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Kaleidoscope of quantum phases in a long-range interacting spin-1 chain
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Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study
of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1/rα , using a combination of
finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range
interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic
Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If
long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the
phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact
the entire phase diagram. Importantly, for α � 3, long-range interactions destroy the Haldane phase, break the
conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U (1) continuous
symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin
chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally
in the near future.
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The study of quantum phase transitions in low-dimensional
spin systems has been a major theme in condensed matter
physics for many years [1]. A well-known implication of
Mermin and Wagner’s famous results [2] on finite temperature
quantum systems is that, for a large class of one-dimensional
quantum spin systems, long-range order is forbidden even at
zero temperature. This absence of classical order promotes
quantum fluctuations to a central role, and they often determine
the qualitative properties of the quantum ground state. An
important example, first conjectured by Haldane [3,4], is
that a spin-1 antiferromagnetic Heisenberg chain possesses a
disordered phase with an energy gap to bulk excitations, later
identified as a symmetry protected topological phase [5,6].
Its spin-1/2 counterpart, despite possessing the same classical
limit, has a disordered ground state with gapless excitations,
and is described by a conformal field theory (CFT) [7].

Experimentally, such quantum phase transitions have been
explored in quasi-1D materials, and more recently using
artificial materials designed through the careful control of
atomic, molecular, and optical (AMO) systems [8–11]. These
AMO systems are usually well isolated from the environment,
offer considerable tunability of system parameters, and make
possible both measurement and control at the individual
lattice-site level. A distinctive feature of AMO systems is
that interactions between particles are often long ranged,
decaying as a power law with distance (1/rα). The exponent α

varies widely amongst different AMO systems, ranging from
α = 6 for van de Waals interactions in Rydberg atoms, to
α = 3 for polar molecules and magnetic atoms, to α = 0 for
atoms coupled to cavities [11–19]. The effect of long-range
interactions can be tuned by either changing the dimensionality
of the system, e.g., for neutral atoms or molecules in optical
lattices, or by directly (and often continuously) altering the
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value of α, e.g., in trapped ions or cold atoms coupled to
photonic crystals [14]. The availability of tunable long-range
interactions creates an entirely new degree of freedom—absent
in typical condensed-matter systems—for inducing quantum
phase transitions, and can potentially lead to novel quantum
phases [20–23].

While long-range interacting classical models have been
studied in considerable detail for some time [24–28], there is
a relative lack of in-depth studies of quantum phase transi-
tions in long-range interacting systems, despite the emerging
experimental prospects for studying both their equilibrium
and nonequilibrium properties [15–18,29–35]. One reason
is that many analytically solvable lattice models become
intractable when interactions are no longer short ranged, a
well-known example being the spin-1/2 XXZ model. Thus
exact analytical studies are either restricted to noninteracting
bosonic and fermionic systems with long-range hopping
and pairing [33,35–37], or to certain contrived long-range
interacting spin models which are difficult to realize in real
systems [38–41]. In addition, to properly incorporate long-
range interactions in low-energy effective theories, existing
field theoretic treatments need to be modified and usually
become more complicated [42,43]. While spin-wave theories
can be useful in treating long-range interactions [44,45], they
are unable to distinguish major differences in quantum phases
between integer and half-integer spin chains. Exact numerical
studies for long-range interacting spin models are restricted to
small system sizes and usually inconclusive [46–49], since the
correlation length is generally divergent [32,50]. Approximate
numerical techniques such as the density matrix renormaliza-
tion group (DMRG) method have been adapted to treat long-
range interactions [51], but determining complete diagrams
with large-system-size calculations remains challenging, and
those that exist are primarily for spin-1/2 chains [20,29,52,53].

In this paper, we carry out a comprehensive study of
a spin-1 chain with tunable XXZ interactions that decay
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monotonically as 1/rα , for all α > 0. Our study is largely
motivated by imminent trapped-ion-based experiments that
can simulate this model with widely tunable index α [54–56].
In the absence of long-range interactions, the choice of spin-1
over spin-1/2 allows us to have four distinct quantum phases
by varying the anisotropy of the interactions: a ferromagnetic
(FM) phase and an antiferromagnetic (AFM) Ising phase
that are both gapped and long-range ordered, a disordered
gapless phase (the XY phase), and a gapped and topologically
ordered phase (the Haldane phase). By using a combination
of DMRG calculations, spin wave analysis, and field theory,
we obtain the phase diagram for arbitrary anisotropy and
all α > 0, with both ferromagnetic and antiferromagnetic
interactions. Our key observation is that when interactions
in all spatial directions are antiferromagnetic, long-range
interactions are frustrated, leading to primarily quantitative
changes to the phase boundaries compared to the short-range
interacting chain. Interestingly, we find that the topological
Haldane phase is robust under long-range interactions with
any α > 0 [48,49,57]. However, when the interactions in
the x-y plane become ferromagnetic, we find a number
of significant modifications to the phase diagram: (1) The
Haldane phase is destroyed at a finite α due to a closing of
the bulk excitation gap; (2) the gapless XY phase, described
by a CFT with central charge c = 1, disappears when α � 3
due to a breakdown of conformal symmetry [33,35]; (3) the
disappearance of the XY phase heralds the emergence of
a new phase at α � 3 (continuous-symmetry breaking, or
CSB) in which the spins order in the xy plane, spontaneously
breaking a U (1) symmetry and possessing gapless excitations
(Nambu-Goldstone modes); (4) Novel tricritical points, with
no direct analog in short-range interacting 1D models, appear
at the intersection of the Haldane, CSB, and XY/AFM phases.

The paper is organized as follows. In Sec. I, we introduce
the model Hamiltonian and present complete phase diagrams
for the ferromagnetic and antiferromagnetic cases. In Sec. II,
we study the boundary of the FM phase, where a spin-wave
approximation is found to be asymptotically exact in the large-
system limit. In Sec. III, we determine both the XY-to-Haldane
and Haldane-to-AFM transition lines accurately using DMRG
calculations and use field theory arguments to explain the effect
of long-range interactions on the boundary of the Haldane
phase. In Sec. IV, we introduce the CSB phase and explain its
emergence using spin-wave theory. The boundary between the
CSB and XY phases is determined by a numerical calculation
of central charge. In Sec. V, we show that all five phases
possess distinct signatures that could be observed in near-
future trapped ion quantum simulations with chains of 16 spins.
Finally, we conclude the paper in Sec. VI and comment on a
number of open questions.

I. MODEL HAMILTONIAN AND PHASE DIAGRAMS

We consider the following spin-1 Hamiltonian with long-
range XXZ interactions in a 1D open-boundary chain:

H =
∑
i>j

1

(i − j )α
[
Jxy

(
Sx

i Sx
j + S

y

i S
y

j

) + JzS
z
i S

z
j

]
. (1)

Here Jz ∈ (−∞,∞) and α ∈ (0,∞) are allowed to vary
continuously, and we consider both the Jxy = 1 (antifer-
romagnetic) and Jxy = −1 (ferromagnetic) cases. We note
that, for 0 < α < 1, Eq. (1) does not have a well-defined
thermodynamic limit when Jxy and/or Jz is ferromagnetic,
since the ground-state energy density diverges. To make the
ground-state energy extensive, we may impose an energy
renormalization factor Nα−1, first introduced by Kac [58],
when taking the thermodynamic or continuum limit (here N

is the chain length). For finite-size numerical calculations,
we do not need to implement the Kac renormalization for
0 < α < 1 since ground-state properties are unaffected by
energy renormalization [59].

Figure 1 shows our full phase diagram for both Jxy = 1
and Jxy = −1, with actual phase boundaries plotted using
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FIG. 1. Proposed phase diagram for (a) Jxy = 1 and (b) Jxy =
−1. Five different phases are identified: a ferromagnetic (FM) Ising
phase, an antiferromagnetic (AFM) Ising phase, a disordered XY
phase, a topological Haldane phase, and a continuous symmetry
breaking (CSB) phase. At α = ∞, the transition points are denoted
by Jz = λ0,1,2 in (a). The FM-to-XY, FM-to-CSB, and CSB-to-AFM
transitions are first order (green line); the XY-to-Haldane transition
is BKT type with central charge c = 1 (purple line); the Haldane-
to-AFM transition is second order with c = 0.5 (yellow line); the
CSB-to-XY transition (white dotted line) has c = 1, but is a BKT-like
transition corresponding to a universality class different from the
XY-to-Haldane transition [83]; the CSB-to-Haldane transition (black
dotted lines) appears to be an exotic continuous phase transition not
described by a 1+1D CFT. The location of solid transition lines are
expected to be accurate in the thermodynamic limit, while the location
of dotted transition lines may have a small uncertainty.
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the results of calculations discussed in the following sections.
The nearest-neighbor interaction limit is achieved at α → ∞
(1/α = 0). In this limit, the Hamiltonian in Eq. (1) with
Jxy = −1 is equivalent to the one with Jxy = 1, as can
be seen by performing a local unitary transformation that
flips every other spin in the x-y plane while preserving the
spin commutation relations: S

x,y

i → (−1)iSx,y

i . The different
ground-state phases of this short-range Hamiltonian have been
well studied [60–62]. Notably, Haldane first conjectured [3,4]
that for λ1 < Jz < λ2, a disordered gapped phase (the Haldane
phase) will emerge. At Jz = λ2, the ground state undergoes a
second-order phase transition from the Haldane phase to an
AFM phase, which belongs to the same universality class as
the 2D Ising model. The value λ2 ≈ 1.186 has been found
by various numerical techniques including Monte-Carlo [63],
exact diagonalization [64], and DMRG [65–67]. At Jz = λ1, a
Berezinskii-Kosterlitz-Thouless (BKT) transition intervenes
between the Haldane phase and a gapless disordered XY
phase at Jz < λ1. The value of λ1 is theoretically predicted
to be exactly zero after mapping Eq. (1) (for α = ∞) to a
field theory model using bosonization [68]. This prediction
is supported by conformal field theory arguments [69] and
a level spectroscopy method based on a renormalization
group analysis and the SU(2)/Z2 symmetry of the BKT
transition [61,70–72]. Numerically, λ1 ≈ 0 has been verified
via finite-size scaling [64,73,74] and DMRG [65]. Finally,
at Jz = λ0 = −1, a first-order phase transition from the XY
phase to a ferromagnetic Ising phase takes place [61,66,75].

We now introduce our results for the long-range inter-
acting case (1/α > 0). For Jxy = 1 and Jz > 0, long-range
interactions are frustrated and the Haldane-to-AFM phase
transition point λ2(α) increases moderately as α decreases,
without changing the universality class of the transition. For
sufficiently small Jz < 0, the ferromagnetic long-range inter-
actions along the z direction eventually favor a ferromag-
netic ground state, inducing a first-order transition at λ0(α).
The magnitude of the critical coupling, |λ0(α)|, decreases
monotonically from 1 (at α = ∞) to 0 (for all α � 1) in
the thermodynamic limit. The XY-to-Haldane phase boundary
λ1(α) becomes negative for finite α, eventually terminating in
a tricritical point at the intersection of FM, Haldane, and XY
phases. The entire XY phase (including the XY-to-Haldane
phase boundary) has conformal symmetry with c = 1, and the
XY-to-Haldane phase boundary remains a BKT transition until
it terminates at the tricritical point. We note that the phase
diagram [Fig. 1(a)] is similar to Fig. 1 in Ref. [76], which
studies the XXZ spin-1 chain with next-nearest-neighbor
interactions of tunable strength. This is partially because the
frustrated long-range interactions in the x-y plane effectively
cancel each other at different ranges, so their influences on
the phase boundary are somewhat similar to those from next-
nearest-neighbor interactions. However, we point out that the
full 1/rα long-range interactions, frustrated or not, will result
in power-law decaying correlation functions in the gapped
phases (see Ref. [57] for details); such correlations are absent
in models with next-nearest-neighbor interactions [76–79].

For Jxy = −1, where long-range interactions in the x-y
plane are not frustrated, the phase diagram [Fig. 1(b)] shows a
number of important qualitative differences from the nearest-
neighbor phase diagram as α is decreased. First, the XY-to-

Haldane phase boundary bends significantly toward positive
Jz, and we find the Haldane phase to terminate at α ≈ 3 for
Jz = 1. Second, we expect the XY phase to disappear for α � 3
due to the breakdown of conformal symmetry [33,35]. Third,
for α � 3 a new CSB phase emerges—this is not in violation
of the Mermin-Wagner theorem, as it no longer applies for
this range of interactions [2,52,80–83]. The CSB-to-AFM
phase transition is expected to be first-order, since at large
Jz and small α, quantum fluctuations play negligible roles
for both the Néel-ordered state and the ordered CSB state.
This behavior is similar to the transition between the AFM
phase and the large-D phase (where a large positive anisotropy
term D

∑
i(S

z
i )2 causes all spins to stay in the |Sz

i = 0〉 state)
reported in Refs. [65,66,75]. The Haldane phase has a c = 1
critical phase boundary with the XY phase, a c = 0.5 phase
boundary with the AFM phase [67], and a possibly exotic
phase boundary with the CSB phase, a boundary that is not
described by a 1+1D CFT.

II. FM PHASE AND ITS BOUNDARY

Because the ferromagnetic state with all spins polarized
along ±z (or an arbitrary superposition of these two states)
is an exact eigenstate of the Hamiltonian for any value of
α and Jz, we expect a first-order quantum phase transition
at the boundary of the FM phase. The FM state has an
energy EFM = Jz

∑
i>j (i − j )−α , and the phase transition out

of this state, defining the critical line Jz = λ0(α), occurs
when some other eigenstate with no ferromagnetic order
appears with a lower energy. The dependence of λ0 on α can
be estimated using the following intuitive argument. For a
given Jz < 0, the energy density of the ferromagnetic state in
the thermodynamic limit is given by εFM = Jzζ (α) [ζ (α) ≡∑∞

r=1 r−α is the Riemann zeta function], which diverges as
α → 1. For Jxy = 1, the magnitude of the energy density
arising from the term

∑
i>j (Sx

i Sx
j + S

y

i S
y

j )/(i − j )α can be
at most η(α) ≡ ∑∞

r=1(−1)r−1/rα (the Dirichlet eta function),
with this value obtained for any state that is Néel-ordered along
some direction in the x-y plane. The competition between
the energy of these two classical states gives a critical point
Jz ≈ −η(α)/ζ (α), which smoothly varies from Jz = −1 at
α = ∞ to Jz = 0 at α = 1. For Jxy = −1, the situation is
quite different, because the polarized state along any direction
in the x-y plane has an energy density equal to −ζ (α), and
thus we naively expect the phase boundary to be at Jz = −1
for all α > 0.

More formally, the boundary can be calculated via a
spin-wave analysis. We treat the spin state that is polarized
along the +z direction as the vacuum state with no excitations
and apply the Holstein-Primakoff transformation (for spin 1) to
map spin excitations (spin-waves) into bosons: Sz

i = 1 − a
†
i ai ,

S+
i ≡ Sx

i + iS
y

i = √
2a

†
i (1 − a

†
i ai/2)1/2. In the weak excita-

tion limit, 〈a†
i ai〉 
 1, we can approximate S+

i ≈ √
2a

†
i , and

our Hamiltonian becomes

Hsw ≈
∑
i>j

−Jz(a
†
i ai + a

†
j aj ) + Jxy(a†

i aj + a
†
j ai)

(i − j )α
, (2)
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where we have ignored the interaction terms a
†
i aia

†
j aj since

〈a†
i ai〉,〈a†

j aj 〉 
 1 is assumed. Assuming for the moment pe-
riodic boundary conditions, this quadratic Hamiltonian can be
diagonalized by Fourier transformation, Hsw = 2

∑
k ωkc

†
kck ,

with the following dispersion relation (q ≡ 2πk/N ) for an
infinite system

ω(q) = −Jz

∞∑
r=1

r−α + Jxy

∞∑
r=1

cos(qr)/rα. (3)

If ωmin ≡ min ω(q) > 0, then the ground state of Hsw is the
vacuum state of all modes k, and 〈a†

i ai〉 = 0 for all i, consistent
with the approximation 〈a†

i ai〉 
 1. If ωmin < 0, then the
ground state has an extensive number of spin excitations and
the spin-wave approximation should break down, and we do
not expect the polarized state in the z direction to be the
quantum ground state. The ωmin = 0 condition thus sets the
phase boundary for Hsw. For Jxy = 1, ωmin = ω(q = π ) =
−Jzζ (α) − η(α), leading to a critical line of Jz = −η(α)/ζ (α).
For Jxy = −1, ωmin = ω(q = 0) = (1 − Jz)ζ (α), leading to a
critical line at Jz = −1, independent of α. These results exactly
match with the previous intuitive arguments.

We now compare the above spin-wave theory prediction
with infinite-size DMRG calculations [84,85] for Jxy = 1.
As seen in Fig. 2, the numerical results agree well with the
spin-wave theory at large α, and the spin-wave prediction of
λ0(α) is asymptotically exact as α → ∞. However, a small
but increasing difference in λ0(α) is seen as α decreases. For
α � 1.5, our infinite-size DMRG calculations converge well
(see appendix A for our numerical treatment of long-range
interactions), and we conjecture that it is the spin-wave
approximation that starts to break down when α decreases.
This is possibly due to stronger effects of interactions between
spin-wave excitations as α becomes smaller, so that the spin-
wave approximation (which ignores interactions) becomes less

1.5 2 2.5 3 3.5
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

FIG. 2. Comparison of the (first-order) transition point λ0(α)
out of the FM phase calculated using infinite-size DMRG and
spin-wave theory for Jxy = 1. The spin-wave theory predicts λ0(α) =
−η(α)/λ(α). The infinite-size DMRG calculations use a bond
dimension χ = 100, and increasing χ to 200 does not yield results
distinguishable within the resolution of the plot. The transition point is
numerically determined by finding the value of Jz at which the ground
state energy density obtained from infinite-size DMRG calculations
is equal to that of the FM state.

and less accurate. While our infinite-size DMRG calculations
do not converge well for α � 1.5, the spin-wave prediction
should be asymptotically exact as α → 1, since the FM state’s
energy is super extensive for α � 1 and λ0(α � 1) = 0. As a
result, in Fig. 1(a) we have adopted the spin-wave prediction
for the FM phase’s boundary, but made the boundary line
dotted for 1 < α < 2 to represent a small uncertainty in the
transition point [for α > 2 the uncertainty of the transition
point is well below the resolution of Fig. 1(a)]. For Jxy =
−1, our infinite-size DMRG calculations provide exactly the
same transition point λ0(α) = −1 as the spin-wave theory,
independent of α [Fig. 1(b)].

III. HALDANE PHASE AND ITS BOUNDARY

The existence of the Haldane phase in a spin-1 XXZ chain
makes the phase diagram much richer than that of a spin-1/2
XXZ chain. We focus first on the XY-to-Haldane phase
boundary λ1(α). The transition out of the Haldane phase is
signaled by a vanishing of the string-order correlation function
Sξ

ij ≡ 〈Sξ

i S
ξ

j

∏
i<k<j (−1)S

ξ

k 〉 (ξ = x,y,z) when |i − j | → ∞.

However, because the phase transition is of the BKT type, Sξ

ij

changes rather smoothly with Jz and α for a finite |i − j |,
and it is very challenging to find the exact transition point
numerically. Finite-size scaling using exact diagonalization
on small chains must be performed very carefully due to
logarithmic corrections in system size [61,86–88], and infinite-
size DMRG yields a phase transition point that depends
strongly on the bond dimension χ (the dimension of the matrix
product states used [89]), since the ground state bipartite
entanglement entropy S grows logarithmically with system
size N according to CFT: S = c log N + const [90]. As seen in
Fig. 3, for χ = 100 and at α = ∞, the string-order correlation
function Sz

ij appears to start vanishing at Jz ≈ 0.3, instead
of at Jz = 0 as predicted by field theory [68]. However, this
is consistent with previous infinite-size DMRG calculation
results [65,66]. To extract a more accurate phase boundary,
we perform a scaling of χ ranging from 50 to 200 near
the XY-to-Haldane phase boundary, following a procedure
similar to that in Ref. [65]. We then extract the XY-to-Haldane
phase boundary (white line in Fig. 3) by determining the
location where Sz

ij (χ → ∞) vanishes, which now correctly
yields Jz ≈ 0 at α = ∞. However, we expect a few percent
uncertainty in the transition point due the use of Sz

ij at a
finite separation |i − j |, and due to the error in extrapolating
Sz

ij (χ → ∞).
To explain why long-range interactions bend the XY-

to-Haldane phase boundary in opposite directions for fer-
romagnetic and antiferromagnetic Jxy , we use an effective
field theory first proposed by Haldane [3] and developed by
Affleck [91]. The proper inclusion of long-range interactions
within this field theoretic approach was discussed in detail
in Ref. [57]. Here, we give a brief review of this field-theory
treatment. Consider first the case of Jxy = Jz = 1. In this case,
each spin-1 is mapped to a staggered field n(2i + 1

2 ) = (S2i −
S2i+1)/2 and a uniform field l(2i + 1

2 ) = (S2i + S2i+1)/2.
Importantly, we observe that the classical ground state of
H is always Néel-ordered for any α > 0, with n2(x) = 1
and l(x) = 0 for any position x. The intuition behind this
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FIG. 3. Infinite-size DMRG calculation of Sz
ij ≡

〈Sz
i S

z
j

∏
i<k<j (−1)S

z
k 〉 for a separation of |i − j | = 500. Sz

ij = 1 in
the FM phase and Sz

ij ≈ 1 deep in the AFM phase for any i and j .
As |i − j | → ∞, Sz

ij is finite for the Haldane phase and zero for
the XY phase, thus we can use it to locate the XY-to-Haldane phase
boundary. (a) Jxy = 1. The FM phase boundary (green line) is given
by the spin-wave prediction Jz = −η(α)/ζ (α). (b) Jxy = −1. The
FM phase boundary (green line) is exactly at Jz = −1. For both (a)
and (b), we vary the bound dimension χ to accurately determine the
XY-to-Haldane phase boundary, determining the value of Jz at which
Sz

ij vanishes (for a large but finite |i − j |) and then extrapolating to
the χ → ∞ limit (white squares fitted by the white line). The black
line is the Haldane-to-AFM phase boundary, which is determined
from 〈Sz

i S
z
j 〉 (see Fig. 4).

decomposition is that, in the quantum ground state, n(x) should
have only long-wave-length variations with n2(x) ≈ 1, while
l(x) ≈ 0 should represent long wave-length perturbations to
the direction of n(x) due to quantum fluctuations. Therefore,
when working with the Fourier-transformed fields n(q) and
l(q), we can expand the Hamiltonian in powers of the
momentum q and keep only the leading order terms.

The effective Hamiltonian in the continuum limit and
momentum space reads (the lattice spacing is set to 1 for
simplicity)

Heff ≈
∫

dq[ω(q)|n(q)|2 + �(q)|l(q)|2], (4)

where the cross terms between n and l are ignored because
they involve n(q) near q = π . The dispersion relations �(q)

and ω(q) can be expanded at small q as [92]:

ω(q) ≡ 2
∞∑

r=1

( − 1)r
cos(qr)

rα

≈ −2η(α) + η(α − 2)q2 + O(q4),

�(q) ≡ 2
∞∑

r=1

cos(qr)

rα
≈ 2ζ (α) + ζ (α − 2)q2 + O(q4)

+ 2�(1 − α) cos[
π

2
(α − 1)]|q|α−1. (5)

For the n field, we need to keep the q2 term since the zeroth-
order term gives a constant due to the approximation n2(x) ≈
1. The zeroth-order term in q for the l field is the dominant
source of quantum fluctuations, and we can ignore higher-order
terms in determining whether Heff is gapped or not (they
do contribute to the long-distance behavior of correlation
functions though [57]). Thus the Hamiltonian is approximately
given by Heff ≈ ∫

dq[η(α − 2)q2|n(q)|2 + 2ζ (α)|l(q)|2]. In a
coherent-spin-state path-integral representation, the action is
quadratic in the field l and it can be integrated out [1,93]. The
remaining path integral over the staggered field n defines a
1+1D O(3) nonlinear sigma model, with Lagrangian density
(nonlinear constraint n2(x) = 1 implied)

L(x) ≈ 1
g

(|∂n/∂t |2 − v2|∂n/∂x|2). (6)

Here the effective coupling g and spin-wave velocity v

depend both on α and the lattice spacing (their exact values
are not important to us). The coupling strength g flows
towards infinity under renormalization group for the above
Lagrangian [1,93], suggesting a disordered ground state with
an excitation gap. This is corroborated by the SU(n) variant of
the Hamiltonian in the n → ∞ limit, which can be analytically
solved and contains a mass gap [91,94]. Now we adopt a
phenomenological treatment [95,96] of the above Lagrangian
(Eq. 6): The nonlinear constraint n2 = 1 can be approximately
removed by introducing a mass gap �α and a renormalized
spin-wave velocity vα . We thereby arrive at a free field theory
with the Lagrangian density (written in momentum space)

L(q) ∝ |∂n/∂t |2 − (
�2

α + v2
αq2

)|n(q)|2. (7)

Since �α→∞ ≈ 0.41 [97,98] and �α→0 = 1 (where the Hamil-
tonian becomes integrable), we infer that �α should increase
as α decreases. This speculation is confirmed by accurate
finite-size DMRG calculations of �α in Ref. [57].

Next, we consider the case of Jxy = 1 but Jz < 1. We can
then write

H =
∑
i>j

1

(i − j )α
Si · Sj − (1 − Jz)

∑
i>j

1

(i − j )α
Sz

i S
z
j . (8)

Following Refs. [76] and [91], the anisotropy term above
can be treated as a negative mass term (1 − Jz)fαn2

z(q) to
the Lagrangian density L(q) in Eq. (7). The precise value
of the renormalization factor fα is not important to us,
but we expect it to continuously decrease as α becomes
smaller, since the staggered field dominates in the Haldane
phase and long-range interactions [

∑
i>j

1
(i−j )α Sz

i S
z
j in Eq. (8)]
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are increasingly frustrated as α decreases. The mass gap
for the field nz is now smaller than for nx and ny , and
reads �α(Jz) = √

�2
α − (1 − Jz)fα . Combined with the above

discussion that �α should increase with decreasing α, we
require progressively more negative Jz to close the gap and
transition into the XY phase as α decreases, thus explaining
the shape of the XY-to-Haldane phase boundary in Fig. 3(a).

For Jxy = −1 and Jz < 1, the classical ground state is no
longer Néel ordered and the field theory employed above is
not valid. However, by rotating every other spin by π about
the z axis, we generate a transformed Hamiltonian

H ′ =
∑
i>j

(−1)i−j−1

(i − j )α
Si · Sj +

∑
i>j

Jz − (−1)i−j−1

(i − j )α
Sz

i S
z
j .

(9)
Now the classical ground state is Néel ordered (along any
direction for Jz = 1). The first term above is isotropic, and
gets mapped to

∑
i>j

(−1)i−j−1

(i − j )α
Si · Sj ≈

∫
dq[�(q)|n(q)|2 + ω(q)|l(q)|2],

(10)
where the roles of ω(q) and �(q) are swapped as compared
to Eq. (4). For α < 3, �(q) in Eq. (5) is now dominated by
the nonanalytic term |q|α−1 at small q, and we can no longer
obtain the simple free Lagrangian in Eq. (7). In Ref. [57],
it is shown that the |q|α−1 term in the dispersion of n(q)
in Eq. (10) leads to a renormalization group flow towards
a gapless ordered phase spontaneously breaking an SU (2)
symmetry for α < αc � 3. For our complete Hamiltonian H ′
in Eq. (9), the anisotropy leads instead to a U (1) continuous
symmetry breaking phase for α < α′

c (see the next section for
further discussions, where α′

c is estimated to be 2.9 at Jz = 1).
Our infinite-size DMRG calculations in Fig. 3(b) suggest that
the Haldane phase terminates at a critical α around 3.1 for
Jz = 1, and the XY phase is expected to exist in between the
CSB phase and the Haldane phase at Jz = 1 for α′

c < α < αc.
For α > 3, �(q) is dominated by q2 and we can once

again reduce H ′ to the free field Lagrangian Eq. (7), but
with a different mass gap �′

α and spin-wave velocity v′
α .

The anisotropy term in Eq. (9) changes the gap to �′
α(Jz) =√

�′2
α − (gα − Jzhα). Here gα is a renormalization factor

due to nonfrustrating long-range interactions (−1)i−j−1

(i−j )α Sz
i S

z
j in

Eq. (9), and should thus increase as α decreases, while hα is a
renormalization factor due to frustrating long-range interaction

1
(i−j )α Sz

i S
z
j in Eq. (9), and should decrease as α decreases.

Together with the expectation that the gap �′
α should decrease

with α [47,57] due to the appearance of gapless continuous
symmetry breaking phase at α � 3, we conclude that the gap
closes at a point with Jz strictly larger than zero in the presence
of long-range interactions, again consistent with our numerical
results.

We point out that a different field theoretic approach based
on non-Abelian bosonization [57,68] can also be employed
to predict the qualitative changes to the XY-to-Haldane phase
boundary. This technique has been used to predict the XY-
to-Haldane phase boundary of a spin-1 XXZ chain with
next-nearest-neighbor interactions [76], which is a reasonable
approximation to our model when α is large enough that

0.5 0.8 1.1 1.4 1.7 2 2.3
Jz

0

0.2

0.4

0.6

0.8

1

S
z 1
S

z 50
1

α = ∞, Jxy = ±1
α = 2.5, Jxy = 1
α = 2.5, Jxy = −1
α = 1, Jxy = 1

FIG. 4. 〈Sz
1S

z
501〉 as a function of Jz calculated using infinite-size

DMRG for a few different sets of α and Jxy . The Haldane-to-AFM
phase transition is clearly observed and we locate the transition point
by finding the critical Jz (restricted to Jz > 0) above which 〈Sz

1S
z
501〉 >

0.1. The curves shown look nearly identical when we increase the
bond dimension used from 100 to 200.

next-nearest-neighbor interactions dominate over the next-
longer-range interactions.

We end this section with a brief discussion of the boundary
between the Haldane and AFM phases. Both the Haldane
and AFM phases are gapped and have finite entanglement
entropy in the infinite-system-size limit [99]. Thus we see
well-converged results for bond dimensions of χ � 100 in
our infinite-size DMRG calculations. We extract the Haldane-
to-AFM phase boundaries using the spin-spin correlation
functions Cz

ij ≡ 〈Sz
i S

z
j 〉 (see Fig. 4), and plot them as black

lines in Figs. 3(a) and 3(b). Good agreement with existing liter-
ature [63–66] is found for the Haldane-to-AFM transition point
at α = ∞ (1.15 < Jz < 1.2). The bending of the Haldane-
to-AFM phase boundary toward larger Jz for both Jxy = 1
and Jxy = −1 in the presence of long-range interactions
can be understood via simple energetic considerations. In
the AFM phase, the spins are (nearly) antialigned in the z

direction; long-range interactions are strongly frustrated, and
the energy E = ∑

i>j 〈Sz
i S

z
j 〉/(i − j )α at α → 0 is only half

of the α = ∞ case for a perfectly Néel ordered state. In the
Haldane phase, the AFM order of spin correlations 〈Si · Sj 〉
decays exponentially (followed by a small power-law tail [57]),
and thus the ground state energy E = ∑

i>j 〈Si · Sj 〉/(i − j )α

is much less frustrated by the long-range interactions. As a
result, we expect the disordered ground state in the Haldane
phase to have progressively lower energy than an AFM ordered
state as α decreases at a given Jz, and hence a larger (but always
finite even for α → 0) Jz is needed to make the transition from
the Haldane phase into the AFM phase.

IV. CSB PHASE AND ITS BOUNDARY

The celebrated Mermin-Wagner theorem rigorously rules
out continuous symmetry breaking in 1D and 2D quantum
and classical spin systems at finite temperature, as long as the
interactions satisfy the convergence condition

∑
i>j Jij r

2
ij <

∞ in the thermodynamic limit (rij and Jij are respectively the
distance and coupling strength between sites i and j ) [2].
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The long-distance properties of 1D spin systems at zero
temperature can often be related to those of a 2D classical
model at finite temperature; however, in the process of this
mapping, the long-range interactions are only inherited by
one of the two spatial directions in the classical model, and
the Mermin-Wagner convergence condition will be satisfied
for interactions decaying faster than 1/r3. Thus we expect
no continuous symmetry breaking in the ground state of
our Hamiltonian Eq. (1) for α > 3. Indeed, we have found
exclusively disordered or discrete (Z2) symmetry breaking
phases for α > 3 in our phase diagrams (Fig. 1). Continuous
symmetry breaking can (and does) appear when α < 3. To gain
a better understanding of the robustness of symmetry breaking
states to quantum fluctuations, below we carry out a spin-wave
analysis [100]. Similar analysis can be also found in Ref. [44]
and [45] for Heisenberg chains with long-range interactions.

We start by considering the Jxy = −1 case, and take the
state with all spins polarized along the +x direction as the
vacuum state. With this choice of vacuum, and assuming that
the density of spin waves is small (〈a†

i ai〉 
 1 in the following
expressions), the Holstein-Primakoff mapping is now Sx

i =
1 − a

†
i ai , S

y

i ≈ (a†
i + ai)/

√
2, Sz

i ≈ (a†
i − ai)/i

√
2. Under

this mapping, and dropping terms that are quartic in bosonic
operators (again based on the assumption that 〈a†

i ai〉 
 1), H

becomes

Hswx =
N/2∑

k=−N/2

(a†
k a−k)

(
ωk μk

μk ωk

)(
ak

a
†
−k

)
; (11)

ωk =
N/2∑
r=1

1

rα
+ Jz − 1

2

N/2∑
r=1

1

rα
cos

(
2πk

N
r

)
, (12)

μk = −Jz + 1

2

N/2∑
r=1

1

rα
cos

(
2πk

N
r

)
, (13)

where ak = 1√
N

∑
j ei2πjk/Naj . Hswx can be diagonalized

with a Bogoliubov transformation, yielding noninteracting
Bogoliubov quasiparticles with a spectrum νk . Importantly,
when |ωk| > |μk|, νk > 0 and the vacuum is dynamically
stable. When |ωk| < |μk|, νk is imaginary and the system is
dynamically unstable indicating that we have made the wrong
choice of a classical ground state. Using the expressions for
ωk and μk in Eqs. (12) and (13), we find that |ωk| > |μk|
is satisfied for all k = 0 modes if and only if −1 � Jz <

ζ (α)/η(α). This is because when Jz < −1, the classical
ground state is ferromagnetic in z direction, and when Jz >

ζ (α)/η(α) the classical ground state is Néel ordered along the z

direction.
Because the Bogoliubov quasiparticles consist of both

particles and holes, the ground state of Hswx can have a finite
or divergent density of spin excitations, measured by

〈a†
i ai〉 = 1

N

∑
k =0

1

2

([
1 − μ2

k/ω
2
k

]−1/2 − 1
)

N→∞−−−→ = 1

4π

∫ π

−π

dq([1 − μ2(q)/ω2(q)]−1/2 − 1). (14)

Expanding the integrand [1 − μ2(q)/ω2(q)]−1/2 above
around q = 0 to the lowest order in 1/q, we find that

[1 − μ2(q)/ω2(q)]−1/2

≈
√

(1 + Jz)ζ (α)

2ζ (α − 2)q2 − 4�(1 − α) cos[π
2 (α − 1)]|q|α−1

,

(15)

where �(x) is the gamma function. For α > 3, since [1 −
μ2(q)/ω2(q)]−1/2 ∝ 1/|q| to leading order in 1/q, the spin-
wave density 〈a†

i ai〉 ∼ ln(N ) diverges as N → ∞ according to
Eq. (14). This means the long-range ferromagnetic order along
the x direction is destroyed by quantum fluctuations in the
thermodynamic limit; we expect that lim|i−j |→∞〈S+

i S−
j 〉 = 0,

and the system will be disordered (either Haldane or XY). For
α < 3, instead we have [1 − μ2(q)/ω2(q)]−1/2 ∝ 1/|q|(α−1)/2

to leading order in q, and the excitation density 〈a†
i ai〉

converges to a finite constant. As a self-consistency condition,
we also require 〈a†

i ai〉 < 1 to prevent the breakdown of the
spin-wave approximation [44,52]. We expect a CSB phase in
the parameter region of 〈a†

i ai〉 < 1, with nonvanishing spin
order in the x-y plane (i.e., lim|i−j |→∞〈S+

i S−
j 〉 = 0), and a

disordered phase when 〈a†
i ai〉 > 1. By numerically evaluating

Eq. (14), which gives 〈a†
i ai〉 in the infinite-size limit [101], we

have obtained a phase diagram for Jxy = −1 under spin-wave
approximation (Fig. 5).

For Jxy = 1 and |Jz| < 1, classically the spins prefer to an-
tialign in the x-y plane. Expanding around this classical state,
the spin-wave approximation leads to the same Hamiltonian

-0.5 0 0.5 1 1.5 2 2.5
Jz

0

0.1

0.2

0.3

0.4

0.5

0.6

1/
α

Disordered
AFM

CSB

0

0.2

0.4

0.6

0.8

1

FIG. 5. Spin-wave excitation density 〈a†
i ai〉 calculated using

Eq. (14) for an infinite-size chain. For Jz > ζ (α)/η(α) (region to
the right of the white line), imaginary frequencies appear in the
Bogoliubov spectrum, indicating a classical instability toward the
AFM phase. The region above the dotted and solid white lines has
〈a†

i ai〉 � 1, and is associated with the CSB phase. The remaining
region in the plot has 〈a†

i ai〉 > 1, and is expected to be disordered.
The disordered phase can be either the XY or the Haldane phase, but
the spin-wave theory cannot distinguish one from the other. For better
visibility, we have set 〈a†

i ai〉 = 1 for regions without CSB in the plot.
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in Eq. (11) except that we have

ωk =
N/2∑
r=1

(−1)r−1

rα
+ Jz − 1

2

N/2∑
r=1

(−1)r−1

rα
cos

(
2πk

N
r

)
,

(16)

μk = −Jz + 1

2

N/2∑
r=1

(−1)r−1

rα
cos

(
2πk

N
r

)
. (17)

As a result, now both μ(q) and ω(q) become fully analytic
(in the N → ∞ limit) due to the alternating sign (−1)r in
Eqs. (16) and (17). Expanding around q = 0, we have

[1 − μ2(q)/ω2(q)]−1/2 ≈
√

(1 + Jz)η(α)

2η(α − 2)q2
. (18)

As a result, 〈a†
i ai〉 will be divergent for any α > 0 due to the

1/|q| singularity in the integrand of Eq. (14). Thus continuous
symmetry breaking is forbidden for all α > 0 for Jxy = 1.

Now we confirm the spin-wave prediction of the
CSB phase’s boundary using DMRG calculations. Naively,
one should calculate the CSB phase’s order parameter
lim|i−j |→∞〈S+

i S−
j 〉. However, we find that in the XY phase

〈S+
i S−

j 〉 ∼ 1/|i − j |η decays with a rather slow power law
(e.g., η = 0.25 at Jz = 0 and α = ∞). At the maximum
separation that we can calculate accurately using either finite
or infinite-size DMRG, 〈S+

i S−
j 〉 only shows a crossover from

the XY phase to the CSB phase. To faithfully determine the
boundary of the CSB phase, we instead calculate the effective
central charge ceff as a function of α and Jz. We obtain ceff

by calculating the half-chain entanglement entropy S for two
chains with different total lengths N1 and N2 using a finite-size
DMRG algorithm [102]. Explicitly, for large N1 and N2, we
have

ceff ≈ 6
S(N1) − S(N2)

ln(N1) − ln(N2)
. (19)

In the XY phase (including its boundaries) and at the
boundary between the Haldane and AFM phases, we expect
1+1D conformal symmetry in the underlying field theory
model [67,69], with ceff being the actual central charge
representing the conformal anomaly [90]. In the Haldane, FM,
and AFM phases, no 1+1D conformal symmetry exists due
to the presence of a gap. Although the CSB phase is gapless,
we expect a breakdown of 1+1D conformal symmetry due to
the 1/rα long-range interactions that become relevant in the
RG sense for α � 3 [33,35,83]. We emphasize that in phases
with no conformal symmetry, ceff does not have the meaning
of the central charge and is used only as a diagnostic here to
numerically find phase boundaries.

We identify the XY-to-CSB phase boundary in Fig. 6 as the
place where ceff starts to become appreciably (5–10%) larger
than 1. Here we find good agreement with the XY-to-CSB
phase boundary predicted by spin-wave theory in Fig. (5)
for −1 < Jz � 1. Together with perturbative field theory
calculations presented in Ref. [83], we expect the phase
boundary in Fig. 6 to be accurate within a few percent. The
accuracy of the calculated ceff can be further improved by
finite-size scaling, which is however beyond the scope of the
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CSB
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Jz

0

0.5

1
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(b)
α = 3.5
α = 2.67
α = 2.21

FIG. 6. Calculation of the effective central charge ceff as a
function of Jz and α for Jxy = −1, extracted from finite-size
DMRG calculations with N1 = 100, N2 = 110, and a maximum bond
dimension of 500. (a) The black squares (fitted by the black line) show
where ceff starts to deviate from 1 when going from the XY to the
CSB phase. The purple line and white line are from Fig. 3, and
show the boundaries of the Haldane phase. (The calculation of ceff is
inaccurate in predicting the location of the XY-to-Haldane transition
due to strong finite-size effects [61,86–88].) For better contrast,
locations with c > 2 are shown with the color corresponding to c = 2.
(b) For our finite-size chains, the XY-to-Haldane BKT phase
transition is signaled by a continuous drop of ceff from 1 to 0 (α = 3.5).
The Haldane-to-AFM phase transition is identified by a peak with
value around 0.5 in ceff (α = 3.5 and α = 2.67). The CSB-to-Haldane
transition is expected to be continuous and not associated with a
central charge (α = 2.67). The CSB-to-AFM transition has a sharp
peak in ceff (α = 2.21), an indication of a first-order transition [67].

current study. The location of the CSB-XY-Haldane tricritical
point is estimated to be at α ≈ 2.75 and Jz ≈ 1.35.

From Ref. [83], it follows that the XY-to-CSB transition is a
BKT-like transition that belongs to a universality class different
from the XY-to-Haldane BKT transition. The Haldane-to-CSB
transition is somewhat exotic, because the Haldane phase
maps to a high-temperature disordered phase in a 2D classical
model [93], and in the absence of long-range interactions,
the CSB phase exists in 2D only at zero temperature [2]
and is unlikely to undergo a phase transition directly to a
high-temperature disordered phase. We also argue that the
CSB-to-Haldane transition is not described by a 1+1D CFT,
as supported by our numerical calculations shown in Fig. 6(b),
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where ceff changes smoothly (at least for finite chains) from a
value larger than 1 to 0 during the CSB-to-Haldane transition.

The CSB-to-AFM phase transition is very likely to be first
order, similar to the transition between the large-D and AFM
phases studied in Refs. [66] and [75], despite the existence
of quantum fluctuations in both phases. As shown in Fig. 6,
we observe a sharp peak in ceff at small αs when Jz is
varied, indicating a first order transition [67], with further
evidence that includes jumps in sublattice magnetization and
spin-spin correlation across the CSB-to-AFM transition (not
shown).

V. EXPERIMENTAL DETECTION

It was theoretically proposed in Refs. [54] and [55] that
the Hamiltonian we consider can be simulated (for widely
tunable Jz and 0 < α < 3) by using microwave field gradients
or optical dipole forces to induce spin-spin interactions in
a chain of trapped ions. The simulation of Eq. (1) with
Jxy = 1 and Jz = 0 was experimentally demonstrated for a
few ions with α tuned around 1 [56], where the ground
state was adiabatically prepared by slowly ramping down an
extra single-ion anisotropy term D(t)

∑
i(S

z
i )2, with D(t) > 0.

As the system size increases, the energy gap separating the
ground state from the rest of the spectrum will become
progressively smaller near the point where a phase transition
between the “large-D” phase and the XY/Haldane/FM/AFM
phase occurs in the thermodynamic limit [75]. To avoid a
slow ground state preparation process, we can adiabatically
ramp down a staggered magnetic field in the z direction,
h(t)

∑N
i=1(−1)iSz

i , with h(t) > 0 [54,55]. By preparing an
initial state that is the highest excited state of the staggered
field Hamiltonian, the same adiabatic ramping process will
lead us to the ground state of the Hamiltonian Eq. (1) with the
opposite sign of both Jxy and Jz. As discussed in Ref. [55],
the spin correlation functions 〈Sz

i S
z
j 〉 and the string-order

correlation Sz
ij ≡ 〈Sz

i S
z
j

∏
i<k<j (−1)S

z
k 〉 can be measured for

any i and j , since one can obtain the complete statistics of all
spins’ magnetization using spatially resolved measurements.
Together with arbitrary single-spin rotations performed with
microwave or optical Raman transitions, we can measure these
correlations along any direction. Near-future experiments will
most likely be limited to a few tens of spins. Although
this limitation makes it difficult to probe continuous phase
transitions, one can nevertheless observe important signatures
of all five phases discussed in the manuscript by tuning Jz/Jxy

and α deep into each phase. These signatures are summarized
below and shown in Fig. 7.

FM phase [Fig. 7(a)]: Within the FM phase, 〈Sz
i S

z
j 〉 = 1 and

〈Sx
i Sx

j 〉 = 0 for any i and j , thus confirming perfect alignment
of spins along the z direction.

AFM phase [Fig. 7(b)]: For sufficiently large Jz > 0, we
have 〈Sz

i S
z
j 〉 ≈ (−1)i−j , showing a near perfect antialignment

of spins along the z direction. In contrast, 〈Sx
i Sx

j 〉 vanishes
over a separation of just a few sites.

Haldane phase [Fig. 7(c)]: Sz
ij converges quickly to a

nonzero constant as |i − j | increases. In contrast, 〈Sz
i S

z
j 〉 and

〈Sx
i Sx

j 〉 vanish over a separation of just a few sites.
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(e) Haldane (near XY)
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FIG. 7. Signatures of all five phases for a N = 16 spin chain.
Except for (e), we tune Jxy , Jz, and α to set the ground state deep
into each phase. Each phase is distinguished from the other phases
by different behaviors in various spin-spin correlation functions.

XY phase [Fig. 7(d)]: We consider the XY phase for Jxy = 1
since the XY phase hardly exist for α < 3 and Jxy = −1. Sz

ij

and 〈Sz
i S

z
j 〉 both decay quickly to zero as |i − j | increases.

〈Sx
i Sx

j 〉 oscillates and its amplitude decays very slowly (the
slow decay reflects a relatively small value of the critical
exponent associated with the correlation function decay).

CSB phase [Fig. 7(f)]: As in the XY phase, both Sz
ij and

〈Sz
i S

z
j 〉 decay quickly to zero. However, 〈Sx

i Sx
j 〉 converges

quickly to approximately 0.5 at large |i − j |, showing a near
perfect ordering of spins in the x − y plane. Note that we
are not explicitly breaking U (1) symmetry here, so 〈Sx

i Sx
j 〉 =

〈Sy

i S
y

j 〉 = 1
2 〈S+

i S−
j 〉. This is done because it is desirable for

the experiment to operate within the
∑N

i=1 Sz
i = 0 subspace,

where magnetic field noise and unwanted phonon couplings
are suppressed [55,56].

Finally, we point out that, even in the experimental setup
already demonstrated in Ref. [56], for which Jz = 0, one
can still explore the two most interesting phases studied in
this paper: the Haldane phase and the CSB phase. Note that,
for Jxy = 1, Jz = 0 lies close to the Haldane-to-XY phase
boundary, and thus one observes signatures of both phases,
as in Fig. 7(e). Here the Haldane phase is identified via bulk
correlations, but one can alternatively confirm the existence the
Haldane phase by preparing edge excited states and measure
edge excitation amplitudes [57].
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VI. CONCLUSION AND OUTLOOK

By tuning the anisotropy Jz/|Jxy | and the power-law
exponent α, we have explored a rich variety of quantum
phases—and the transitions between them—in a long-range
interacting spin-1 XXZ chain. For Jxy = −1, long-range
interactions give rise to a rather unusual phase diagram due
to the emergence of a continuous symmetry breaking phase in
one spatial dimension. Because the CSB phase cannot happen
in a short-range interacting 1D spin-system, the nature of the
phase transitions into and out of it is rather interesting; an
in-depth study of the universality class of the CSB-to-XY
transition was carried out in a separate work [83], where a
similar transition in a long-range interacting spin-1/2 XXZ
chain is analyzed. On the other hand, the CSB-to-Haldane
transition, absent in spin-1/2 chains, requires further study to
be understood thoroughly. The CSB-Haldane-AFM tricritical
point is reminiscent of the tricritical point at the intersection of
the large-D, Haldane and AFM phases, which has been related
to the integrable Takhtajan-Babujian model described by an
SU (2)2 Wess-Zumino-Witten (WZW) model with central
charge c = 3/2 [67,103–106]. Additional numerical calcula-
tions are needed to accurately determine the central charge at
the CSB-Haldane-AFM tricritical point. Generalizations of our
model to include single-ion anisotropy and a magnetic field are
readily achievable in current trapped-ion experiments [55,56].
Understanding these exotic quantum phase transitions—
induced by long-range interactions that are highly tunable in
current experiments—requires the confrontation of numerous
theoretical and numerical challenges, and motivates experi-
mental quantum simulation of the model using AMO systems.
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APPENDIX: NUMERICAL TREATMENT OF
LONG-RANGE INTERACTIONS

In our infinite-size and finite-size DMRG code [85],
the 1/rα long-range interactions are represented as a
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FIG. 8. Relative differences of Sz
1,501 (blue) calculated for Jxy =

1, α = 2 and 〈S+
1 S−

501〉 (red) calculated for Jxy = −1, α = 2 caused
by (a) increasing L from 5000 to 104 (with K increasing from 9 to
10) and (b) decreasing εf from 10−10 to 10−11 (with K increasing
from 9 to 10).

matrix product operator by fitting the power law to a sum
of exponentials [51]. Specifically, we fit fr = 1/rα to
f ′

r = ∑K
k=1 cke

−r/ξk for r = 1,2, · · · L. For a given L, we
numerically find the minimum number of exponentials K that
satisfy

∑L
r=1(fr − f ′

r )2 � εf , with εf denoting the residual
tolerance. The maximal range L is set to the chain length in our
finite-size DMRG calculations, and to 5000 in our infinite-size
DMRG calculations (much larger than the 500 site separation
of correlations calculated in Fig. 3). εf is set to 10−12 in our
finite-size DMRG calculations, and 10−10 in our infinite-size
DMRG calculations. For all the calculations shown in
the main text, we find no distinguishable differences within
the resolution of our plots if we further increase L or decrease
εf .

As an example, we show in Fig. 8 relative differences of
Sz

1,501 (for Jxy = 1, α = 2) and 〈S+
1 S−

501〉 (for Jxy = −1, α =
2) caused by increasing L from 5000 to 104 and by decreasing
εf from 10−10 to 10−11. In all cases, the relative differences in
the calculated observables are below 10−3.

We have avoided the use of DMRG results if α < 1.5 and
interactions are unfrustrated in one or more directions (Jxy =
−1 or Jz < 0 or both), because of the slow convergence of∑L

r=1 1/rα with L as α → 1. Nevertheless, we do not expect
new phase transitions in these situations based on Fig. 1, and
we can instead infer the phases of the system there from the
presented calculations.
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