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Composite fermions and the field-tuned superconductor-insulator transition
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In several two-dimensional films that exhibit a magnetic field-tuned superconductor to insulator transition
(SIT), stable metallic phases have been observed. Building on the ‘dirty boson’ description of the SIT, we suggest
that the metallic region is analogous to the composite Fermi liquid observed about half-filled Landau levels of the
two-dimensional electron gas. The composite fermions here are mobile vortices attached to one flux quantum of
an emergent gauge field. The composite vortex liquid is a 2D non-Fermi liquid metal, which we argue is stable to
weak quenched disorder. We describe several experimental consequences of the emergent composite vortex liquid.
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I. INTRODUCTION

How is superconductivity destroyed by a perpendicular
magnetic field at T = 0 in a disordered thin film [1–14]?
There are two approaches to addressing this question. The first
is a fermionic description where the destruction of supercon-
ductivity is identified as the loss of superconducting pairing
amplitude [15]. The second, so called ‘dirty boson’ approach,
assumes the magnetic field induces a superconductor to insu-
lator transition (SIT), where Cooper-pair localization occurs,
while the amplitude remains finite across the transition [16,17].

In the presence of both disorder and a strong magnetic
field (H > Hc1), superconductors and insulators are sharply
defined only at T = 0 in 2D [18]. Thus, the field-tuned SIT
is a rather unconventional quantum critical point. In contrast,
the zero-field disorder-tuned SIT [1,19] has a line of finite-
temperature superconducting transitions that terminate at the
zero-field disorder-tuned SIT [20,21]. This, along with the
preservation of time-reversal symmetry, implies that the zero-
field disorder-tuned SIT must be in a distinct universality class.
Our focus here will be on field-tuned transitions.

In strongly disordered films, where the normal state
resistance is well in excess of the Cooper-pair quantum of
resistance, RQ = h/4e2 � 6.45k�/�, many predictions of
the dirty boson theory have been confirmed [2,3,10,12,13,22].
However, in somewhat cleaner films, a direct transition from
superconducting to insulating behavior is lost. Instead, an
intervening metallic phase with substantial superconducting
fluctuations [23] has been observed [4,6,7,10–12]: The resis-
tance approaches a constant, field-dependent value R(T →
0,H ) � RQ as T → 0. To the extent that such metallic
behavior observed at finite temperature uncovers the properties
of a true zero temperature metal, it lies outside the scope of
dirty bosons.

Here, we address—at a phenomenological level—how
a metallic phase can emerge starting from the strongly
disordered dirty boson limit. Our analysis builds on the
analogy between direct SITs and quantum Hall plateau
transitions, which has been discussed in the literature using a
composite boson mapping [24,27,28]. In contrast, we employ
the composite fermion description [29], which more naturally
accounts for the metallic behavior. As summarized in Fig. 1, we
suggest the metallic point observed at the SIT in dirtier samples
is closely related to the metallic phase in somewhat cleaner

systems; in both cases, the metal is analogous to the composite
Fermi liquid [25,26] observed in half-filled Landau levels of
a 2D electron gas (2DEG) [30,31]. The composite fermions
here are field-induced vortices attached to a unit flux quantum
of an emergent gauge field. The hypothesis that composite
fermions determine the low-energy behavior in both systems
straightforwardly allows for a number of testable predictions
as the two systems complement and inform one another.

II. EFFECTIVE FIELD THEORY FOR THE SIT

We begin with an effective description of a disordered
2D superconductor close to a field-tuned SIT at T = 0.
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FIG. 1. Schematic T = 0 phase diagram in the vicinity of the SIT
of disordered thin films as a function of external magnetic field Hext

and disorder strength δ. The solid lines denote phase transitions, while
the dashed line denotes the boundary (either transition or crossover)
between a Bose insulator of Cooper pairs and an electron insulator.
A similar phase diagram obtains for a 2DEG with the relabeling:
superconductor ↔ integer quantum Hall effect, Bose insulator ↔
Hall insulator [24], and composite vortex liquid ↔ composite Fermi
liquid [25,26]. Appendix B has a second possible phase diagram.
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The effective Hamiltonian for the delocalized Cooper pairs,
Hs = H1 + H2, takes the following form:

H1 = 1

2

∑
r,r ′

(ns(r) − ns)Vr,r ′(ns(r ′) − ns),

(1)
H2 = −

∑
i,r

Ji,r cos(�iθ (r) + e∗Ai(r)).

Here, the unit lattice spacing plays the role of a short-distance
cutoff, which is comparable to zero field, zero tempera-
ture superconducting correlation length. The amplitude of
the Cooper-pair field, ψ ∼ eiθ , is assumed frozen, while
the Cooper-pair density ns(r) and phase variable θ (r) at
site r = (x,y) satisfy the equal-time commutation relations,
[ns(r),θ (r ′)] = iδr,r ′ . In Eq. (1), Ai(r) = (Ax(r),Ay(r)) is the
vector potential for the background magnetic field, �iθ (r) ≡
θ (r + î) − (
r) is the lattice derivative, Vr,r ′ parameterizes both
the density-density interaction and the coupling to disorder,
Ji,r is the superconducting phase stiffness, which can also
vary spatially due to strong disorder, and the Cooper pairs
carry electrical charge e∗ = 2e.

For a clean metal with Galilean invariance at T = 0, the
average Cooper-pair density 〈n(r)〉 ≡ ns = ne/2 where ne is
the electronic carrier density of the metal. If the same relation
were to hold for the disordered films considered here, the
field scales required to tune to the SIT would be incompatible
with experiment. Instead, for a disordered metal at T = 0, the
average Cooper-pair density can be substantially less than ne,
since many of the Cooper pairs will be strongly localized,
and do not participate in the low-energy effective field theory.
An estimate of the relevant degrees of freedom can be made
via the formula: ns ∼ ne

3
�2

�D/(kBTc) where � is the electronic
mean-free path, D is the normal-state diffusion constant, and
Tc is the zero-field superconducting critical temperature [32].
For disordered metals, �2

�D/(kBTc) � 1 and so the Cooper-pair
density may be much reduced from its value in the clean limit.

An important test of the reasoning above is a crude
estimation of SIT field scales. For a 40 Å thick MoGe
film of the type studied by Mason and Kapitulnik, the 3D
carrier density ne ∼ 10−26 m−3, � ∼ 6 × 10−10 m, D ∼ 5 ×
10−5 m2/s, and Tc ∼ 1 K [33]. We estimate a 2D Cooper-
pair density ns ∼ 2 × 1014 m−2, which is three orders of
magnitude less than the clean estimate of 2 × 1017 m−2.
The estimated Cooper pair density defines a magnetic field
scale bv = ns�0 ∼ 0.5 T at which the Cooper pairs are at
unit filling fraction ν = ns/(Hext/�0), where the magnetic
flux quantum �0 = hc/e∗ ≡ 2π/e∗. The metallic behavior
observed in MoGe films occurs at field scales, which are
roughly comparable to bv [34].

Having estimated the average density of mobile Cooper
pairs in a disordered system, we implement the following
duality transformation,

ns(r) = e∗
2π

b(r), �iθ (r) + e∗Ai(r) = e∗
2π

ẑ × e(r), (2)

only to these mobile, low energy degrees of freedom. The
duality transformation relates the density and current operators

of the mobile Cooper pairs to the magnetic b(r) and electric
e(r) field of an emergent gauge field that is minimally coupled
to the dual vortex degrees of freedom. The emergent electric
field is constrained by Gauss’ law:

� · e(r) = 2π (nv(r) − nv), (3)

where the average vortex density nv ≡ 〈nv(r)〉 = Hext/�0 is
sourced by the external magnetic field. The resulting dual
vortex Hamiltonian [35], H̃v = H̃1 + H̃2 + H̃3:

H̃1 = 1

2

∑
r,r ′

(nv(r) − nv)Ṽr,r ′(nv(r ′) − nv),

H̃2 = −
∑
i,r

J̃i,r cos (�iφ(r) − e∗ai(r)), (4)

H̃3 =
∑

r

e(r) · e(r) +
∑
r,r ′

b(r)Vr,r ′b(r ′).

In Eq. (4), φ(r) is the number operator conjugate to nv(r),
ai(r) = (ax(r),ay(r)) are the spatial components of the emer-
gent gauge field introduced in Eq. (2) with average emergent
magnetic flux 〈b〉 = ns�0. The emergent gauge charge carried
by the vortices is equal and opposite to the electromagnetic
charge carried by the Cooper pairs. The vortices are electrically
neutral. Ṽr,r ′ and J̃i,r parametrize the density and phase
interactions. Duality implies that the dimensionless electrical
resistivity ρ̄ is equal to the dimensionless vortex conductivity
(ρ̄v)−1 in units of h/4e2 and vice versa. As the external field
is increased, nucleated vortices, pinned at first by disorder,
become mobile at the SIT due to quantum fluctuations and
lead to nonzero resistance.

III. SELF-DUALITY AND COMPOSITE VORTICES

A useful theoretical anchorpoint is the notion of self-duality
which implies nv = ns [36]. Since the supercurrent is defined
as I = e∗ṅs, whereas the Josephson relation implies that the
voltage, V = h

e∗
ṅv in the limit of vanishingly small Hall

resistivity, a spectacular prediction of self-duality is that the
resistance at the SIT must be universal and equal to RQ. A
triumph of the dirty boson theory is the observation of roughly
this value for the critical resistance at the SIT in a variety of
films [3,12,13].

In our phenomenological treatment here, we take the
observation of self-duality as an empirical fact and consider
its consequences. This in turn will enable us to speculate on
the nature of the ground state when self-duality is broken by
reducing film disorder.

Since ns = nv at a SIT with self-duality, the transition
represents the point where both the Cooper pairs and vortices
are on the verge of condensation. To extend this description
to the metallic phase, we must consider the stability of the
above picture. Since Cooper pairs ‘see’ a vortex as a unit of
flux and vice versa, and because both particles are mutual
bosons, it follows that in a mean-field description, the ground
state involves bosons at ν = 1. However, in the presence of
disorder and interactions, such a mean-field treatment favors
the mutually contradictory ground states consisting either of
localized Cooper pairs or vortices.
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A much more stable mean-field solution is obtained via
flux attachment [29]. Bosons at ν = 1 map onto a composite
fermion metal in zero net background magnetic flux. Im-
portantly, the Pauli principle is operative in the fermionic
description, which substantially stabilizes the mean-field
ground state. Thus, we propose that a composite fermion metal
provides an effective description for a self-dual SIT with a
finite T = 0 resistance. How this picture quantitatively results
in the observed experimental behavior requires additional
work; nevertheless, it is possible to explore a few of the
immediate implications of this hypothesis.

A. Emergent metallic phases

The most important consequence is the possibility that the
metallic point broadens into an emergent metallic phase. To be
specific, we consider a composite Fermi liquid of composite
vortices, which are bosonic vortices bound to a unit flux of
the emergent gauge field a, whose curl equals the Cooper pair
density. We propose the following scenario. At strong disorder,
the finite density of composite vortices is driven to a strong
disorder fixed point that describes the SIT. As the disorder
is weakened and the effects of a Fermi surface of composite
vortices becomes better defined, the fixed point broadens into
a metallic phase.

To motivate this hypothesis, we draw upon a well-known
analogy [27] between the SIT and quantum Hall plateau transi-
tions. Consider an integer quantum Hall plateau transition from
ν → ν − 1. Upon increasing the external field, the electron
chemical potential is lowered, and holes are nucleated in the
filled Landau level. These holes are the precise analogs of the
vortices nucleated by a field in a superconductor. The holes
are localized until the field is tuned to its critical value at
which the plateau transition occurs. A consequence of Landau
level particle-hole symmetry—the analog of particle-vortex
symmetry—is that the Hall conductivity σyx = ν − 1/2 (in
units of e2/h). In addition, the diagonal conductivity takes a
universal value of e2/h [37,38]. The metallic point that obtains
at a plateau transition is closely related to the composite Fermi
liquid of half-filled Landau levels. In samples with somewhat
less disorder, there is a metallic phase intervening between the
two plateaus [39]. The fact that the metallic point in dirtier
2DEGs broadens into a metallic phase in cleaner 2DEGs
reflects the stability of the composite fermion metal relative to
either quantum Hall state with Hall conductivity of ν or ν + 1.
In the same manner, we suggest here that the metallic phase
related to the composite vortex liquid can be a more stable
phase than either the superconductor or the insulator.

B. Composite vortex Lagrangian

To test these ideas more quantitatively, we provide an
effective Hamiltonian for the composite vortex degrees of
freedom, generalizing H̃v. At unit filling fraction, the com-
posite vortices see zero effective magnetic field, form a Fermi
surface [40,41], and interact via an emergent gauge field ã

in addition to the already present field a introduced in H̃v.
We consider the following “working” effective Lagrangian,

written in the continuum, for the composite vortices ψ ,
Lcv = L0 + Lgauge + Lint:

L0 = ψ†
(
i∂t + (ãt − at ) + 1

2mv

(∂j − i(ãj − aj ))2
)
ψ,

Lgauge = − 1

4π
εμνρãμ∂νãρ + e∗

2π
εμνρAμ∂νaρ, (5)

Lint = −1

2

∫
d2r ′(ψ†ψ(r) − nv)Ṽr,r ′(ψ†ψ(r ′) − nv).

We take the composite vortex kinetic term L0 to be that of a
nonrelativistic fermion, applicable to a metallic phase without
relativistic symmetry. The first term in Lgauge implements the
unit flux attachment, while the second term describes
the coupling of the Cooper-pair current Jμ = e∗

2π
εμνρ∂νaρ to

the external electromagnetic field Aμ. The third term Lint

describes the composite vortex density-density interactions
inherited from H̃v. Because the composite fermion ψ only
couples to the linear combination Ã = ã − a, we may simplify
Lcv and integrate out a to obtain [42]:

Lgauge = − e∗
2π

εμνρÃμ∂νAρ + e2
∗

4π
εμνρAμ∂νAρ. (6)

The first term inLgauge describes the induced coupling between
the external gauge field A and the composite vortices through
Ã. The presence of the second term is reminiscent of a
composite fermion treatment of the holes—the analog of the
vortices of a superconductor—in a filled Landau level [43]
(see also Ref. [44]).

C. Composite vortex response

Consider the consistency of the above scenario with the
general phase diagram depicted in Fig. 1. As explained in
Appendix A, we can relate the electrical conductivity tensor
σij to the composite vortex conductivity σ cv

ij :

σij = e2
∗

2π

( − εjk + (σ cv)−1
jk

)
. (7)

We concentrate on the DC response as T → 0.

1. Superconductor

To obtain an electrical superconductor, we must take
the composite vortices to be insulating, σ cv

xx(T → 0) = 0
and σ cv

xy (T → 0) = 0. An Anderson insulator of composite
vortices is expected for low composite fermion density when
the external magnetic field is small. The Hall conductivity
is sensitive to the rate at which the various components of
the composite vortex conductivity tensor vanish: (1) when

limT →0
(σ cv

xx )2

σ cv
xy

→ 0, σxy(T → 0) diverges, while (2) when

limT →0
σ cv

xy

(σ cv
xx )2 → 0, σxy(T → 0) is finite. (Note that we always

assume limT →0
σ cv

xx

(σ cv
xy )2 → 0 in order to ensure superconducting

behavior.) The second case may be referred to as a Hall
superconductor. The Hall resistivity, however, vanishes in
both cases.
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2. Insulator

An electrical insulator obtains when the composite vortices
exhibit the integer quantum Hall effect, σ cv

xx(T → 0) = 0 and
σ cv

xy (T → 0) = −1. Analogous to the situation with the su-
perconductor, the precise value of the Hall resistivity depends
upon the rates by which the components of the composite
vortex conductivity tensor approach their zero temperature

values: (1) when limT →0
(σ cv

xx )2

(1+σ cv
xy ) → 0, ρxy(T → 0) diverges,

while (2) when limT →0
(1+σ cv

xy )
(σ cv

xx )2 → 0, ρxy(T → 0) is finite.

(We assume limT →0
σ cv

xx

(1+σ cv
xy )2 → 0 in order to ensure insulating

behavior.) The first case represents a trivial insulator, while the
second case may be called a Hall insulator [24,45].

As parameters in the laboratory are varied, we might expect
a crossover from a Hall insulator to a trivial insulator (along
with an analogous crossover in the superconducting phase),
consistent with the various phases furnished by the composite
vortex Lagrangian.

D. Composite vortices in the weak disorder limit

We now address the stability of the composite vortex liquid
to disorder. The scaling theory of localization only applies to
Fermi liquids coupled to quenched chemical potential disorder.
By contrast, chemical potential disorder in H̃v translates into
random flux disorder of zero mean and random chemical
potential disorder. To see this, consider the composite vortex
Lagrangian in Eq. (5) where the coupling of the composite
vortex density to random chemical potential disorder is
implicitly included in Lint. The equation of motion for the
time-component ãt of the emergent gauge field,

ψ†ψ(r) = 1

2π
b̃(r), (8)

relates the local composite vortex density to the emergent
gauge flux b̃ = ∂xãy − ∂yãx , thereby tying fluctuations in
the local chemical potential to those of the emergent gauge
field [46].

Happily, the problem of an electron hopping on a lattice
in the midst of random chemical potential and random flux of
zero mean was studied in Refs. [25,47] with the conclusion that
localization is avoided. Random flux of zero mean is of crucial
importance. Random flux with nonzero average effectively
acts as an additional contribution to the random chemical
potential and results in localization of noninteracting electrons.
Thus, one of the most important simplifying features of the
composite fermion transformation wherein vortices at unit
filling fraction map to composite vortices in zero background
flux is also one of the most important in guaranteeing stability
of the resulting metal to weak disorder.

IV. EXPERIMENTAL CONSEQUENCES

We now briefly discuss a few experimental consequences,
many of which are readily adapted from the corresponding
implications of a composite fermion metal in the 2DEG.

A. Heat capacity

A simple but remarkable thermodynamic signature of
the metallic phase should, in principle, arise in the heat

capacity. A linear in temperature heat capacity is expected
for a Fermi-liquid-like metal; additional corrections due to the
interactions of the composite vortices with the Chern-Simons
gauge field may be expected to take the form δcV ∼ T 2/3

or δcV ∼ T log(T ) depending upon the effective composite
vortex density-density interaction. Distilling such behavior in
2DEGs has thus far proven difficult [48,49].

B. Quantum oscillations

Quantum oscillations indicative of the composite vortex
Fermi surface with wave vector determined by the applied
external magnetic field would provide a striking confirmation
of the picture presented in this paper. The frequency of
oscillation will monotonically depend on the deviation of the
external field from the value at which the composite vortices
experience zero flux. Precisely this behavior is observed in the
2DEG about half filling [29].

C. Tunneling density of states

Suppression of the bulk electron tunneling density of states
at half filling in a 2DEG is a direct result of the composite
fermion picture [50,51]. However, for the composite vortex
metal, a suppression might be expected simply because of
the finite superconducting amplitude. To probe the composite
vortex liquid more directly, one should consider instead
the tunneling between a superconducting probe and the
composite vortex metal, which we expect to be exponentially
suppressed. Within the dirty boson framework, there would be
unsuppressed tunneling at the SIT for a superconducting tip.

D. Thermopower and Nernst effect

Thermopower and the Nernst effect could be utilized to
further probe the possible occurrence of self-duality in the
thin films. Thermopower measurements have been performed
for 2D hole systems at half filling in the lowest Landau level
[52,53]. A recent theoretical work has studied the possible
constraints that particle-hole symmetry in the lowest Landau
level imposes on both the thermopower and Nernst signal [54].
Given the theoretical analogy that trades self-duality in the
thin films for particle-hole symmetry in the 2D electron (or
hole) gas, we anticipate self-duality to impose complementary
constraints on the thin film systems. We leave a careful
examination of these issues for future work. Such studies
may furthermore provide important lessons on the possible
breakdown of self-duality in the thin films.

V. DISCUSSION

We have suggested that the 2D metallic phase observed in
the vicinity of the magnetic field-tuned SIT is a composite
vortex liquid, analogous to the composite Fermi liquid found
in 2DEGs near half filling. This hypothesis entails the
statistical transmutation of interacting bosons in a magnetic
field into a Fermi sea of composite vortices and provides a
natural explanation for the emergent metal with a variety of
experimental consequences.

There have been several previous studies formulating a the-
ory of the metallic phase [55–59]. The work by Galitski et al.
[59] whose theoretical formulation most closely resembles
ours, identified the metal with a gas of neutral spinons coupled
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FIG. 2. Meeting point of the superconducting, Bose insulating,
and metallic phases, along with the electron insulator (compare with
Fig. 1, where only the the superconducting, Bose insulating, and
metallic phases meet at a point). Also displayed is a transition between
a Bose insulator and electron insulator. If instead, there happened to
be a crossover, the degree of multicriticality at which the various
phases meet would be the same in both figures.

to vortices by an emergent U (1) statistical gauge field [60]. By
contrast, our approach and motivation rely on the observation
of self-duality at the field-tuned SIT, the analogy between the
SIT and quantum Hall plateau transitions, and the substantial
superconducting fluctuations observed within the metal [23].

The superconductor-metal transition has been well studied
in thin MoGe and InO films. It would be of great interest to
better understand the nature of the weak insulator in systems
where a metal is observed, similar to that in Ta films. In
disordered films where the metallic phase has shrunk to a
point, the proximate insulator is a Bose insulator of localized
Cooper pairs with nonzero superconducting correlations. Upon
increasing the magnetic field, the Cooper pairs are broken
and an electron insulator results. By continuity, we expect the
Bose insulator to continue to border the emergent metal for as
long as the Bose insulator persists as the disorder is decreased
as depicted in Fig. 1. A second possible phase diagram is
presented in Fig. 2 of Appendix B. Here, the superconducting,
Bose insulating, electron insulating, and metallic phases meet
at a multicritical point that is of higher degree than occurs in
Fig. 1. Distinguishing the two possibilities merits further study.

Interestingly, there are indications [13] that the Bose
insulator observed in InO films is a Hall insulator with
vanishing conductivity tensor, diverging linear resistivity, but
finite Hall resistivity as T → 0. Hall insulators were, not
surprisingly, first predicted [24,45] and observed [61–63] in
the 2DEG. Indications of a similar state in the thin film further
unites the two systems and gives us further hope for a relation
between the metals.

Several open theoretical questions remain, in light of the
observations made here. Building upon previous work [64,65],

further investigation of self-duality in numerical studies of
Josephson junction arrays in the presence of strong disorder
and magnetic fields is desired. Second, the emergence of a
metallic phase as the disorder strength is reduced would be
a clear validation of the ideas presented here. Furthermore,
a deeper understanding of the role of disorder in composite
Fermi liquids, taking into account both the random flux
disorder due to the Chern-Simons field, as well as non-Fermi
liquid effects is needed [66]. Lastly, the application, if any, of
recent developments considering particle-hole symmetry—the
analog of particle-vortex duality—in half-filled Landau levels
[67–70], in the context of the emergent metal near the SIT, is
an intriguing possibility.
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APPENDIX A: RESPONSE DERIVATION

To relate the composite vortex conductivity to the electrical
conductivity, we formally integrate out the composite vortices
of Lcv , while working in the gauge Ãt = At = 0:

Lcv = 1

2
Ãj�

cv
jkÃk + e∗

iω

2π
εjkÃjAk − e2

∗
iω

2π
εjkAjAk,

(A1)

where the composite vortex response �cv and conductivity σ cv

tensors:

�cv = iω

2π

(
σ cv

xx σ cv
xy

−σ cv
xy σ cv

xx

)
. (A2)

Finally, we integrate out Ã to obtain the effective electronic
response Lagrangian,

Lcv = iω

2

e2
∗

2π
Aj

( − εjk + (σ cv)−1
jk

)
Ak, (A3)

from which we may read off the electrical conductivity and
resistivity tensors:

σxx = e2
∗
h

σ cv
xx(

σ cv
xx

)2 + (
σ cv

xy

)2 ,

σxy = −e2
∗
h

(
1 + σ cv

xy(
σ cv

xx

)2 + (
σ cv

xy

)2

)
,

(A4)

ρxx = h

e2∗

σ cv
xx(

σ cv
xx

)2 + (
1 + σ cv

xy

)2 ,

ρxy = h

e2∗

(
1 − 1 + σ cv

xy(
σ cv

xx

)2 + (
1 + σ cv

xy

)2

)
.
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APPENDIX B: ALTERNATIVE PHASE DIAGRAM

In Fig. 1, the superconducting, Bose insulating, and metallic
phases meet at a point, while in Fig. 2 the same three phases
along with the electron insulator meet at a point. Figure 2

displays a transition between the Bose insulator and electron
insulator. If instead, there happened to be a crossover, the
degree of multicriticality at which the various phases meet
would be the same in both figures.
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