicates that the conduction band has a small extension in the
z direction, in agreement with the theoretical calculations [34],
which predict a dominant x2 − y2 character. In the experiment,
the direction and the polarization of the incoming photons are
kept fixed, while the wave vector k is modified by rotating
the sample around the vector q (Fig. 13): the dipole matrix
M is then given by M = RT (α)FR(α), where the matrix R

represents a rotation of α degrees around the q axis. This
expression corresponds to the predictions of Ref. [29] for an
s-wave modulation.

Without loss of generality we choose to work in Cartesian
coordinates in which the incoming photon moves in the
direction k = (0,0,1) with polarizations σ = (0,1,0) and π =
(1,0,0). As shown in Fig. 13, the polarizations of the outgoing
photons are σ ′ = (0,−1,0) and π ′ = (cos 2θ,0, sin 2θ ), and
q ≡ k′ − k ∼ (cos θ,0, sin θ ). For Fx = Fy = 1,Fz = 0 we
then find

Iσ (α) =
(

4 cos3 α

2
sin

α

2
cos2 θ sin θ

)2

+(cos2 α + sin2 α sin2 θ )2, (A23)

Iπ (α) =
(

4 cos
α

2
sin3 α

2
cos2 θ sin θ

)2

+[cos4 θ − sin2 θ (sin2 α + cos2 α sin2 θ )2]2. (A24)

For Fz �= 0 one obtains more complex expressions, numer-
ically depicted in Fig. 14. If we normalize Iσ and Iπ by
their maximal value (dotted curves of Fig. 14), we find that
minIε/maxIε ≈ 0.75 for both ε = π,σ . The experimental
measurements (symbols) instead show minIε/maxIε ≈ 0.6.
As explained by Comin et al. [29], this discrepancy can be
attributed to the self-absorption effects [90]. The corrected

0° 45° 90° 135° 180°
0.4

0.6

0.8

1

α

 I σ(α
) 

/  
m

ax
 I σ (

0)
0° 45° 90° 135° 180°

0.4

0.6

0.8

1

 I π(α
) 

/  
m

ax
 I π

α

Theory (F
z
=0)

Theory (F
z
=0.15)

Theory (corrected)
Experiment

FIG. 14. Polarization dependence—comparison between theory
and experiment. The continuous curves correspond to Eqs. (A23)
and (A24), obtained from Eq. (A22) in the case of Fz = 0. The
dotted curves correspond to Eq. (A22) in the case of Fz = 0.15.
The dashed curves are reproduced from Fig. S5 of Ref. [29] and
include the corrections due to self-absorption. The error bars indicate
the experimental measurement of the Y675 sample reported in
Ref. [29].

signal (dashed curves) gives a good agreement between the
predicted and measured minIε/maxIε ratios.

Comin et al. additionally notice a significant asymmetry
of the experimental data with respect to α → 180◦ − α.
According to a specific statistical model, they attribute this
discrepancy to a dominant d-wave character of the charge
modulation. Their classification implies the realization of a
multiband model with inequivalent Ox and Oy orbitals, in
contrast to the present analysis based on a single-band model.
Interestingly, the statistical significance of their approach was
not clearly established in the case of BSCCO. In addition,
Fig. 14 shows that the symmetry with respect to α → 180◦ − α

is significantly modified by the corrections for self-absorption.
We conjecture that the discrepancy between the present the-
oretical approach and the experimental measurements might
be attributed to high-order corrections in the self-absorption,
rather than to the symmetry of the charge modulations.
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